
CSE 410/565 Computer Security
Spring 2021

Lecture 8: Access Control

Department of Computer Science and Engineering
University at Buffalo

'

&

$

%
1

OutlineOutline

• Access control principles

– access control matrices

– access control lists

– capability tickets

• Types of access control

– discretionary access control

– mandatory access control

– role-based access control

– attribute-based access control

'

&

$

%CSE 410/565 Fall 2021

2©Marina Blanton

Access Control BasicsAccess Control Basics

• What is access control?

– prevention of an unauthorized use of a resource or use in an unauthorized
manner

• In some sense, all of security is concerned with access control

• We look at a more specific notion of access control model

• An access control model specifies who is allowed to access what resource
and what type of access is permitted

– it may also specify when access is permitted

• What makes it hard?

– interaction between different types of access

'

&

$

%CSE 410/565 Fall 2021

3©Marina Blanton

Related Security ConceptsRelated Security Concepts

• In a broader context, access control is related to the following concepts

– authentication, identity and credential management

• creation, maintenance, and verification of user or entity identity and/or
credentials

– authorization and information flow

• granting rights or privileges based on established trust assumptions
and imposing controls on information flow

– audit and integrity protection

• system monitoring to ensure proper use of resources and compliance
with policies

• detection of breaches in security and taking corresponding actions
and/or making recommendations

'

&

$

%CSE 410/565 Fall 2021

4©Marina Blanton

Access Control Model BasicsAccess Control Model Basics

• Reference monitor mediates access to resources

– complete mediation means controlling all accesses to resources

? Resource

Policy

User
process

user request

Reference monitor

'

&

$

%CSE 410/565 Fall 2021

5©Marina Blanton

Access Control PrinciplesAccess Control Principles

• Least privilege

– each entity is granted the minimum privileges necessary to perform its
work

– limits the damage caused by error or intentional unintended behavior

• Separation of duty

– practice of dividing privileges associated with one task among several
individuals

– limits the damage a single individual can do

– example:

'

&

$

%CSE 410/565 Fall 2021

6©Marina Blanton

Access Control Model BasicsAccess Control Model Basics

• There is a set of resources or objects, O, to be protected

– directories, files, devices, periferals, even facilities

• There is a set of subjects, S, that may obtain access to the resources

– each subject can have a number of attributes (name, role, groups)

– each subject is normally accountable for its actions

• Access right or privilege describes the type of access

– read, write, execute, delete, search

• Access control requirements form rules

– subject s has read access to object o

'

&

$

%CSE 410/565 Fall 2021

7©Marina Blanton

Access Control MatrixAccess Control Matrix

• The rules can be represented as an access control matrix

• Example

Internal Local Long distance International
Public CRT
Students CRT CRT R R
Staff CRT CRT CRT R
Administration CRT CRT CRT CRT

C = call, R = receive, T = transfer

• Often access control matrices are sparse and can instead be represented as
access control lists (ACLs)

'

&

$

%CSE 410/565 Fall 2021

8©Marina Blanton

Access Control ListsAccess Control Lists

• In ACLs each object has a list of subjects authorized to access it and their
types of access

– for each object, a column of the access control matrix is stored

• Example of ACLs for previous system

Internal: Public/CRT, Students/CRT, Staff/CRT, Administration/CRT

Local: Students/CRT, Staff/CRT, Administration/CRT

Long distance: Students/R, Staff/CRT, Administration/CRT

International: Students/R, Staff/R, Administration/CRT

• Do Unix permission bits constitute ACLs?

'

&

$

%CSE 410/565 Fall 2021

9©Marina Blanton

Capability ListsCapability Lists

• With ACLs, it is hard to determine what privileges a subject has

• We can gather information about subject privileges in so-called capability
lists

– for each subject, store a row of the access control matrix

• Example

Public: Internal/CRT

Students: Internal/CRT, Local/CRT, Long dist/R, International/R

Staff: Internal/CRT, Local/CRT, Long dist/CRT, International/R

Administration: Internal/CRT, Local/CRT, Long dist/CRT, Intl/CRT

• Each user has a number of capability tickets and might be allowed to loan or
give them to others

'

&

$

%CSE 410/565 Fall 2021

10©Marina Blanton

Access Control TriplesAccess Control Triples

• To address drawbacks of all previous representations, we can have a table
with (s, o, a) triples

– is not sparse like access control matrices

– sort by objects to obtain ACLs

– sort by subjects to obtain capability lists

Subject Access Object
Public C Internal
Public R Internal
Public T Internal

Students C Internal
.

