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This is the last of five papers that construct an isomorphism between the Seiberg–
Witten Floer homology and the Heegaard Floer homology of a given compact, oriented
3–manifold. See Theorem 1.4 for a precise statement. As outlined in paper I (Geom.
Topol. 24 (2020) 2829–2854), this isomorphism is given as a composition of three
isomorphisms. In this article, we establish the third isomorphism, which relates the
Seiberg–Witten Floer homology on the auxiliary manifold with the appropriate version
of Seiberg–Witten Floer homology on the original manifold. This constitutes Theo-
rem 4.1 in paper I, restated in a more refined form as Theorem 1.1 below. The tool used
in the proof is a filtered variant of the connected sum formula for Seiberg–Witten Floer
homology, in special cases where one of the summand manifolds is S1 �S2 (referred
to as “handle-addition” in all five articles in this series). Nevertheless, the arguments
leading to the aforementioned connected sum formula are general enough to establish
a connected sum formula in the wider context of Seiberg–Witten Floer homology with
nonbalanced perturbations. This is stated as Proposition 6.7 here. Although what is
asserted in this proposition has been known to experts for some time, a detailed proof
has not appeared in the literature, and therefore of some independent interest.
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1 Introduction

To summarize what was done in the predecessors to this article [19; 20; 21; 22]: the
first article in this series outlined a program for a proof of Theorem 1.4, based on a
concatenation of three isomorphisms. The first isomorphism [19, Theorem 2.3] relates a
version of embedded contact homology on an auxiliary manifold to the Heegaard Floer
homology on the original, and was accomplished in [20; 21]. The second isomorphism
[19, Theorem 3.4] relates the relevant version of the embedded contact homology on
the auxiliary manifold and a version of the Seiberg–Witten Floer homology on this
same manifold. This was established in [22]. This last installment of the HMD HF
series contains the proof of the third isomorphism, stated as Theorem 4.1 in [19]. Part
of the content of this paper is drawn from unpublished details of the proof of the second
author’s Corollary 8.4 in [23], which describes the behavior of certain Seiberg–Witten
Floer homology under handle addition.

1.1 The main theorem and an outline of proof

Let M be a closed, connected and oriented 3–manifold. Given a Spinc structure s

on M, P B Kronheimer and T S Mrowka defined in [17] three flavors of Seiberg–Witten
Floer homology, bHM� , HM� and zHM� , modeling on three different versions of
S1–equivariant homologies. These homology groups have the structure of modules
over the graded ring

A�.M/ WD ZŒU �˝
V�
.H1.M IZ/=Tors/;

where U has degree �2 and elements in H1.M IZ/=Tors have degree �1. These
modules are graded by an affine space over Z=csZ, where cs 2 2Z�0 is the divisibility
of c1.s/, the first Chern class of the Spinc structure s. Moreover, as A�.M/–modules,
these three flavors of Seiberg–Witten Floer homologies fit into a long exact sequence
modeling on the fundamental exact sequence of S1–equivariant Floer homologies (see
equation (3.4) in [17])

(1-1) � � � !bHM�! HM�!zHM�! � � � :

This is called the first fundamental exact sequence of HM in this article. In [23], the
second author defined a fourth flavor of Seiberg–Witten Floer homology, eHM� , with
the same module structure and relative grading. (It was originally denoted by HMtot

in [23], given here as Definition 5.6.) The definition models on the ordinary homology
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of an S1–space. As such, it fits into a second long exact sequence together with
U bHM� and bHM� . This is referred to as the second fundamental exact sequence of
HM; see Lemma 5.7 below.

In this article, we regard these four flavors of HM as a system, in the order of bHM� ,
HM� , and zHM� , eHM� . They are denoted collectively by VHM� .

As will be detailed in the upcoming Section 2, the Seiberg–Witten Floer homology
(also referred to as the monopole Floer homology in this article) VHM� depends on the
cohomology class of the perturbation form $ in addition to the Spinc –structure s. One
may also define a monopole Floer homology with local coefficients � compatible with
s and Œ$�. Of particular interest to us is the case when the perturbation is “balanced”,
in this case � may be taken to be Z. These are denoted by VHM�.M; s; cb/; and this
is the variant of monopole Floer homology to be equated with the Heegaard Floer
homology HFı� , in Theorem 1.4 below. This is, in a sense, the strongest possible
statement of equivalence between HM and HF, as the monopole Floer homology
HM¤ 0 and bHM ¤zHM only in the balanced case. The equivalence between other
versions of HM and HF may be deduced from this case through the use of local
coefficients. It is also worth mentioning that a coarser version of Seiberg–Witten Floer
homology, HM� , defined by taking a completion of the Floer complex with respect
to grading,1 frequently appears in [17] and other literature. In this article we work
exclusively with the original version, VHM� .

The upcoming Theorem 1.1 relates VHM�.M; s; cb/ with two filtered variants of mono-
pole Floer homology. The first was introduced in [23], originally denoted by HMTı

therein. Here, the label ı stands, in specific order, for �;1;C;^. The fact that
they appear in the superscript (instead of the top) of the notation, and the order in
which they appear, reflects the nature of their definition. The latter is done following
the algebraic framework of Ozsváth and Szabó in [29]. The second of these two
variants was introduced in [22] (see also Section 4 of [19] for a brief summary). They
are denoted by Hı�.Y / in [19], and by HıSW in [22]. The construction of both these
filtered monopole Floer homologies is based on the same general framework, which
we describe in Section 3 below. This framework always produces four flavors of Floer
homologies, labeled by ı D�;1;C;^; and they are related by two fundamental long
exact sequences parallel to those appearing in the Heegaard Floer theory; see (1-6)
below. (To be more precise, only the first three flavors appeared in [19; 22], but it shall

1After completion HM often becomes trivial even in the balanced case; see eg [17, page 685].
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become clear in Section 3 that the aforementioned general construction actually gives
rise to a fourth flavor). The basic ingredient of this construction consists of a triple
of data: a certain Spinc 3–manifold YZ , a closed 2–form w on YZ used to define
a monotone perturbation to the Seiberg–Witten equations, and a special 1–cycle 
embedded in YZ useful for defining a filtration on the associated monopole Floer
complex. Further constraints on the choice of this triple are given in Section 3.2.

The triple that enters the definition of HMTı is what was denoted by .M;�d f ; /
in [23]. Here, M is constructed from M by adding a 1–handle2 along the extrema
of f , the latter being a Morse function giving rise to the Heegaard diagram used to
define HFı . Denote this 1–handle by H0 . What was denoted by f is an S1–valued
harmonic Morse function obtained by a natural extension of f . The 1–circle  is
related to the path z �M used by Ozsváth and Szabó to define a filtration on the
Heegaard Floer complex. The triple used for the definition of HıSW in [22] was denoted
by .Y; w;  .z0// in [20; 22]. The 3–manifold Y is obtained from M by attaching
additional 1–handles along pairs of index 1 and index 2 critical points of f . The
2–form w on Y is constructed from a natural extension of �df . The 1–cycle  in M
becomes the 1–cycle  .z0/ in Y after the handle-attachment. The precise definitions
of HMTı and HıSW may be found in Section 3.8. By construction, HMTı and HıSW
are, respectively, A�.M/– and A�.Y /–modules, and each is equipped with a pair of
fundamental exact sequences parallel to (1-6).

Let G denote the number of 1–handles added to M in order to obtain Y and denote
these handles by Hp for p 2ƒ, where the label set ƒ is an ordered set consisting of G

elements. Recall that z �M is defined so that @z is the attaching 0–cycle of H0 .
As described in [23], the path z determines a decomposition of M as a connected
sum M 'M # .S1 �S2/ (see [23, equation (15)]), and hence a splitting

(1-2) H1.M IZ/'H1.M IZ/˚H1.S
1
�S2IZ/;

with the second summand generated by Œ� 2H1.M IZ/. Correspondingly, this deter-
mines a factorization of the algebra

(1-3) A�.M/'A�.M/˝ZŒU �A�.S
1
�S2/DA�.M/˝

V�
H1.S

1
�S2IZ/:

The last factor above,
V�
H1.S

1/ D
V�
H1.S

1 � S2IZ/, has a natural action on its
dual algebra

V�
.H 1.S1//. The latter is regarded as a graded Z–algebra generated

by two elements, one of degree 0 and the other of degree 1. This was denoted by yV

2See item (7) in Section 1.3.
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in [19] and by H�.S1/ in the rest of this article (see item (6) of Section 1.3 below).
For this reason we shall use the shorthand H��.S1/ for the factor

V�
H1.S

1�S2IZ/

in (1-3), and the aforementioned dual action is implied whenever we refer to “the
H��.S

1/–action on H�.S1/” below.

The auxiliary manifold Y may be decomposed as a connected sum of M and G copies
of S1 �S2 , one for each of the 1–handles Hp , in a similar manner: For each p 2ƒ,
we fix an arc �p in M connecting the attaching 0–cycle of Hp . Let Sp denote the
boundary sphere of a small tubular neighborhood of �p , and use the same notation for
the corresponding sphere in Y . The precise description of �p and Sp is given in Part 1
of Section 9.5 below. Now split Y along these spheres Sp to get the aforementioned
connected sum, and use this to define a splitting

(1-4) H1.Y IZ/'H1.M IZ/˚
M
p2ƒ

H1..S
1
�S2/pIZ/;

where .S1�S2/p denotes the copy of S1�S2 coming from Hp . This in turn determines
a factorization

(1-5) A�.Y /'A�.M/˝ZŒU �

O
p2ƒ

A�..S
1
�S2/p/DA�.M/˝H��.S

1/G

like (1-3).

The main theorem of this article relates the three versions of monopole Floer homologies:
VHM.M; s; cb/, HMTı and HıSW D Hı.Y /.

Theorem 1.1 (1) Use HMTı�H�.S1/�G to denote the external tensor product3

of the A�.M/–module HMTı and G copies of the H��.S1/–module H�.S1/.
With respect to the factorization (1-5), there exists a system of isomorphisms of
A�.Y /DA�.M/˝H��.S

1/˝G –modules

Hı.Y / '�! HMTı�H��.S1/�G; ı D �;1;C;^;

which preserves the relative gradings and is natural with respect to the funda-
mental long exact sequences on both sides.

3When the coefficient is left unspecified, the tensor product notation ˝ implicitly refers to ˝Z . Given
two (Z–)algebras A and B, an A–module M and a B –module N, M �N denotes M ˝N viewed as
an A˝B –module.
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(2) The H��.S1/ factor of the factorization A�.M/DA�.M/˝H��.S
1/ in (1-3)

acts trivially on HMT. Regarding HMT as an A�.M/–module in this manner,
there exists a system of isomorphisms of A�.M/–modules from

HMTı; ı D �;1;C;^; to VHM.M; s; cb/; ı D ^;�;_;�;

respectively, that preserves the relative gradings and is natural with respect to the
fundamental long exact sequences on both sides.

