CSE 410/565 Computer Security Spring 2022

Lecture 2: Symmetric Encryption I

Department of Computer Science and Engineering
University at Buffalo

Cryptographic Tools

- Cryptographic tools are essential in designing secure solutions and their understanding is crucial to correct usage
- We'll look at these types of cryptographic tools
- symmetric encryption
- hash functions and message authentication codes
- public-key encryption
- digital signatures and certificates
- pseudo-random number generators
- The most basic problem of cryptography
- ensure security of communication over insecure media

Goals of Cryptography

- Security goals
- confidentiality
- data integrity
- Basic encryption terminology
- plaintext
- ciphertext
- cryptographic key
- encryption
- decryption
- cryptanalysis

Symmetric Encryption

- Symmetric (or secret-key) encryption means that the same key is used both for encryption and decryption
- The key must remain secret at both ends
- Such algorithms are:
- normally very fast
- can be used as primitives in more complex cryptographic protocols
- the key often has a short lifetime

Symmetric Encryption Formally

- More formally, a computationally secure symmetric key encryption scheme is defined as:
- a private-key encryption scheme consists of polynomial-time algorithms (Gen, Enc, Dec) such that

1. Gen: on input the security parameter n, outputs key k
2. Enc: on input a key k and a message $m \in\{0,1\}^{*}$, outputs ciphertext c
3. Dec: on input a key k and ciphertext c, outputs plaintext m

- we write $k \leftarrow \operatorname{Gen}\left(1^{n}\right), c \leftarrow \operatorname{Enc}_{k}(m)$, and $m:=\operatorname{Dec}_{k}(c)$
- this notation means that Gen and Enc are probabilistic and Dec is deterministic

Symmetric Encryption

- The above definition allows us to encrypt messages of any length
- In practice, there are two types of symmetric key algorithms:
- block ciphers
- the key has a fixed size
- prior to encryption, the message is partitioned into blocks
- each block is encrypted and decrypted separately
- stream ciphers
- the message is processed as a stream
- pseudo-random generator is used to produce a long key stream from a short key

Attacks Against Symmetric Encryption

- Encryption and decryption algorithms are assumed to be known to the adversary
- Types of attacks
- ciphertext only attack: adversary knows a number of ciphertexts
- known plaintext attack: adversary knows some pairs of ciphertexts and corresponding plaintexts
- chosen plaintext attack: adversary knows ciphertexts for messages of its choice
- chosen ciphertext attack: adversary knows plaintexts for ciphertexts of its choice
- We want a general-purpose algorithm to sustain all types of attacks

Security Against Chosen-Plaintext Attacks

- In chosen-plaintext attack (CPA), adversary \mathcal{A} is allowed to ask for encryptions of messages of its choice
- it is active and adaptive
- \mathcal{A} is given black-box access to encryption oracle and can query it on different messages
- notation $\mathcal{A}^{\mathcal{O}(\cdot)}$ means \mathcal{A} has oracle access to algorithm \mathcal{O}
- \mathcal{A} is asked to distinguish between encryptions of messages of its choice

CPA Security

- CPA indistinguishability experiment $\operatorname{PrivK}_{\mathcal{A}, \mathcal{E}}^{\mathrm{Cpa}}(n)$

1. random key k is generated by $\operatorname{Gen}\left(1^{n}\right)$
2. \mathcal{A} is given 1^{n} and ability to query $\operatorname{Enc}_{k}(\cdot)$, and chooses two messages m_{0}, m_{1} of the same length
3. random bit $b \leftarrow\{0,1\}$ is chosen, challenge ciphertext $c \leftarrow \operatorname{Enc}_{k}\left(m_{b}\right)$ is computed and given to \mathcal{A}
4. \mathcal{A} can use $\mathrm{Enc}_{k}(\cdot)$ and eventually outputs bit b^{\prime}
5. experiment outputs 1 if $b^{\prime}=b$ (\mathcal{A} wins) and 0 otherwise

- $\mathcal{E}=($ Gen, Enc, Dec) has indistinguishable encryptions under the chosen-plaintext attack (CPA-secure) if for all PPT \mathcal{A}

$$
\left.\operatorname{Pr}\left[\operatorname{PrivK}_{\mathcal{A}, \mathcal{E}}^{\mathrm{cpa}}(n)=1\right] \leq \frac{1}{2}+\operatorname{neg} \right\rvert\,(n)
$$