Administration T International

• This data structure is commonly used in relational DBMSs

'

&

$

%CSE 410/565 Fall 2021

11©Marina Blanton

ACLs vs. Capability ListsACLs vs. Capability Lists

• The choice of ACLs vs capability lists affects many aspects of the system

– ACL systems need a namespace for both objects and subjects, while a
capability ticket can serve both to designate a resource and to provide
authority

– procedures such as access review and revocation are superior on a
per-object basis in ACL systems and on per-subject basis in capability
systems

– ACL systems require authentication of subjects, while capability systems
require unforgeability and control of propagation of capabilities

• Most real-world OSs use ACLs

'

&

$

%CSE 410/565 Fall 2021

12©Marina Blanton

Discretionary Access ControlDiscretionary Access Control

• In mandatory access control (MAC) users are granted privileges, which they
cannot control or change

• Discretionary access control (DAC) has provisions for allowing subjects to
grant privileges to other subjects

– as a result, the access control matrix A can change

• Let triple (s, o, a) represent an access right

• At time i, the state Xi of the system is characterized by (Si, Oi, Ai)

• Transition ti takes the system from state Xi to Xi+1

– a single transition Xi `ti Xi+1

– series of transitions X `∗ Y

'

&

$

%CSE 410/565 Fall 2021

13©Marina Blanton

Discretionary Access ControlDiscretionary Access Control

• The access control matrix can be extended to include different types of
objects

– the subjects themselves can also be objects

– different types of objects can have different access operations defined for
them

• e.g., stop and wakeup rights for processes, read and write access to
memory, seek access to disk drives

s1 · · · sn o1 · · · om p1 · · · p`
s1
· · ·
sn

• For simplicity assume that we are dealing with one type of objects

'

&

$

%CSE 410/565 Fall 2021

14©Marina Blanton

Discretionary Access ControlDiscretionary Access Control

• Suppose we have the following access rights

– basic read and write

– own: possessor can change their own privileges

– copy or grant: possessor can extend its privileges to another subject

• this is modeled by setting a copy flag on the access right

• for example, right r cannot be copied, but r∗ can

• Grant right gives rise to the principle of attenuation of privilege:

– a subject may not give rights it does not possess

• Each particular model has a set of rules that define acceptable modifications
to the access control matrix

'

&

$

%CSE 410/565 Fall 2021

15©Marina Blanton

Discretionary Access ControlDiscretionary Access Control

• Primitive commands

– create object o (with no access)

• Si+1 = Si, Oi+1 = Oi ∪ {o}, ∀x ∈ Si+1, Ai+1[x, o] = ∅,
∀x ∈ Si+1, ∀y ∈ Oi, Ai+1[x, y] = Ai[x, y]

– create subject s (with no access)

• add s to the set of subjects and objects, set relevant access to ∅

– add right r to object o for subject s

• Ai+1[s, o] = Ai[s, o] ∪ {r}, everything else stays the same

– delete right r from Ai[s, o]

– destroy subject s

– destroy object o

'

&

$

%CSE 410/565 Fall 2021

16©Marina Blanton

Discretionary Access ControlDiscretionary Access Control

• Building more useful commands

– s creates object o

• create object o with no access

• add right own to object o for subject s

– s adds right r to object o for subject s′

• if (r∗ ∈ Ai[s, o] or own ∈ Ai[s, o]), then
Ai+1[s

′, o] = Ai[s
′, o] ∪ {r}

• leave the rest unchanged

– s deletes object o

• if (own ∈ Ai[s, o]), then remove all access rights ∀x ∈ Si from
A[x, o] and destroy o

'

&

$

%CSE 410/565 Fall 2021

17©Marina Blanton

Discretionary Access ControlDiscretionary Access Control

• Example: suppose we initially have

s1 s2 o1 o2 o3
s1 own own, read∗ write read, write
s2 own own, write own

– subject s1 creates s3

– s1 grants to s3 read∗ on o1

– s3 grants to s2 read on o1

– can s1 revoke s2’s right on o1?

• Attenuation of privilege principle is usually ignored for the owner

– why?

'

&

$

%CSE 410/565 Fall 2021

18©Marina Blanton

DAC in Unix File SystemDAC in Unix File System

• Access control is enforced by the operating system

• Files

– how is a file identified?

– where are permissions stored?

– is directory a file?