The proof of this theorem is given in Section 6.3. The remainder of this section gives a
brief outline of this proof.

Given how Y is constructed from M, and M in turn from M, it is little surprise that
the preceding theorem is a consequence of a certain filtered variant of the connected
sum formula for Seiberg–Witten Floer homologies. See Proposition 6.11 in Section 6.3.
The first steps of the proof of this formula, via understanding the chain maps on Seiberg–
Witten Floer complexes induced by cobordisms associated to the connected sum, lead
to a connected sum formula for Seiberg–Witten Floer homologies sans filtration. This
is stated as Proposition 6.7 below.

The more essential part of the proof, which also constitutes the major technical com-
ponent of this article, consists of an extension of the framework defining HMTı and
Hı.Y / to the context of cobordisms and their associated chain maps. The analytical
foundation of such an extension is provided in Sections 7–9 of this article.

The proof of part (2) of Theorem 1.1 also involves some homological algebra computa-
tion that turns out to be a manifestation of so-called “Koszul duality”. An elementary
account of the relevant part of this story is given in Section 4. This algebraic machinery
expresses all four flavors of the balanced monopole Floer homology, VHM.M; s; cb/
in terms of a balanced monopole Floer complex of the first flavor, bCM�.M; s; cb/.
Meanwhile, the filtered connected sum formula previously mentioned expresses all
four flavors of HMTı in terms of a monopole Floer complex with “negative monotone”
perturbation, CM�.M; s; c�/. See Proposition 5.9 below. These two monopole Floer
complexes are linked via a chain-level variant of the following result of Kronheimer
and Mrowka:

Theorem 1.2 [17, Theorem 31.5.1] Suppose c1.s/ is not torsion. Then

bHM�.M; s; cb/' HM�.M; s; c�/:
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The right-hand side of the preceding isomorphism refers to the monopole Floer homol-
ogy for negative monotone perturbations. A brief account of this variant of monopole
Floer homology can be found in Section 2.3. The construction of both HıSW and HMTı

are based on negative monotone monopole Floer complexes.

More on the motivation for various constructions in the article may be found in [23].

Remark 1.3 With the hindsight gained from Juhasz’s [14] and Kronheimer and
Mrowka’s [18] definitions of sutured Floer homologies, we feel that HMTı are best
interpreted as variants of sutured Floer homology. In particular, HM.M.1/; s.1//D
1HMT.M; s/ in terms of the notation in [14; 18; 23]. From this point of view,
Theorem 1.1(2) may be viewed as a reinterpretation of monopole Floer homology
of closed 3–manifolds as (generalized) sutured Floer homology. In particular, the
ı D ^ variant of this statement is a Seiberg–Witten analog of Proposition 2.2 in [14],
where the hat version of the Heegaard Floer homology is reinterpreted as a sutured
Floer homology. See also Theorem 1.6 announced in [5] for an ECH analog (of the
ı D ^ variant). We hope to discuss this in more detail elsewhere. (See also the end of
Part 4 in Section 9.1.)

1.2 Relating Heegaard and Seiberg–Witten Floer homologies

With all said and done, the main result here combines with those in [19; 20; 21; 22] to
reach our ultimate goal:

Theorem 1.4 Let M be a closed, oriented 3–manifold, and s be a Spinc –structure on
M. Then there exists a system of isomorphisms from HFı�.M; s/ for ıD�;1;C;^ to
VHM�.M; s; cb/ for ı D ^;�;_;�, respectively, as Z=csZ–graded A�.M/–modules,

which is natural with respect to the fundamental exact sequences of the Heegaard and
monopole Floer homologies.

The result summaries the relation between the Heegaard and monopole Floer homolo-
gies, which has been conjectured since the inception of Heegaard Floer theory. See
for example Conjecture 1.1 in [28], Section I.3.12 in [17], Conjecture 1 in [16] and
Conjecture 1.1 in [23].

As the Heegaard Floer homology HFı makes no other appearances for the rest of this
article, the reader is referred to [29; 28] for its definition and properties. In particular,
the fundamental exact sequences relating its four flavors take the form

(1-6) � � � ! HF�! HF1! HFC! � � � ; � � � ! HF� U
�! HF�! cHF! � � � :

Geometry & Topology, Volume 24 (2020)
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Proof of Theorem 1.4 An outline of the proof is already given in [19]. To summarize,
by combining the two parts of Theorem 1.1, one has (see Theorem 4.1 in [19])

(1-7) Hı.Y /' VHM.M; s; cb/�H��.S1/�G;

as modules over the algebra A�.M/˝H��.S
1/˝G . Here, the A�.M/˝H��.S

1/˝G –
structure on Hı.Y / comes from the latter’s A�.Y /–module structure via the inclusion

(1-8) A�.M/˝1˝H��.S
1/˝G ,!A�.M/˝H��.S

1/˝H��.S
1/˝G

'isum A�.Y /

with respect to the factorization combining (1-3) and (1-5).

It is asserted in Theorem 3.4 of [19] and proven in Theorem 1.5 of [22] that the left-hand
side of (1-7), Hı.Y /, is isomorphic to what was called “echı” as A�.Y /–modules.
The echı chain complex, as well as a (particular choice of) A�.Y /–action on it, is
explicitly described in [20; 21]. A computation based on this explicit description yields:

Proposition 1.5 (see also Theorem 2.4 of [19]) There is a system of isomorphisms

echı ' HFı.M; s/�H�.S1/�G

as modules over A�.M/ ˝ H��.S
1/˝G , which preserves relative gradings and is

natural with respect to the fundamental exact sequences on both sides. Here, the
A�.M/˝H��.S

1/˝G –structure on echı also refers to the one induced from the latter’s
A�.Y /–module structure via the same inclusion (1-8).

The proof of this proposition involves some details of [21]’s description of the A�.Y /–
actions on echı , as well as some particular choice of the arcs �p used to define the
factorization (1-5), and will be postponed to Section 9.6.

The assertion of the theorem is a direct consequence of the composition of the three
isomorphisms from the preceding proposition, (1-7) and Theorem 1.5 of [22] (which is
Theorem 3.4 of [19]).

1.3 Some notation and conventions

Throughout the remainder of this paper, section numbers, equation numbers, and other
references from [19; 20; 21; 22] are distinguished from those in this paper by the use
of the appropriate Roman numeral as a prefix. For example, “Section II.1” refers to
Section 1 in [20]. In addition, the following conventions are used:
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(1) As in [19; 20; 21; 22], we use c0 to denote a constant in .1;1/ whose value is
independent of all relevant parameters. The value of c0 can increase between
subsequent appearances.

(2) As in [19; 20; 21; 22], we denote by � a fixed, nonincreasing function on R

that equals 1 on a neighborhood of .�1; 0� and equals 0 on a neighborhood
of Œ1;1/.

(3) When left unspecified, the modules, chain complexes and homologies in this
article are over the coefficient ring K, which can be taken to be Z, as was done
in [19; 20; 21; 22]. Using a separate notation serves to distinguish different roles
the abelian group Z plays in this article, eg as the group of deck transformations
versus the coefficient ring of the chain complexes.

(4) The term “module” in this article refers to either a left module or a right module.
Thus, both the monopole Floer homology and monopole Floer cohomology are
said to have a module structure over the ring H�.BS1/. Note in contrast that
in [17], a “module” refers specifically to a left module. Moreover, what appears
as U� in [17] is denoted by U in this article for simplicity, since we focus on
Floer homology as opposed to cohomology.

(5) The definition of Floer complexes in this article often depends on several pa-
rameters, yet there are chain homotopies relating the Floer complexes with the
values of some of the parameters changed. In the interest of simplicity, these
parameters are usually left unspecified in our notation for the Floer complexes
unless necessary.

(6) Due to geometric motivations (see [10]), we view H�.S
1/ and H�.BS1/ both

as free commutative differential graded algebras with zero differential and a
single generator, where the odd generator y for H1.S1/ has degree 1, while the
even generator u for H�.BS1/ has degree �2. In this paper commutativity and
the commutator Œ � ; � � are meant in the graded sense. In particular, what is called
an “antichain map” in [17] is in our terminology an odd chain map. If necessary,
we use notation Œ � ; � �odd or Œ � ; � �even to emphasize the parity of the commutator.
When H�.S1/ is written as a polynomial algebra in y , ZŒy�, H��.S1/ is often
written as ZŒ@y �, to reflect the action of H��.S1/ on H�.S1/.

(7) In this article as well as its prequels, a “1–handle” frequently refers to Œ0; 1��S2 ,
and “attaching a 1–handle to a 3–manifold” refers to a 0–dimensional surgery
on the 3–manifold.
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(8) In the context of fiber bundles over a fixed base manifold, F typical stands for a
trivial bundle with fibers F.

Acknowledgements The authors are supported in part by grants from the National
Science Foundation. Kutluhan is supported by a National Science Foundation Post-
doctoral Research Fellowship under Award No. DMS-1103795. Lee was supported by
Hong Kong Research Grants Council grants GRF-401913, 14316516, 143055419 since
2014. She thanks Harvard University for hosting her during multiple visits through
the long course of working on this project, and also T Mrowka and P Ozsváth for
suggesting the general form of the connected sum formula, Proposition 6.7 below. A
similar statement under different assumptions, via a different and more involved route
of proof, is to appear in [2].

2 Elements of Seiberg–Witten Floer theory

This subsection reviews some background on Seiberg–Witten Floer theory, with the
book [17] as the definitive reference. By way of this, we introduce some notation and
terminology used in the rest of this article, some of which differ from those in [17].
We focus mostly on the special cases involved in the proof of Theorem 1.1, leaving
the general details for the reader to consult [17]. Many notions here have analogs in
eg [22; 25], which work with similar settings.

2.1 Seiberg–Witten equations on 3–manifolds

Let M be a closed, oriented, Riemannian 3–manifold. Fix a Spinc –structure s on M
and let S denote its associated spinor bundle. We call a pair, .A; ‰/, consisting of a
Hermitian connection on det S and a section of S a (Seiberg–Witten) configuration. The
gauge group C1.M IU.1// acts on the space of configurations in the following fashion:
Let yu WM!U.1/. Then yu sends a configuration, .A; ‰/, to .A�2yu�1d yu; yu‰/. Two
solutions obtained one from the other in this manner are said to be gauge-equivalent.
Note that this C1.M IU.1//–action is free except at pairs of the form .A; ‰ D 0/;
these are called reducible configurations. Configurations which are not reducible are
irreducible.