Block Ciphers

- The algorithm maps an n-bit plaintext block to an n-bit ciphertext block
- Most modern block ciphers are product ciphers
- we sequentially apply more than one operation to the message
- Often a sequence of permutations and substitutions is used
- A common design for an algorithm is to proceed in iterations
- one iteration is called a round
- each round consists of similar operations
- i th round key k_{i} is derived from the secret key k using a fixed, public algorithm

Design Principles of Block Ciphers

- Confusion-diffusion paradigm
- split a block into small chunks
- define a permutation on each chunk separately (confusion)
- mix outputs from different chunks by rearranging bits (diffusion)
- repeat to strengthen the result

Design Principles of Block Ciphers

- Substitution-permutation networks
- since a permutation on a block can be specified as a lookup table, this is called substitution
- instead of having substitutions defined by the key, such functions are fixed and applied to messages and keys
- mixing algorithm is called mixing permutation

Design Principles of Block Ciphers

- For this type of algorithm to be reversible, each operation needs to be invertible

Design Principles of Block Ciphers

- Let's denote one iteration or round by function g
- The initial state s_{0} is the message m itself
- In round i :
- g 's input is round key k_{i} and state s_{i-1}
- g 's output is state s_{i}
- The ciphertext c is the final state $s_{N r}$, where $N r$ is the number of rounds
- Decryption algorithm applies g^{-1} iteratively
- the order of round keys is reversed
$-\operatorname{set} s_{N r}=c$, compute $s_{i-1}=g^{-1}\left(k_{i}, s_{i}\right)$

Design Principles of Block Ciphers

- Another way to realize confusion-diffusion paradigm is through Feistel network
- in Feistel network each state is divided into halves of the same length: L_{i} and R_{i}
- in one round:
- $L_{i}=R_{i-1}$
- $R_{i}=L_{i-1} \oplus f\left(k_{i}, R_{i-1}\right)$

Design Principles of Block Ciphers

- Are there any advantages over the previous design?
- operations no longer need to be reversible, as the inverse of the algorithm is not used!
- reverse one round's computation as $R_{i-1}=L_{i}$ and

$$
L_{i-1}=R_{i} \oplus f\left(k_{i}, R_{i-1}\right)
$$

Design Principles of Block Ciphers

- In both types of networks, the substitution and permutation algorithms must be carefully designed
- choosing random substitution/permutation strategies leads to significantly weaker ciphers
- each bit difference in S-box input creates at least 2-bit difference in its output
- mixing permutation ensures that difference in one S-box propagates to at least 2 S-boxes in next round

Block Ciphers

- Larger key size means greater security
- for n-bit keys, brute force search takes $2^{n} / 2$ time on average
- More rounds often provide better protection
- the number of rounds must be large enough for proper mixing
- Larger block size offers increased security
- security of a cipher also depends on the block length

Data Encryption Standard (DES)

- In 1973 National Institute of Standards and Technology (NIST) published a solicitation for cryptosystems
- DES was developed by IBM and adopted as a standard in 1977
- It was expected to be used as a standard for 10-15 years
- Was replaced only in 2001 with AES (Advanced Encryption Standard)
- DES characteristics:
- key size is 56 bits
- block size is 64 bits
- number of rounds is 16

DES

- DES uses Feistel network
- Feistel network is used in many block ciphers such as DES, RC5, etc.
- not used in AES
- in DES, each L_{i} and R_{i} is 32 bits long; k_{i} is 48 bits long

DES

- DES has a fixed initial permutation $I P$ prior to 16 rounds of encryption
- The inverse permutation $I P^{-1}$ is applied at the end

DES

- The f function $f\left(k_{i}, R_{i-1}\right)$

1. first expands R_{i-1} from 32 to 48 bits (k_{i} is 48 bits long)
2. XORs expanded R_{i-1} with k_{i}
3. applies substitution to the result using S-boxes
4. and finally permutes the value