• Users

– each user has a unique ID

– each user is a member of a primary group (and possibly other groups)

'

&

$

%CSE 410/565 Fall 2021

19©Marina Blanton

DAC in Unix File SystemDAC in Unix File System

• Subjects are processes acting on behalf of users

– each process is associated with a uid/gid pair

• Objects are files and processes

• Each file has information about: owner, group, and 12 permission bits

– read/write/execute for owner, group, and others

– suid, sgid, and sticky

• Example

group::r−−
rw− r−− −−−

other:−−−

user::rw−

'

&

$

%CSE 410/565 Fall 2021

20©Marina Blanton

DAC in Unix File SystemDAC in Unix File System

• DAC is implemented by using commands chmod and chown

• A special user “superuser” or “root” is exempt from regular access control
constraints

• Many Unix systems support additional ACLs

– owner (or administrator) can add to a file users or groups with specific
access privileges

– the permissions are specified per user or group as regular three
permission bits

– setfacl and getfacl commands change and list ACLs

• This is called extended ACL, while the traditional permission bits are called
minimal ACL

'

&

$

%CSE 410/565 Fall 2021

21©Marina Blanton

Security of Discretionary Access ControlSecurity of Discretionary Access Control

• What is secure in the context of DAC?

– a secure system doesn’t allow violations of policy

– how can we use this definition?

• Alternative definition based on rights

– start with access control matrix A that already includes all rights we
want to have

– a leak occurs if commands can add right r to an element of A not
containing r

– a system is safe with respect to r if r cannot be leaked

'

&

$

%CSE 410/565 Fall 2021

22©Marina Blanton

Safety of DAC ModelsSafety of DAC Models

• Assume we have an access control matrix

fa fb fc
sa own, r, w r r
sb r own, r, w r
sc r r own, r, w

– is it safe with respect to r?

– is it safe with respect to w?

– what if we disallow granting rights? object deletion?

• Safety of many useful models is undecidable

– safety of certain models is tractable, but they tend not to apply to real
world

'

&

$

%CSE 410/565 Fall 2021

23©Marina Blanton

Decidability of DAC ModelsDecidability of DAC Models

• Decidable

– we are given a system, where each command consists of a single
primitive command

– there exists an algorithm that will determine if the system with initial
state X0 is safe with respect to right r

• Undecidable

– we are now given a system that has non-primitive commands

– given a system state, it is undecidable if the system is safe for a given
generic right

– the safety problem can be reduced to the halting problem by simulating a
Turing machine

• Some other special DAC models can be decidable

'

&

$

%CSE 410/565 Fall 2021

24©Marina Blanton

Does Safety Mean Security?Does Safety Mean Security?

• Does “safe” really mean secure?

• Example: Unix file system

– root has access to all files

– owner has access to their own files

– is it safe with respect to file access right?

• have to disallow chmod and chown commands

• only “root” can get root privileges

• only user can authenticate as themselves

• Safety doesn’t distinguish a leak from authorized transfer of rights

– is this definition useful?

'

&

$

%CSE 410/565 Fall 2021

25©Marina Blanton

Security in DACSecurity in DAC

• Solution is trust

– subjects authorized to receive transfer of rights are considered “trusted”

– trusted subjects are eliminated from the access control matrix

• Also, safety only works if maximum rights are known in advance

– policy must specify all rights someone could get, not just what they have

– how applicable is this?

• And safety is still undecidable for practical models

'

&

$

%CSE 410/565 Fall 2021

26©Marina Blanton

Mandatory Access ControlMandatory Access Control

• In mandatory access control (MAC) users are granted privileges, which they
cannot control or change

– useful for military applications

– useful for regular operating systems

• DAC does not protect against

– malware

– software bugs

– malicious local users

• DAC cannot control information flow

'

&

$

%CSE 410/565 Fall 2021

27©Marina Blanton

MAC in Operating SystemsMAC in Operating Systems

• The need for MAC

– host compromise by network-based attacks is the root cause of many
serious security problems

• worm, botnet, DDoS, phishing, spamming

– hosts can be easily compromised

• programs contain exploitable bugs

• DAC mechanisms in OSs were not designed to take buggy software in
mind

– adding MAC to OSs is essential to deal with host compromise

• last line of defense when everything else fails

• In MAC a system-wide security policy restricts access rights of subjects

'

&

$

%CSE 410/565 Fall 2021

28©Marina Blanton

Combining MAC and DACCombining MAC and DAC

• It is common to combine mandatory and discretionary access control in
complex systems

– modern operating systems is one significant example

• MAC and DAC are also combined in older models that implement multilevel
security (for military-style security classes)

– Bell-Lapadula confidentiality model (1973)

– Biba integrity model (1977)

• Related models for commercial applications include

– Clark-Wilson model

– Chinese Wall model

'

&

$

%CSE 410/565 Fall 2021

29©Marina Blanton

SummarySummary

• Access control is central in providing an adequate level of security

• Access control rights can be specified in the form of

– access control matrix

– access control lists

– capability tickets

– access control tables

• Types of access control

– already covered DAC and MAC

– will look at role-based access control (RBAC) and attribute-based access
control

'

&

$

%CSE 410/565 Fall 2021

30©Marina Blanton