In the most general form, the 3–dimensional Seiberg–Witten equations ask that a
configuration .A; ‰/ obey

(2-1) BA�‰
��‰C i$ �TD 0 and DA‰�SD 0;

Geometry & Topology, Volume 24 (2020)
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where BA denotes the Hodge dual of the curvature form of A, DA denotes the Dirac
operator and the quadratic term ‰��‰ is as in Section 1.2 of [25]; $ is a closed
2–form, and the pair .T;S/ is a small perturbation arising as the formal gradient of a
gauge-invariant function of .A; ‰/. This is called a tame perturbation in [17], and is
in general needed to guarantee the transversality properties necessary for the definition
of Seiberg–Witten Floer homology. See Chapters 10 and 11 in [17]. In the simplest
case, .T;S/ may be taken to be of the form

(2-2) .T;S/D .2i �d�; 0/

for a smooth 1–form � taken from a Banach space called � in [22]. This may be
assumed to be a subspace of the Banach space of tame perturbations in Chapter 11.6
in [17], and hence inherits the so-called “P –norm” from [17]. This norm bounds the
norms of the derivatives of � to any given order.

Irreducible solutions to (2-1) may exist only when the cohomology class is Œ$� D
2�c1.det S/. In this case the Seiberg–Witten equations (2-1) is said to have balanced
perturbation, while it is said to have exact perturbation when Œ$�D 0. The cases when
Œ$�D2rc1.det S/ is said to be monotone: when r>� it is said to be negative monotone,
and when r< � it is said to be positive monotone. Note that when c1.det S/ is torsion,
the notions of balanced, exact, and positive or negative monotone perturbations are
equivalent. We work in the negative monotone case with nontorsion c1.det S/ for most
of this paper where all Seiberg–Witten solutions are irreducible. Note in contrast that
in the closely related series of articles [35; 36; 37; 38; 39], $ is taken to be da for a
contact 1–form a , which is an exact perturbation.

This said, unless otherwise specified, from now on we set

(2-3) $ D 2rw

for a closed 2–form w in the cohomology class of c1.det S/ and a real number r> � .
When c1.det S/ is torsion, we always set w � 0. Otherwise, the particulars of w for
the proof of our main result, Theorem 1.1, are described in Section 3.2.

To make contact with the notation in [22], write

(2-4) det SDE2˝K�1

with K!M being a fixed complex line bundle. Fix a smooth connection, AK , on K�1 .
Where w is nowhere-vanishing (such as over the stable Hamiltonian manifold Y in [22]),
K�1 is typically given by Ker.�w/�TM and E the i jwj–eigenbundle of the Clifford
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action by w . More constraints on the choice of K and AK will be specified along the
way through the rest of this article.

With AK chosen, let A denote the connection on the E–summand corresponding
to A, and write ‰ D

p
2r . In this case, perturbations of the form (2-2) suffice

for our purpose. Since the Riemannian metric and a connection on E determine a
Spinc –connection on S , we often consider the equivalent equations for .A; / of the
form

(2-5)
�
BA� r. �� � i �w/C 1

2
BAK � i �d�D 0;

DA D 0;

where DADDA , BA is the Hodge star of the curvature 2–form of A and BAK denotes
the Hodge star of the curvature 2–form for the connection, AK .

Given a Hermitian line bundle V ! M, we use Conn.V / to denote the space of
Hermitian connections on V . The equations in (2-1) are the variational equations of
the functional a of .A; / 2 Conn.E/�C1.M IS/, given by

(2-6) aD 1
2
cs� rWC e�C r

Z
M

 �DA ;

where the notation is as follows: The functions cs and W are defined using a chosen
reference connection on E . Let AE denote the latter. With A written as

AD AE C yaA;

then W and cs are given by

(2-7) WD i

Z
M

yaA ^w and csD�

Z
M

yaA ^ d yaA� 2

Z
YZ

yaA ^
�
FAE C

1
2
FAK

�
:

What is denoted by e� is the integral over M of i�^FA . The functionals a, W and cs in
general are not invariant under the C1.M IU.1//–action on Conn.det S/�C1.M IS/,
however their differentials descend to the orbit space. These differentials are henceforth
denoted by da, d.cs/, : : : , etc.

To define the Seiberg–Witten Floer homology in general, Kronheimer and Mrowka [17]
take a real blowup of the space Conn.det S/�C1.M IS/DW C.M/ along the set of
reducibles (see Chapter 6 of [17]). This blown-up space is denoted by C� .M; s/ therein
and has a free C1.M;U.1//–action (see [17, page 115]). The vector field dual to
da extends to C� , which is then used to define the Seiberg–Witten equations (see [17,
Section 6.2]).
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A solution c to the Seiberg–Witten equations or its corresponding gauge-equivalence
class Œc� 2 C� .M; s/=C1.M;U.1// is said to be nondegenerate when a certain dif-
ferential operator Lc has trivial kernel. The explicit form of this operator is given
for irreducible solutions of (2-1) in (7-36) below. In general, this notion of non-
degeneracy arises from the interpretation of Œc� as a zero of the 1–form da on
C� .M; s/=C1.M;U.1//DWB� .M/. With the metric and $ fixed, a choice of .T;S/
(or, in the case of (2-5), of �) such that all solutions to (2-1) or (2-5) are nondegenerate
is said in what follows to be suitable. In the negative monotone case with nontorsion
c1.det S/, a suitable choice for � can be found with P–norm bounded by any given
positive number (see eg (1.18) in [22]). Otherwise, especially when reducible solutions
exist, a suitable pair .T;S/ is typically of more general form than that of (2-2).
Nondegenerate gauge-equivalence classes of reducible Seiberg–Witten solutions are
further classified into the “stable” and “unstable” types in [17].

2.2 Seiberg–Witten equations on 4–dimensional cobordisms

Let Y� and YC be closed oriented 3–manifolds. In this paper X will denote a simple
cobordism from Y� to YC of the following sort: X is an oriented complete 4–manifold
equipped with the extra structure listed below:

(2-8) � There is a proper function sW X!R with nondegenerate critical points with
at most one single critical value, 0.

� There exists an orientation-preserving diffeomorphism between the s < 0
part of X and .�1; 0/�Y� that identifies s with the Euclidean coordinate
on the .�1; 0/ factor.

� There exists an orientation-preserving diffeomorphism between the s > 0
part of X and .0;1/�YC that identifies s with the Euclidean coordinate
on the .0;1/ factor.

� There is an even class in H 2.X IZ/ that restricts to the s < 0 and s > 0
parts of X as the respective Y� and YC versions of c1.det S/.

The diffeomorphism in the second bullet of (2-8) is used, often implicitly, to identify
the s < 0 part of X with .�1; 0/� Y� ; and the diffeomorphism in the third bullet
of (2-8) is likewise used to identify the s > 0 part with .0;1/ � YC . Fix a class
satisfying the last bullet of (2-8) and denote it also by c1.det S/.

Assume that the Riemannian metric on X satisfies the following:
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(2-9) � There exists L� 100 such that the metric on the s � �L and s � L parts
of X are identified by the embeddings in the second and third bullets of (2-8)
with the respective product metrics on .�1;�L��Y� and ŒL;1/�YC .

� The metric pulls back from the jsj 2 ŒL�8;L� part of X via the embeddings
from the second and third bullets of (2-8) as the quadratic form ds2Cg with
g being an s–dependent metric on either Y� or YC as the case may be.

The chosen metric on X is used to write
V2

T �X as ƒC˚ƒ� with ƒC denoting
the bundle of self-dual 2–forms and with ƒ� denoting the corresponding bundle of
anti-self-dual 2–forms. A given 2–form w is written with respect to this splitting as
wDwCCw� .

Use the metric to define the notion of a Spinc –structure on X. It follows from the last
bullet in (2-8) that there is a Spinc structure that restricts to the s ��2 and s � 2 parts
of X as the given Spinc structures from Y� and YC , and has its first Chern class equal
to c1.det S/. Fix such a Spinc structure and use SC and S� to denote the respective
bundles of self-dual and anti-self-dual spinors.

The Seiberg–Witten equations on X are equations for a pair .A; ‰/ with A being a
Hermitian connection on the line bundle det SC and with ‰ being a section of SC . It
takes the general form

(2-10) FCA � .‰
��‰� i$X /�TC D 0 and DCA‰�SC D 0;

where the notation uses FA to denote the curvature 2–form of A, and it uses ‰��‰ to
denote the bilinear map from SC to iƒC that is defined using the Clifford multiplication.
Meanwhile, DCA W �.S

C/! �.S�/ and D�AW �.S
�/! �.SC/ are the 4–dimensional

Dirac operators on X defined by the metric and the chosen connection A. What is
denoted by $X is a self-dual 2–form satisfying the following list for some L0 � L:

(2-11) � The pullback of $X from the s < �L0 part of X via the embedding from
the second bullet of (2-8) is twice the self-dual part of a closed 2–form
$� on Y� .

� The pullback of $X from the s > L0 part of X via the embedding from
the third bullet of (2-8) is twice the self-dual part of a closed 2–form $C

on YC .

The pair .TC;SC/ is the 4–dimensional analog of .T;S/ in (2-1); see (24.2) in [17].

We denote Xc WD s�1.Œ�L0 � 1;L0C 1�/ � X and call it the “compact piece” of X.
Each connected component of X �Xc is called an end of X. The diffeomorphisms in
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(2-8) identify each end with a product .�1;�L0/�M or M�.L0;1/ for a connected
oriented manifold M ; in the first case it is said to be a negative end, and in the second
case a positive end. In either case we call this end the M –end of X. “The negative
end of X ” refers to s�1.�1;�L0� 1/' .�1;�L0� 1/�Y� , and “the positive end
of X ” refers to s�1.L0C 1;1/' .L0C 1;1/�YC .

Caveat What is denoted by Xc in this article was denoted by X in [17]. Correspond-
ingly, the noncompact manifold X in this article was denoted by X� in [17].

An important special case is when (2-10) is defined on a product cobordism. By
this we mean that X DR�M for a closed oriented Spinc 3–manifold M, with the
function s as the Euclidean coordinate of the R factor; the Riemannian metric on X
is the product of the affine metric on R and the Riemannian metric on M, and both
$X and .TC;SC/ are invariant under the natural R–action on R �M. Thus, the
conditions in the first bullet of (2-9) and in (2-11) may be paraphrased as saying that
the s�1ŒL0;1/ and s�1.�1;�L0� part of the Seiberg–Witten equations on X are
those of product cobordisms. As explained in [17], Clifford action by ds over product
cobordisms may be used to identify SC ' S� . Meanwhile, both are the pullback of
a spinor bundle S over M. In this way, (2-10) may be rewritten as a gradient flow
equation of the action functional a; see (IV.1-20). The gradient vector field here is
�1 times the left-hand side of (2-1), with (2-10)’s $X D 2$C , and TC and SC

induced respectively from the T and S in (2-1).