DES f Function

DES

- There are 8 S-boxes
- S-boxes are the only non-linear elements in DES design
- they are crucial for the security of the cipher
- Example: S_{1}

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

- input to each S-box is 6 bits $b_{1} b_{2} b_{3} b_{4} b_{5} b_{6}$
- row $=b_{1} b_{6}$, column $=b_{2} b_{3} b_{4} b_{5}$
- output is 4 bits

DES

- More about S-boxes..
- a modified version of IBM's proposal was accepted as the standard
- some of the design choices of S-boxes weren't public, which triggered criticism
- in late 1980s - early 1990s differential cryptanalysis techniques were discovered
- it was then revealed that DES S-boxes were designed to prevent such attacks
- such cryptanalysis techniques were known almost 20 years before they were discovered by others

DES Key Schedule

- Key computation consists of:
- circular shift
- permutation
- contraction

DES

- Why does decryption work?
- round function g is invertible
- compute $L_{i-1}=R_{i} \oplus f\left(k_{i}, L_{i}\right)$
- compute $R_{i-1}=L_{i}$
- in the beginning apply $I P$ and at the end apply $I P^{-1}$
- round keys k_{16}, \ldots, k_{1} and the f function are computed as before

DES Weak Keys

- The master key k is used to generate 16 round keys
- Some keys result in the same round key to be generated in more than one round
- this reduces complexity of the cipher
- Solution: check for weak keys at key generation
- DES has 4 weak keys:
- 00000000000000
- 0000000 FFFFFFF
- FFFFFFF 0000000
- FFFFFFF FFFFFFF

Attacks on DES

- Brute force attack: try all possible 2^{56} keys
- time-consuming, but no storage requirements
- Differential cryptanalysis: traces the difference of two messages through each round of the algorithm
- was discovered in early 90 s
- not effective against DES
- Linear cryptanalysis: tries to find linear approximations to describe DES transformations
- was discovered in 1993
- has no practical implication

Brute Force Search Attacks on DES

- It was conjectured in 1970s that a cracker machine could be built for $\$ 20$ million
- In 1990s RSA Laboratories called several DES challenges
- Challenge II-2 was solved in 1998 by Electronic Frontier Foundation
- a DES Cracker machine was built for less than $\$ 250,000$ and found the key was in 56 hours
- Challenge III was solved in 1999 by the DES Cracker in cooperation with a worldwide network of 100,000 computers
- the key was found in 22 hours 15 minutes
- http://www.distributed.net/des

Increasing Security of DES

- DES uses a 56-bit key and this raised concerns
- One proposed solution is double DES
- apply DES twice by using two different keys k_{1} and k_{2}
- encryption $c=E_{k_{2}}\left(E_{k_{1}}(m)\right)$
- decryption $m=D_{k_{1}}\left(D_{k_{2}}(c)\right)$
- The resulting key is $2 \cdot 56=112$ bits, so it should be more secure, right?
- an attack called meet-in-the-middle discovers keys k_{1} and k_{2} with 2^{56} computation and storage
- better, but not substantially than regular DES

Triple DES

- Triple DES with two keys k_{1} and k_{2} :
- encryption $c=E_{k_{1}}\left(D_{k_{2}}\left(E_{k_{1}}(m)\right)\right)$
- decryption $m=D_{k_{1}}\left(E_{k_{2}}\left(D_{k_{1}}(c)\right)\right)$
- key space is $2 \cdot 56=112$ bits
- Triple DES with three keys k_{1}, k_{2}, and k_{3} :
- encryption $c=E_{k_{3}}\left(D_{k_{2}}\left(E_{k_{1}}(m)\right)\right)$
- decryption $m=D_{k_{1}}\left(E_{k_{2}}\left(D_{k_{3}}(c)\right)\right)$
- key space is $3 \cdot 56=168$ bits
- There is no known practical attack against either version
- Can be made backward compatible by setting $k_{1}=k_{2}$ or $k_{3}=k_{2}$

Summary of Attacks on DES

- DES
- best attack: brute force search
-2^{55} work on average
- no other requirements
- Double DES
- best attack: meet-in-the-middle
- requires 2 plaintext-ciphertext pairs
- requires 2^{56} space and about 2^{56} work
- Triple DES
- best practical attack: brute force search