A solution dD .A; ‰/ to (2-10) is said to be an instanton if the constant s � �L pull-
backs converge as s!�1 to a pair that can be written as .A�; ‰�/, with .A�; ‰�/
being a solution to (2-1) on Y� , and if the constant s�L pullbacks converge as s!1
to a pair .AC; ‰C/, with .AC; ‰C/ being a solution to (2-1) on YC . If d is an instanton
then the convention in what follows will be to say that the respective s!�1 and
s!1 limits of d are .A�; ‰�/ and .AC; ‰C/. As in the 3–dimensional case, in [17]
they define a real “blowup” of the space Cloc.X/ WD Conn.det SC/�C1.X;SC/, this
denoted by C�loc.X/ below. To describe C�loc.X/ in more detail, consider the tautological
bundle C1.X;SC/�f0g over the sphere U.C1.X;SC// WD .C1.X;SC/�f0g/=RC ,
and let �� .X ISC/ denote the R�0–bundle associated to this principal RC–bundle.
Then C�loc.X/ WD Conn.det SC/��� .X;SC/. Alternatively,

C�loc.X/D
\
l2ZC

C�l;loc.X/;
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where C�
l;loc.X/ is the L2

l;loc variant of C�loc.X/ defined in [17, page 464]. We write
an element in �� .X;SC/ in the form of ‰� D .‰ ; ‰/, where ‰ 2U.C1.X;SC//,
and ‰ is in the fiber of the bundle �� .X ISC/ over ‰ .

The 4–dimensional Seiberg–Witten equations (2-10) may be generalized to elements
in C�loc.X/, and hence also the notion of an instanton (see [17, equation (6.5)]). A
(generalized) instanton has its s!�1 and s!1 limits in C� .Y�/ and C� .YC/,
respectively, in the sense explained in [17, page 219]. The 4–dimensional Seiberg–
Witten equation is invariant under the actions of the gauge group C1.X IU.1//. An
instanton .A; ‰� /, or a gauge-equivalence class of instantons, is said to be reducible
when ‰ � 0; otherwise it is irreducible.

The perturbation .TC;SC/ is introduced in (2-10) so that a certain operator that is
associated to any given instanton solutions to (2-10) is Fredholm with trivial cokernel.
See Chapter 24.3 of [17] in general and equation (1-21) in [22] for a special case closely
related to this article. Instanton solutions with this property are said to be nondegenerate.
We call perturbation term suitable when all instanton solutions to the corresponding
version of (2-10) are nondegenerate. A suitable perturbation can be found for (2-10)
with norm bounded by any given positive number. The relevant norm is also called
the P–norm. As in the case with elements in �, the P–norm of a perturbation term
bounds the norms of its derivatives to all orders.

Just as in the 3–dimensional case, the 4–dimensional cobordisms relevant to Theorem
1.1 are equipped with $X and pairs .TC;SC/ of the form

$X D 2rwX and .TC;SC/D .iwC� ; 0/:

Here, w� is a 2–form of the form d.�.LC s/��C�.L� s/�C/ for some 1–forms
�� and �C on Y� and YC , respectively. However, in the case of a product cobordism
X D R �M, we take w� D d�� D d�C . Meanwhile, wX is a self-dual 2–form
constrained by the properties listed in (2-12) below, among others. These constraints
involve another constant, denoted by Ltor below. The latter is no smaller than LC 4.
The constraints use Xtor to denote the union of the components of the jsj > 0 part
of X where c1.det S/ is torsion.

(2-12) � The pullback of wX to each constant s slice of X is a closed 2–form
whose de Rham cohomology class is that of c1.det S/.

� The embedding from the first bullet of (2-11) pulls back wX from the
s < �L part of X �Xtor as twice the self-dual part of the Y� version of
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the 2–form w . The embedding from the second bullet of (2-11) pulls back
wX from the s > L part of X �Xtor as twice the self-dual part of the
Y� version of the 2–form w . The 2–form wX is identically zero on any
component of the jsj>Ltor part of Xtor .

Similarly to the 3–dimensional case, the 4–dimensional Seiberg–Witten equations
may be rewritten in terms of the pair .A; / 2 Conn.E/�C1.SC/ that is obtained
from the pair .A; ‰/ 2 Conn.det SC/�C1.SC/ via the same formulas as those in
the previous subsection. This requires an extension of K and AK from the ends
s�1ŒL0;1/ [ s�1.�1;�L0�. Constraints on such choices will be introduced in
subsequent sections as needs arise; typically, where $X is nowhere-vanishing, E
is chosen to be the i j$X j–eigenbundle under the Clifford action of $X on SC .

2.3 The monopole Floer chain complex

Fix a closed, oriented, connected Riemannian 3–manifold M and a Spinc –structure s

on it. We first give in Part 1 below a precise definition of the monopole Floer complexes
involved in the proof of the Theorem 1.4, the main objective of this series of articles.
Sketches of how they generalize to other cases are provided in Parts 2 and 3 of this
subsection.

Part 1: nontorsion c1.s/, positive/negative monotone $ Suppose for now that s
has nontorsion first Chern class, and $ and .T;S/ are as in (2-3) and (2-2), respectively,
with r>� . Fix also a complex Hermitian line bundle K!M as specified in Section 2.1
above. The spectral flow function on Conn.E/�C1.M IS/ is defined initially on the
complement of a certain codimension 1 subvariety just as in Section 1.5 in [22] using
a chosen Hermitian connection on E and a suitably generic section of S . As such,
it is locally constant and integer-valued. The definition can be extended to the whole
of Conn.E/�C1.M IS/ as explained in Sections 7.6 and 7.8 below. This spectral
flow function is denoted by fs . It suffices for now to know only that this extended
function fs has integer values and that the functions

csf WD cs� 4�2fs and af WD aC 2�.r��/fs

are invariant under the action of C1.M IU.1// on Conn.E/�C1.M IS/ that has a
yu2C1.M IU.1// sending .A; / to .A�yu�1d yu; yu /. By way of comparison, a, fs
and cs are not invariant under this action. (The notions af and csf can be generalized
to be defined over the blown-up configuration space; see eg [17, equation (16.4)]. The
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arguments in the proof of Lemma 16.4.4 therein show that this generalization is also
invariant under gauge actions.)

Denote by Zw;r the set of gauge-equivalence classes of solutions to the corresponding
system (2-5). (This was denoted by a slightly different notation, ZSW;r , in [22].) It is
well known that in this case, for a generic choice of r and �, this set Zw;r consists
of finitely many, nondegenerate irreducible elements. (See eg (IV.1-18), ignoring
the “holonomy nondegenerate” condition there for the moment.) Assume this to be
the case. Consider next the 4–dimensional Seiberg–Witten equations on the product
cobordism R�M, with wX D 2wC , and �� D �C D �. Here, w is used to denote
the pullback of the 2–form w on M under the projection of R �M to its second
factor. Given an instanton d on this product cobordism with s!�1 and s!1
limits given respectively by representatives of c� and cC in Zw;r . The differential
operator in (IV.1-21) has a Fredholm extension, whose index we denote by {d . By [1],
in this case,

(2-13) {d D fs.cC/� fs.c�/:

Let Mk.c�; cC/ denote the space of gauge-equivalence classes of such instantons
with {d D k . These spaces are k–dimensional manifolds with a free R–action when
the perturbation term in the Seiberg–Witten equations is suitable and k > 0. In
particular, the monotonicity assumption guarantees that M1.c�; cC/=R consists of
finitely many elements. With a coherent orientation chosen (this amounts to choices of
preferred elements of ƒ.c/ for all c 2 Zw;r in the language of [17]), each element in
M1.c�; cC/=R is assigned a sign.

Fix a ring K, which can be taken to be Z for the rest of this article. The chain module
for the monopole (or, alternatively, Seiberg–Witten) Floer chain group is the free K–
module generated by Zw;r , denoted by K.Zw;r/ below. The spectral flow function fs
descends to define a relative Z=csZ–grading on this module, where cs 2 2Z is the
divisibility of the first Chern class of the Spinc –structure s. The differential @w;r of
this monopole Floer complex in this situation is the endomorphism of K.Zw;r/ given
by the rule

(2-14) c1 7!
X

c22Zw;r

w.c1; c2/c2;

where
w.c1; c2/D

X
d2M1.c1;c2/=R

sign.d/D �.M1.c1; c2/=R/:
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The aforementioned properties of Zw;r and M1.c1; c2/=R for suitable monotone
perturbations guarantee that this homomorphism is well defined, and it is of degree 1
according to (2-13). A typical gluing argument shows that @2w;r D 0. (See eg [17,
Sections 19 and 22].) The homology of the above monopole Floer complex is the
monopole Floer homology, or, alternatively, the Seiberg–Witten Floer homology of the
negative monotone perturbation (2-3). This is denoted by HM�.M; s; c�/ below. The
monopole Floer homology for positive monotone perturbation forms, still assuming
that c1.s/ is nontorsion, is defined in the same way.

Part 2: local coefficients One may also associate monopole Floer homologies for
more general Seiberg–Witten equations (2-1). The construction of monopole Floer
complexes in Part 1 may fail to work due mainly to two reasons:

(1) With balanced perturbations, the generating set of the chain group, Z , namely
the set of gauge-equivalence classes of solutions to (2-1), may contain reducible
elements. (Recall that Z D Zw;r in the previous part, which consists of finitely
many irreducible elements.)

(2) The space M1.c1; c2/=R might contain infinitely many elements, making the
coefficients appearing in (2-14)’s formula for the Seiberg–Witten differential,
w.c1; c2/, undefined.

The second issue above can be dealt with by working with monopole Floer complexes
with more general coefficients (as opposed to Part 1’s Z–coefficient monopole Floer
complex). See [17, Section 22.6].

Assume for simplicity that the perturbation $ in (2-1) is nonbalanced, so that the
issue (1) above can be ignored: namely, with a generic perturbation, Z will still
consist of finitely many, nondegenerate, irreducible elements. Fix a local system � in
the sense described in [17]. This assigns to every c 2 Z a group �.c/ and for each
relative homotopy class z of paths between c1; c2 2 Z � B.M/, a homomorphism
�.z/W �.c1/! �.c2/. The monopole Floer chain complex with local coefficient � ,
.C; @/, has C WD

L
c2Z �.c/ as its chain module. As for its differential @, regard

each d 2M.c1; c2/ as path in B.M/ and let Mz.c1; c2/�M.c1; c2/ be the subspace
consisting of elements of relative homotopy class z . Refining (2-14), the following
formula defines the associated differential @ 2 End.C /:

(2-15) @D
X

c1;c22Z

X
z2�1B.M Ic1;c2/

w.c1; c2I z/�.z/;
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where

(2-16) w.c1; c2I z/D
X

d2M1;z.c1;c2/=R

sign.d/D �.M1;z.c1; c2/=R/;

and �1B.M I c1; c2/ denotes the space of relative homotopy classes of instantons with
c1 and c2 as its s ! �1 and s ! 1 limits, respectively. Typical compactness
results can be used to ensure that each coefficient w.c1; c2I z/ is finite. (See eg [17,
Theorem 8.1.1 and Proposition 16.1.4].) Though (2-15) may have infinitely many
nonvanishing terms, the sum may be well defined when � is chosen to satisfy certain
completeness conditions depending on the choice of s and Œ$�. See Definition 30.2.2
in [17]. We call a local system � satisfying this completeness condition .s; Œ$�/–
complete (as opposed to “c–complete” in [17]). There is also a more stringent notion
of completeness which depends only on the cohomology class Œda� 2H 1.B.M/IZ/

due originally to Novikov. This sort of local system is said to be “strongly c–complete”
in [17]; see Definition 30.2.4 therein. We call such � strongly .s; Œ$�/–complete
instead. We shall not encounter local systems other than Z except in Proposition 6.7(b)
below, which is not directly relevant to the proof of Theorem 1.1. The interested
reader is therefore referred to [17] for more details on the definition of monopole Floer
homology with local coefficients. A brief summary in alternative language may also
be found in the last section of [25]. In the monotone case discussed in Part 1 or the
balanced case in the upcoming Part 3, the (strong) .s; Œ$�/–completeness condition is
met for all coefficients, and the sum (2-16) has finitely many nonvanishing terms.

Part 3: balanced perturbations We now briefly describe how issue (1) in Part 2 is
dealt with in the balanced case. For details, see Chapters VI and VIII in [17]. As
already mentioned in Section 2.1, [17] considered the extension of (2-1) to C� . The
set of gauge-equivalence classes of solutions to this extended Seiberg–Witten equation
is denoted by C. Suppose that the perturbation to the Seiberg–Witten equation is
suitable. The subsets of irreducible, unstable reducible, and stable reducible elements
are respectively denoted by Co , Cu and Cs . (In the nonbalanced situation previously
considered, CD Co D Zr;w .) The first three flavors of monopole Floer homology as
defined in [17] use different combinations of Co , Cu and Cs to generate the chain
groups: set

C o DK.Co/; C u DK.Cu/; C s DK.Cs/;

and let
yC D C o˚C u; C D C s˚C u; LC D C o˚C s:
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Meanwhile, the operator in (IV.I-21) has a Fredholm generalization for paths d.s/ in
Conn.E/�C1.M;S/ with s!1 or s!�1 limits that are nondegenerate elements
in C� . (See Sections 14.4 and 22.3 in [17].) The index of this operator is also denoted
by {d below, and it may be used to generalize the spectral flow function fs to the set of
nondegenerate elements in C� . This in turn defines a relative Z=cs–grading, gr, on
the modules C o , C u and C s . The chain modules yC, C and LC are also Z=cs–graded
according to the rule

yC D
M
j

yCj ; yC D
M
j

yCj ; yC D
M
j

yCj ;

where
yCj D C

o
j ˚C

u
j ; Cj D C

s
j ˚C

u
jC1;

LCj D C
o
j ˚C

s
j :

Note that the C chain module above is graded by a modified grading gr, related to
gr via equation (22.15) in [17]. To define the differentials, define homomorphisms
@
]

\
W C ]! C \ via rules similar to (2-14) or (2-15) by counting irreducible instantons

with {d D 1 whose s!�1 and s!1 limits are in C] and C\ , respectively; see
[17, equation (22.8)] for the precise formulas. Here, ] and \ may stand for one of the
labels u, o and s ; however, due to the way Cu , Cs and Co are defined, only the homo-
morphisms @oo , @os , @uo and @us are nontrivial. Meanwhile, there are homomorphisms
x@
]

\
W C ]!C \ , and with ] and \ denoting either the label u or s , by counting reducible

instantons whose s!�1 and s!1 limits are in C] and C] , respectively, with gr
differing by �1. If the Spinc –structure and Œ$� satisfy monotonicity condition, then
the differentials for the complexes, y@W yC ! yC, x@W C ! C and L@W LC ! LC, are defined
in terms of these homomorphisms via equation (22.7) and Definition 22.1.3 in [17].
To give some examples, L@W C o˚C s ! C o˚C s and y@W C o˚C u! C o˚C u are
respectively written in block form as

(2-17)
�
@oo �@uo

x@su

@os
x@ss � @

u
s
x@su

�
;

�
@oo �@uo

�x@su@
o
s �
x@uu�
x@su@

u
s

�
:

The gluing theorems in [17] show that y@2 , x@2 and L@2 are indeed all 0. When the
perturbation is balanced, such as in the statement of Theorem 1.1, the homology of
these chain complexes . VC�; V@�/, namely the corresponding monopole Floer homology,
is denoted by VHM�.M; s; cb/ for ı D ^;�;_.

The aforementioned homomorphisms @]
\

and x@]
\

are also used to define chain maps
(denoted by i W C ! LC, j W LC ! yC and pW yC ! C in [17]) that do not define a short
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exact sequence, but their induced maps on homologies do, this being the first of the
fundamental exact sequences referred to in Theorem 1.1. See [17, Proposition 22.2.1].

Part 4: notation and other remarks When specificality is desired, the notation

VC�.M; s; Œ$�I�/D VC�.M; s;$ I�/; ı D ^;�;_;

is used to denote the monopole Floer complex corresponding to the cylindrical version
of (2-10) with an .s; Œ$�/–complete local coefficients � , and VHM�.M; s; Œ$�I�/ is
used to denote the corresponding monopole Floer homology. (The Floer chain complex
VC�.M; s;$ I�/ does depend on the choice of $ , not just its cohomology class, though

its associated Floer homology only depends on the cohomology class Œ$�. The notation
VC�.M; s; Œ$�I�/ is adopted when the specific representative $ of Œ$� is irrelevant.)

In particular, when Œ$�D 2�c1.det S/, VC�.M; s; Œ$�I�/ and VHM�.M; s; Œ$�I�/ are
also respectively denoted by VC�.M; s; cbI�/ and VHM�.M; s; cbI�/. The coefficient �
is dropped from the notation when it is Z, or not important. The following (admittedly
sloppy) convention will be adopted for the rest of this article: Since the Floer complexes
. LC ; L@/ D . yC ; y@/ D .C o; @oo/ when the perturbation is nonbalanced, we use CM or
.CM; @/ to denote the one complex in this case. When we wish to emphasize the
Spinc –manifold and/or cohomology class of perturbation, etc, used to define the
monopole Floer complex, these data are added to the above expression in parentheses,
such as CM�.M; s; Œ$�/ or .CM�.M; s/; @�.M; s//.

As final remarks to this subsection, note that in [17] there is an equivalent, geometric
version of grading for the monopole Floer complexes in terms of homotopy classes
of oriented 2–plane fields. This is briefly described in Part 1 of Section 6.1 below,
and denoted by J.M/ therein. A very brief description of this in the special cases
relevant to this article will appear in Part 1 of Section 6.1. Meanwhile, the signs sign.d/
assigned according to the rules in [17] depend on a choice of homology orientation
of M. See Definition 22.5.2 in [17].

2.4 Cobordism-induced maps between monopole Floer complexes

Instantons on cobordisms X described in Section 2.2 are used to define maps between
the monopole Floer complexes. Details of the construction of these maps are given in
[17, Chapter VII] for cobordisms X between connected 3–manifolds Y� and YC , even
though properties of moduli spaces of Seiberg–Witten instantons on more general X,
where Y� may be disconnected, are also established therein. In particular, taking
X to be a product cobordism R�M, this construction is used to define chain maps
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from VC back to itself for ı D ^;�;_, which induce the A�–module structure on the
corresponding Floer homology. Another application of these cobordism-induced chain
maps is to define chain homotopies between monopole Floer complexes VC associated
to different metrics and .T;S/. See eg the proof for Corollary 23.1.6 in [17] and its
variants. According to the conventions set forth in Section 1.3, this justifies our notation
for the monopole Floer complex, VC.M; s; Œ$�I�/. In fact, this type of arguments show
that VC with positively proportional “period class” [17, page 591] are chain homotopic
to each other. (See Theorem 31.4.1 in [17].) This in turn justifies using the notation
CM.M; s; c�/ for any negatively monotone, nonbalanced perturbation, according to
our convention.

The rest of this subsection is divided into four parts. In the first three parts we review
some basic elements in the construction to the aforementioned cobordism-induced
maps. The last part contains a generalization of [17]’s construction to certain simple
cobordisms between possibly disconnected manifolds, in order to accommodate our
needs in Section 6.

Part 1: moduli spaces and their compactifications Fix a Spinc –structure sX on X
which restricts to the s ��2 and the s � 2 part of X respectively as Spinc –structures
s� on Y� and sC on YC . Fix also a self-dual 2–form $X on X satisfying (2-11)
and a suitable pair .TC;SC/. Let csX denote the divisibility of c1.sX /. This number
divides both cs� and csC . Assume that Y˙ are both connected in this part.

Consider instantons d defined from (2-10) with representatives of c� and cC re-
spectively as its s ! �1 and s !1 limits. The index of the Fredholm operator
that entered the definition of nondegeneracy for instantons is denoted by {d . This
generalizes the notion of index in the case of product cobordisms described in the
previous subsection, and it depends only on the relative homotopy class of d. See
again Chapter 24 of [17]. Let Mk.X I c�; cC/ denote the space of gauge-equivalence
classes of such instantons with {d D k . When c� 2 C].Y�/ and cC 2 C[.YC/ are
both reducible, let Mred

k
.X I c�; cC/�Mk.X I c�; cC/ be the subspace consisting of

reducible instantons. Note that Mred
k
.X I c�; cC/DMk.X I c�; cC/ in the cases when

the pair .]; [/ is .u; u/, .s; s/ or .s; u/. When .TC;GC/ is suitable, Mred
k
.X I c�; cC/

is a smooth manifold with dimension respectively k , k , kC 1 or k � 1 in the cases
when the pair .]; [/ is .u; u/, .s; s/, .s; u/ or .u; s/. The moduli space Mk.X I c�; cC/

is a k–dimensional manifold consisting purely of irreducible instantons in the case
when at least one of c� or cC is irreducible, while it is a k–manifold with boundary
@Mk.X I c�; cC/DMred

k
.X I c�; cC/ in the case when .]; [/D .u; s/.
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All the spaces Mk.X I c�; cC/ and Mred
k
.X I c�; cC/ are given orientations according

to the rules specified in [17]. This depends on a choice of what is called a “homo-
logical orientation” of X as a cobordism in [17]. (See Definition 3.4.1 in [17].) Let
Mk;z.X I c�; cC/ and Mred

k;z
.X I c�; cC/ respectively be subspaces of Mk.X I c�; cC/

and Mred
k
.X I c�; cC/ consisting of instantons with relative homotopy class z . (Given

c� , cC and z , the spaces Mk;z.X I c�; cC/ (resp. Mred
k;z
.X I c�; cC/) are empty for

all k 2 Z except one. This is denoted by Mz.X I c�; cC/ (resp. Mred
z .X I c�; cC/)

below.) All the moduli spaces introduced above lie in the orbit space of C�loc.X/

under the gauge action by C1.X;U.1// DW Gloc.X/. This orbit space is denoted
by B�loc.X/. Let Mk.X/ � B�loc.X/ denote the union of all spaces Mz.X I c�; cC/

and Mred
z .X I c�; cC/ with dimension less than or equal to k for all c� 2 C.Y�/,

cC 2 C.YC/ and z 2 �0.B�loc.X//.

It follows from [17, Section 13.6] that the embeddings M.X/ D
S
kMk.X/ ,!

B�loc.X/ and M.X/ ,! B�
l;loc.X/ factor respectively through subspaces B� .X/ �

B�loc.X/ and B�
l
.X/ � B�

l;loc.X/, described below. These subspaces are homotopy
equivalent to B�loc.X/ but are sometimes more convenient to work with. In particular,
B�
l
.X/ has the virtue of carrying a Banach manifold structure. Let

B� .X/ WD
[

c�2B� .Y�/

[
cC2B� .YC/

B� .X I c�; cC/;

B�l .X/ WD
[

c�2B�l .Y�/

[
cC2B�l .YC/

B�l .X I c�; cC/;

where B� .X I c�; cC/D
T
l B

�
l
.X I c�; cC/�B�loc.X/, and B�

l
.X I c�; cC/�B�

l;loc.X/

is defined as follows. Let c˙ D .A˙; .‰˙; ‰˙// 2 C�l .Y˙/ be respectively representa-
tives of c˙ 2 B�l .Y˙/, and use the same notation .A˙; .‰˙; ‰˙// to denote the corre-
sponding R–invariant element in C�

l;loc.R�Y˙/. Using the diffeomorphisms in (2-8)
to identify connected components of X �Xc with subdomains of R�YC or R�YC ,
let C�

l
.X I c�; cC/ � C�

l;loc.X/ be the subspace consisting of .A; .‰ ; ‰// 2 C�
l;loc.X/

such that A�AC and ‰�‰C are both L2
l

on the positive end of X, and A�A� and
‰�‰� are both L2

l
on the negative end of X. Let B�

l
.X I c�; cC/� B�

l;loc.X/ be the
subspace consisting of elements represented by elements in C�

l
.X I c�; cC/� C�

l;loc.X/.
By construction, B� .X/ and B�

l
.X/ come equipped with maps

…@ D…�1 �…1W B� .X/! B� .Y /�B� .Y /;

…@ D…�1 �…1W B�l .X/! B�l .Y /�B�l .Y /;

sending .A; .‰ ; ‰// to .A�; .‰�; ‰�//� .AC; .‰C; ‰C//.

Geometry & Topology, Volume 24 (2020)



HFD HM , V 3495

Let MC
k
.X I c�; cC/ and MC

k;z
.X I c�; cC/ be respectively the compactification of

Mk.X I c�; cC/ and Mk;z.X I c�; cC/ by adding (parametrized) “broken trajectories”
as described in [17, Definition 24.6.1 and Theorem 24.6.2]. In Definition 24.6.9
of [17], a surjective map r from MC

k;z
.X I c�; cC/ to a smaller compactification,

Mk;z.X; c�; cC/�B�loc.X/, was introduced. Both compactifications MC
k;z
.X I c�; cC/

and Mk;z.X I c�; cC/ are “spaces stratified by manifolds” in the sense of [17, Defini-
tion 16.5.1]. (See [17, Propositions 24.6.8 and 24.6.10].) For brevity, we refer to such
spaces simply as “stratified manifolds” in this article. By definition, Mk;z.X I c�; cC/

is the top-dimensional stratum of both MC
k;z
.X I c�; cC/ and Mk;z.X I c�; cC/, and

each Mk.X I c�; cC/ embeds in B� .X/� B�loc.X/ through the stratified manifold

M.X/D
[
k

Mk.X/� B� .X/; ∅� � � � �Mk�1.X/�Mk.X/� � � � �M.X/:

Meanwhile, the map r sends strata of MC
k
.X I c�; cC/ to strata of Mk.X I c�; cC/ (not

necessarily of the same dimension), and restricts to an isomorphism on the top stratum.
The moduli spaces of reducible instantons Mred

k
.X I c�; cC/ are compactified similarly.

Part 2: integrating cochains on stratified manifolds Generalizing the formula for
the differential of monopole Floer complex, (2-16), the purported maps between mono-
pole Floer complexes have coefficients given in terms of “integrals” of the form hu;Mi,
where u2C.B� .X/IK/, .C.B� .X/IK/; ı/ being a suitable version of cochain complex
for B� .X/, H.C.B� .X/IK//DH�.B� .X/IK/, and M� B� .X/ is a compactified
moduli space of the types described in Part 1. Explicit formulas for these maps are
given below; see (2-19) and thereabouts. Before proceeding to explain the possible
choices of .C.B� .X/IK/; ı/ and the definition of the integrals hu;Mi associated to
them, we make a few motivational remarks.

Ideally, the stratification structure of the relevant MDMk is sufficiently simple, eg it
is a manifold with corners such that

(2-18) @Mk DMk�1; @Mk�1 D 0:

(See eg [17, Remark, page 291] for an example of pathological stratified manifolds.)
Defined from broken trajectories, the lower-dimensional strata of M typically have
an explicit description in the manner of [17, Propositions 24.6.8 and 24.6.10]. Thus,
when (2-18) holds, Stokes’ theorem of the form

hıv ;Mi D hv ; @Mi D hv ;Mk�1i
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can be invoked to derive various essential identities for the associated cobordism maps
between monopole Floer complexes. For example, this type of arguments are used
to show that when u is closed, the associated map VmŒu� is a chain map, and thus it
induces maps between the corresponding monopole Floer homology groups. Moreover,
the induced maps on Floer homologies depend only on the cohomology class of u ,
Œu� 2Hk.B� .X/IK/, rendering the specific choice of .C.B� .X/IK/; ı/ irrelevant on
the homological level.

With suitable .TC;SC/, (2-18) indeed holds in the nonbalanced case, when all the
relevant Seiberg–Witten solutions are irreducible. Though the moduli spaces one
encounters may in general have more complicated stratification, it was shown in [17]
(eg Theorem 24.7.2 therein) that in most settings of interest, the stratification is still
simple enough that (2-18) holds in a formal sense (see [17, Lemma 21.3.1] for a precise
statement). Thus, via a suitable variant of Stokes’ theorem (see [17, equation (21.4)]),
the arguments sketched above still apply, leading to the desired identities.

Returning to the issue of choosing C.B� .X/IK/, a simplest option is the de Rham
complex: taking u to be a differential k–form on B� .X/, its restriction to M�B� .X/
or any stratum of M is well defined, and the “integral”

hu;Mi D
Z
M

u D
Z
MknMk�1

u

is literally the integral of u over M. This however only works for KDR. To be able
to work with more general K, in particular K D Z, Kronheimer and Mrowka [17]
choose to work with particular types of Čech cochain complexes .C �.U IK/; ı/, where
U is an open cover of B� .X/ satisfying certain transversality conditions relative to
M� B� .X/. It was shown that such a covering U exists and any two of them have
a common refinement. See Chapter 21 of [17]. The exposition in [17] focuses on
maps between monopole Floer homology groups instead of their underlying chain maps
between monopole Floer complexes. As mentioned previously, the former depends
only on the cohomology class Œu� 2H.C �.U IK//DH�.B� .X/IK/; thus, in [17] the
specific choice of the covering U and the cochain u representing Œu� 2H�.B� .X/IK/
is typically left unspecified. In this article, however, specific maps between monopole
Floer complexes do play a role, and the cochains u used to define these maps need to
be specified. This shall be done without reference to the covering U , as there is no
natural choice for the latter. Instead, in the upcoming remark we introduce a notion of
equivalence (depending on M.X/� B� .X/) among cochains possibly from different
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choices of underlying chain complexes C�.B� .X/IK/ for H�.B� .X/IK/. The maps
VmŒu� between monopole Floer complexes depend only on the equivalence class of u .

Abusing terminology, what is called a “k–cochain u on B� .X/” in this article typically
refers to any representative u 2 C�.B� .X/IK/ of a given equivalence class (relative
to a fixed M.X/).

Remark 2.1 Let M be a finite-dimensional compact oriented stratified manifold
embedded in a metric space B . Suppose U is an open covering of B transverse to M
in the sense defined in [17, Chapter 21]. As explained in [17], the transversality
condition on U makes it possible to associate to each Čech cochain u 2 C k.U IK/ a
well-defined cohomology class on the k–dimensional stratum of M,

Œu� 2 LHk.Mk;Mk�1IK/'H
k
c .Mk nMk�1IK/;

and the value of hu;Mi for each stratum M of M is given in terms of this cohomology
class. See page 408 of [17]. To rephrase the constructions in [17], we introduce a cochain
complex .C �M; ıM/ defined as follows: let C kM D C

kIK
M WDHk.Mk;Mk�1IK/, and

let ıMW Hk.Mk;Mk�1IK/!HkC1.MkC1;MkIK/ be the connecting map in the
long exact sequence for the triple .MkC1;Mk;Mk�1/. (The fact that ı2M D 0 is
inessential in this article and we leave its verification to the reader.) Use Œu�M 2C kM to
denote the cohomology class of u in Hk.Mk;Mk�1IK/ in the preceding expression.
Then, by construction,

Œıu�M D ıMŒu�M:

Let .CM
� ; @M/ denote the dual chain complex of .C �M; ıM/. There is a canonical basis

f�k˛g˛ for C kM , with ˛ indexing all the connected k–dimensional strata M˛ of M,
and �k˛ generating Hk.M˛;Mk�1IK/DK�Hk.Mk;Mk�1IK/. The duals of �k˛ ,
denoted by ŒM˛� below, then form a corresponding basis for CM

k
. This is used to

define a notion of “fundamental class” for stratified manifolds: Given a k–dimensional
stratum M of M, let

ŒM� WD
X
ˇ

ŒMˇ � 2 C
M
k ;

where Mˇ are the connected components of M D
S
ˇ Mˇ . We say that M0 �M

is a k–dimensional stratified submanifold of M if M0 is a k–dimensional stratified
manifold whose strata are strata of M. Given such M0, let

ŒM0� WD ŒM0 nMk�1� 2 C
M
k :
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Then hu;Mi (resp. hu;M0i) simply denotes the pairing of Œu�M 2C �M and ŒM�2CM
�

(resp. ŒM0� 2 CM
� ), and [17]’s version of “Stokes’ theorem” states

hıv ;M0i D hıMŒv �M; ŒM0�i D hŒv �M; @MŒM0�i:

(See [17, equations (21.3) and (21.4)].) In the case when M0 is a manifold with corners,
@MŒM0�D Œ@M0� and the right-hand side of the preceding formula equals hv ; @M0i,
reducing the formula to the usual Stokes’ theorem. As noted in [17], the compactness
of M ensures the finiteness of the integrals hu;M0i, even though CM

� may have
infinite rank.

Now suppose u is a differential k–form on B . Since u restricts to a closed form
on any k–dimensional submanifold, it also determines an element Œu�M 2 C

kIR
M D

Hk.Mk;Mk�1IR/. With Œu�M for differential forms so defined, one has

ıMŒu�M D Œdu�M 2 C
kC1IR
M and hŒu�M; ŒM�i D

Z
M

u

for any k–dimensional stratum M of M.

Fix M � B and K. Let u be a k–cochains in one of the models for C�.BIK/
described above, namely, it is a Čech cochain u 2 C k.U IK/ for an arbitrary open
cover U transverse to M, or when KDR, it can be a differential k–form on B . Let
u 0 be another k–cochain in a possibly different model of C�.BIK/. We say that the
two “k–cochains on B”, u and u 0, are equivalent on M (or simply “equivalent” if
the M being referred to is clear) if Œu�M D Œu 0�M 2 C

kIK
M . (In other words, u and u 0

evaluate identically on all k–dimensional strata of M.) To keep notation simple, we
usually omit the subscript M from ıM or @M below.

Now let B� .X/ be as in Part 1, namely the orbit space of C� .X/ under gauge group
actions. Let u be a k–cochain on B� .X/ in the sense just explained. For each fixed
Spinc –structure, introduce homomorphisms

m
]

\
Œu�.X; sX /W C ].Y�; s�/! C \.YC; sC/ for ]D o; u, \D o; s,

Sm
]

\
Œu�.X; sX /W C ].Y�; s�/! C \.YC; sC/ for ]D u; s, \D u; s,

respectively, by the rules

(2-19)

C] 3 c� 7!
X

cC2C\

hu;Mk.X I c�; cC/icC;

C] 3 c� 7!
X

cC2C\

hu;Mred;k.X I c�; cC/icC;
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where Mred;k.X I c�; cC/ WDMred
k
.X I c�; cC/ with k WD k; k; k�1; kC1 respectively

in the cases when the pair .]; [/ is .u; u/, .s; s/, .s; u/ or .u; s/. (In other words,
Mred;k.X I c�; cC/ stands for the moduli space of reducible instantons of dimension k ).
Note that (the interior of) all Mk.X I c�; cC/, Mred;k.X I c�; cC/, Mz.X I c�; cC/ and
Mred
z .X I c�; cC/ are strata or stratified submanifolds of M.X/ � B� .X/. By the

preceding remark, the maps m]
\
Œu�.X; sX / and Sm]

\
Œu�.X; sX / depend only on the class

Œu�M 2 C �M .

Once in place, the homomorphisms m]
\
Œu�.X; sX /, Sm

]

\
Œu�.X; sX /, @

]

\
.Y˙; s˙/ and

x@
]

\
.Y˙; s˙/ can be assembled according to the formulas in (25.5) and Definition 25.3.3

of [17] into homomorphisms

VmŒu�.X; sX /W VC�.Y�; s�/! VC�.YC; sC/

for ı D _;�;^. For example, for u 2 C k.U IK/, �mŒu�W C o.Y�/ ˚ C u.Y�/ !
C o.YC/˚C

u.YC/ is given in block form as

(2-20)
�

mooŒu� muo Œu�
.�1/kSmsuŒu�@

o
s �
x@sum

o
s Œu� .�1/

kSmuuŒu�C .�1/
kSmsuŒu�@

u
s �
x@sum

u
s Œu�

�
:

The gluing theorems in Section 24.7 of [17] show that when u is closed, these are
chain maps, with both VC�.Y�; s�/ and VC�.YC; sC/ regarded as chain complexes with
relative Z=csX –grading. As remarked in Section 2.3, gradings on VC�.Y�; s�/ and
VC�.YC; sC/ are alternatively described in [17] by J.Y�/ and J.YC/, the geometrically

defined grading sets J.Y�/ and J.YC/. A cobordism X determines a relation �X
between the grading sets J.Y�/ and J.YC/ mentioned in Section 2.3.

Remark 2.2 In subsequent discussions, we make use of cobordism maps VmŒu� as-
sociated to more general cochains than those described above. (See in particular
Part 3 of Section 2.5 below.) Note that the formula (2-20) defining VmŒu� assembles
m#
[
Œu�, Sm#

[
Œu�, @#

[
and x@#

[
in the particular manner specified in [17], so that desirable

properties for VmŒu� may be obtained by applying the Stokes’ theorem for integrands
of the form r�u on stratified submanifolds of MC.X/, with u 2 C.B�loc.X/IK/. In
other words, the integrals defining VmŒu�.X/ factors through integrals over the small
compactified moduli space M.X/. The more general maps VmŒu�.X/ that we shall
encounter are constructed by mapping MC.X/ to a larger space (typically a bundle
over B�loc.X/), and considering integrals of pullbacks of cochains on the latter larger
space over MC.X/. To correctly assemble these integrals so as to make the Stokes’
theorem useful, the formula defining such VmŒu�.X/ generalizes that given in [17]
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(as exemplified in (2-20)) by replacing terms of the form x@sum
#
sŒu� or mu

[
Œu�x@su in

[17]’s formulas with a sum, in which it appears as the first terms. In the notation of
Part 2 of Section 2.5, the terms in this sum take the general form of xnsuŒuC�m

#
sŒu
0� or

mu
[
Œu 0�xnsuŒuC�, where u˙ are cochains on B� .Y˙/, and deg.u 0/Cdeg.u˙/Ddeg.u/�1.

In particular, x@su D xn
s
uŒ1� in this notation.

In order for the maps between Floer homologies induced by these chain maps to behave
well when composing cobordisms (exemplified by Proposition 23.2.2 in [17]), one
works with the assembled maps

VmŒu�.X/D
X
sX

VmŒu�.X; sX /W
M
s�

VC�.Y�; s�/!
M
sC

VC�.YC; sC/; ı D _;�;^;

where the direct sum
L

s˙
is over the set of all Spinc –structures on Y˙ , and sX runs

through all Spinc –structures on X. As explained in Remark 24.6.6 in [17], there can
be infinitely many sX to sum over for a fixed pair of s� and sC . This necessitates
the replacement of the chain complexes VC�.Y�; s�/ and VC�.YC; sC/ in the preceding
expression by their “grading-completed” variants, VC�.Y�; s�/ and VC�.YC; sC/ (see
Definition 3.1.3 and paragraphs around (30.1) in [17]). The cobordisms relevant to our
proof of Theorem 1.1 however have H 2.X; Y�/D 0, and this is why we may use the
precompletion Floer complexes VC� as the domain and target of VmŒu�.

Part 3: local coefficients The values hu;Mk.X I c�; cC/i and hu;Mred;k.X I c�; cC/i

in (2-19) are finite only if the moduli spaces Mk.X I c�; cC/ and Mred;k.X I c�; cC/

have certain compactness properties. The standard compactness arguments can be
adapted to work with nonvanishing $X , when the perturbation form $X can be written
as

(2-21) $X D 2!
C

for some closed 2–form ! on X. We assume that $X satisfies (2-21) throughout this
article. As with the monopole Floer complex in Section 2.3, the coefficients in (2-19)
are finite only when the cohomology classes c1ŒsX � and Œ!� are related by certain
constraints. A generalization of [17, Lemma 25.3.1] (making use of the modified energy
bounds from Section 29.1 therein) guarantees that these constraints are met when

(2-22) $X D 2rwX for r ¤ 0 and a wX satisfying (2-12), and when Xtor ¤

s�1.R�f0g/.
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For more general pairs of c1ŒsX � and Œ!�, cobordism maps VmŒu� may still be well
defined for suitable local coefficients. Let �X be an “X –morphism” between local
systems �� on B� .Y�/ and �C on B� .YC/ in the sense of [17, Definition 23.3.1].
To each relative homotopy class z 2 �0.B� .X I c�; cC//, �X assigns an isomorphism
�X .z/W ��.c�/! �C.cC/. One then generalizes the homomorphisms (of Z–modules)
m
]

\
Œu�.X; sX / and Sm]

\
Œu�.X; sX / given by (2-19) to

m
]

\
Œu�.X; sX I�X /WC ].Y�; s�I��/! C \.YC; sCI�C/; ]D o; u; \D o; sI

Sm
]

\
Œu�.X; sX I�X /WC ].Y�; s�I��/! C \.YC; sCI�C/; ]D u; s; \D u; sI

these are defined respectively by the formulas

(2-23)

m
]

\
Œu�.X; sX I�X /D

X
c�2C]

X
cC2C

\

X
z2�0.B� .X Ic�;cC//

hu;Mk;z.X I c�; cC/i�X .z/;

Sm
]

\
Œu�.X; sX I�X /D

X
c�2C]

X
cC2C

\

X
z2�0.B� .X Ic�;cC//

hu;Mred;k
z .X I c�; cC/i�X .z/;

where Mk;z.X I c�; cC/�Mk.X I c�; cC/ and Mred;k
z .X I c�; cC/�Mred;k.X I c�; cC/

are the subspaces consisting of elements with relative homotopy class z . These m]
\

and Sm]
\

are assembled in the same manner (eg (2-20) for �m) into the cobordism maps

VmŒu�.X; sX I�X /W VC.Y�; s�I��/! VC.YC; sCI�C/; ı D _;�;^:

Again, for the sums in (2-23) to be well defined, �X and �̇ need to satisfy certain
completeness conditions depending on sX and $X . Here we limit ourselves to some
general remarks; more details will be provided on a case-by-case basis as occasions
arise. See also Section 25.3 in [17], which contains some discussion on the case with
$X D 0.

Remark 2.3 In the more formal language of [25, Section 6.1], where a “local system”
in Floer theory is described as a functor, an “X –morphism” from �� to �C is a
natural transformation that intertwines the fundamental-groupoid structure on both
sides. That is to say, it satisfies the composition law in [17, equation (23.7)]. (In [17],
�0.B� .X I c�; cC// is denoted by �.c�; X; cC/ and an element in B� .X I c�; cC/ is
called an “X –path”.) For each pair c� and cC , the fundamental groups �1B� .Y�/'
H 1.Y�IZ/ and �1B� .YC/'H 1.YCIZ/ act respectively from the right and from the
left on �0.B� .X I c�; cC// through “concatenation of paths”. Meanwhile,

(2-24) �0.B� .X I c�; cC//' .j �/�1.c1.sX //�H 2.X; @X IZ/
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in the relative long exact sequence

� � � !H 1.@X IZ/ ı
�!H 2.X; @X IZ/

j�
�!H 2.X IZ/ i

�

�!H 2.@X IZ/! � � � :

Note that .j �/�1.c1.sX // is an affine space under the abelian group Im.ı/DKer.j �/.
Under the identification (2-24), the �1B� .Y˙/ ' H 1.Y˙IZ/–actions on the group
�0.B� .X I c�; cC// respectively factor through the aforementioned ıH 1.@X IZ/–action
on .j �/�1.c1.sX // under ı˙ WD ııi˙ , where i˙W H 1.Y˙IZ/ ,!H 1.@X IZ/ denotes
the inclusion. The following simple consequences of the above observations will be
useful in this article:

� When ı˙W H 1.Y˙IZ/! Im ı are both isomorphisms, any local system ��

on B� .Y�/ determines a local system �C on B� .YC/ and a unique (modulo
automorphisms of �� and �C ) X –morphism �X from �� to �C . Conversely,
any local system �C on B� .YC/ also determines a local system �� on B� .Y�/
and a unique X –morphism �X from �� to �C . In this case �0.B� .X; c�; cC//
is an affine space under both the actions of �1.B� .Y�// and �1.B� .YC//
and a choice of an element z0 2 �0.B� .X; c�; cC// induces isomorphisms
�˙z0 W �1.B

� .Y˙//! �0.B� .X; c�; cC// as �1.B� .Y˙//–spaces.

� It was explained in [25] that the “.s; Œ$�/–completeness” condition for a local
system � in VC.M; s; Œ$�I�/ is determined by the class Œ$�jKer c1.s/ ; in partic-
ular, when Œ$�jKer c1.s/ D 0, any � (including Z) is .s; Œ$�/–complete. In the
more general setting of cobordisms, the cobordism map VmŒu�.X I�X / is well
defined via (2-20) when �̇ are respectively .s˙; Œ$˙�/–complete, and an ad-
ditional completeness condition depending on the class Œ!�jKer c1.sX / is satisfied.
(Here, c1.sX / and Œ!� are both viewed as homomorphisms from H 2.X; @X/ to
Z via the Poincaré–Lefschetz duality.) In particular, this additional completeness
condition is vacuous when Œ!�jKer c1.sX /D 0. Thus, the cobordism map VmŒu�.X/
is well defined with coefficient Z via (2-19) when Œ!�D 2rc1.sX / for r 2 R,
the setting relevant to the proof of Theorem 1.1.

Part 4: disconnected Y� or YC Suppose Xi for i D 1; : : : ; k are respectively
cobordisms from Y Ci to Y Ci , where all Y ˙i are connected. Then X WD

`
i Xi may be

viewed as a cobordism from Y� WD
`
i Y
�
i to YC WD

`
i Y
C
i . The cobordism map �mŒu�

introduced in Parts 2 and 3 above has a straightforward generalization in this setting: Let
yC.Y˙/ WD

Nk
iD1
yC.Y ˙i /. Observe that in this case B� .X/D

Qk
iD1 B� .Xi /, and so

given cochains ui 2 C�.B� .Xi // (in the sense explained in Part 2) and Xi –morphisms
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�Xi from ��i to �Ci for each i , one has a cochain u WD
Q
i ui 2

Q
i C�.B� .Xi //D

C�.B� .X// and an X –morphism �X from �� WD
Q
i �
�
i to �C WD

Q
i �
C
i . Meanwhile,

a set of local systems ��i for each Y Ci Define �mŒu�.X I�X /W yC.Y�I�C/! yC.YCI��/
as

(2-25) �mŒu�.X I��/ WD kO
iD1

�mŒui �.Xi I�Xi /W kO
iD1

yC.Y �i I�
�
i /!

kO
iD1

yC.Y Ci I�
C
i /:

The proof of Theorem 1.1 also requires maps associated to more general cobordisms.
For this purpose, it suffices to consider the �m variant of the chain map for cobordisms X
satisfying the following constraint:

(2-26) At most one of Y� or YC is disconnected, in which case it consists of two
components. Moreover, at most one end of X is associated with a balanced
perturbation.

Assume that one of Y� or YC is of the form Yt D Y1 tY2 for connected Y1 and Y2 ,
while the other is connected. Take Y� D Yt for example, since the case where
YC D Yt is entirely parallel. Given the self-dual 2–form $X described in (2-11),
we shall always take Y2 to be the only end of X possibly associated with a balanced
perturbation. Thus, C.Yt/DC.Y1/�C.Y2/DCootCoutCos , with Coo , Cou and Cos

denoting Co.Y1/�C
o.Y2/, Co.Y1/�Cu.Y2/ and Co.Y1/�C

s.Y2/, respectively. Let
C oo.Yt/DK.Coo/D CM.Y1/˝C o.Y2/, C ou.Yt/DK.Cou/D CM.Y1/˝C u.Y2/
and C os.Yt/DK.Cos/D CM.Y1/˝C s.Y2/.

In these cases we have the analogs of m]
\

in [17], these being the homomorphisms
m
o]

\
W CM.Y1/˝ C ].Y2/ ! C \.YC/ (or m]

o\
W C ].Y�/ ! CM.Y1/˝ C \.Y2/ in the

case where Yt D YC ), with ] standing for o or u; and with the label \ standing for
o or s . Meanwhile, the analogs of Sm]

\
are all trivial, since by (2-26) there are no

reducible instantons on X.

As the condition (2-26) implies that yC.Y#/ D CM.Y#/ and yC.Yt/ D C oo ˚ C ou ,
the maps Sm D 0, �mŒu�W CM.Y#/! C oo˚C ou and �mŒu�W C oo˚C ou ! CM.Y#/,
respectively, take the simple form

(2-27)
�
mooo mouo

�
;

�
mooo

�.1˝x@su.Y2// ım
o
os

�
:

Further properties of the Floer complex yC.Yt/ and the maps �m associated to cobor-
disms X satisfying (2-26) will be discussed in Section 6.1.
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Caveat This part assumes implicitly that the X –morphisms and local coefficients
involved satisfy appropriate completeness conditions in the sense of Remark 2.3. While
we forgo general discussions of this issue, it will be addressed for the special cases in
Section 6.

2.5 A�–module actions and geometric cochains

In this subsection we introduce some useful cochains u on B� .X/. They are described
in terms of differential forms on B� .X/ or B�loc.X/. (Note that a differential form on
the latter induces a corresponding differential form on the former via pulling back the
embedding B� .X/ ,!B�loc.X/; since M.X/�B� .X/ ,!B�loc.X/, they are equivalent
on M.X/ in the sense of Remark 2.1.) To a connected d –dimensional submanifold
of X, we associate an element of �2�d .B� .X//. There are many possible choices
of this differential form, but its equivalence class in C �IRM will be fixed. To work
with more general K, this class is often replaced by a cohomologous element from
C
�IZ
M � C

�IR
M . We then describe A�–module actions on monopole Floer complexes

and related chain homotopy maps as maps VmŒu� associated to product cobordisms
X DR�M and cochains u of this type.

The significance of such geometrically constructed cochains is that the Seiberg–Witten
cobordism maps �mŒu� have natural counterparts in invariants (some yet to be rigorously
defined) constructed from counting pseudoholomorphic curves; in the latter case, the
cobordism maps are constructed from submanifolds in X.

Let X be a Spinc 4–manifold described by (2-8) and (2-9), and let E D fMigi be the
set of connected oriented Spinc –manifolds indexing the ends of X.

Fix a self-dual 2–form $X on X satisfying (2-11) and a suitable pair of .TC;SC/.
Let M.X/ be the stratified manifold of instanton solutions to (2-10) introduced in Part 1
of the last subsection, with stratification ∅�M0.X/� � � � �Mk.X/�MkC1.X/�

M.X/ as before.

Fix a Hermitian line bundle K on X and a smooth connection AK on K�1 , and write

(2-28) det SC DE2˝K�1I

namely, a 4–dimensional version of (2-4). Let A 2 Conn.E/ denote the unitary
connection induced from A 2 Conn.det SC/. As mentioned previously in the end of
Section 2.2, both .A; ‰/ 2 Conn.det SC/�C1.SC/ and its corresponding .A; / 2
Conn.E/�C1.SC/ are used to denote an element in C.X/. At this point K is not
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assumed to be related to $X . In the case when the factorization (2-4) or (2-28) arises
from a splitting S or SC DE˚E˝K�1 , we write  D .˛; ˇ/, where ˛ and ˇ are
respectively the E and the E˝K�1 component of  under the decomposition.

Part 1: cocycles on B� .X/ from closed d –submanifolds in X The cocycles in
this part are constructed from differential forms on B�loc.X/. As mentioned previously,
they induce differential forms on B� .X/ and we shall use the same notation for forms
on B�loc.X/ and their corresponding forms on B� .X/. Alternatively, one may define the
forms on B� .X/ by carrying out parallel arguments using C� .X/ in place of C�loc.X/.

(a) (when d D 0) To a point x 2X we associate an integral 2–cocycle Œe�M.X/ 2

C
2IZ
M.X/

as follows. Consider the subgroup

Gx;loc � C
1.X;U.1// WD Gloc.X/

consisting of maps uW X ! U.1/ with u.x/D 1. Then

zB�x;loc.X/ WD C�loc.X/=Gx;loc

admits a free U.1/D Gloc.X/=Gx;loc –action, and B�x;loc.X/ is the orbit space of this
action. Let

�x W zB�x;loc.X/! B�loc.X/

denote the quotient map of this action. We use # 2�1.zB�x;loc.X// to denote a Thom
form of the U.1/–fibration �x W zB�x;loc.X/! B�loc.X/, so that

d# D ��x e;

e 2�2.B�loc.X// being an Euler form. Choose # so that it defines a principal U.1/–
connection on zB�x;loc.X/, now regarded as a principal U.1/–bundle. In this setting
.�x/� WD .�

�
x /
�1 is well defined at d# , and we formally write e D .�x/�.d#/. Let

Ex be the Hermitian line bundle associated to the principal U.1/–bundle zB�x;loc.X/.
The latter is identified with the (U.1/) fiber product

Ex.X/ WD zB�x;loc.X/�U.1/Ex D .zB
�
x;loc.X/�Ex/=diagonal U.1/–action;

where Ex ' C is the fiber of the bundle E over x 2 X, equipped with the U.1/D
Gloc.X/=Gx;loc.X/–action. Then e has an alternative interpretation as i

2�
times the

curvature form of the unitary connection associated to # on Ex .

The following alternative interpretation of Ex.X/ will come in handy later: let the map
�W E.X/!X �B�loc.X/ be the “universal family” (described below) for the bundle
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�E W E!X ; then
Ex.X/D E.X/jfxg�B�loc.X/

:

The bundle E.X/ is constructed in the following manner. Consider the Hermitian line
bundle �E�IdW E�C�loc.X/!X�C�loc.X/. This bundle is equipped with a tautological
unitary connection zA characterized by the following property: zAjX�f.A;.‰;‰//g D A
for all .A; .‰ ; ‰// 2 C�loc.X/, and zAjfxg�C�loc.X/

is trivial for each x 2X. In the case
when E � SC is a summand of a splitting of SC , the bundle �E � IdW E�C�loc.X/!

X � C�loc.X/ also carries a tautological section z̨ , characterized by the property that
z̨jX�f.A;.‰;‰D

p
2r.˛;ˇ//gD˛ . Let E.X/ be the quotient of E�C�loc.X/ by the diagonal

Gloc.X/–action. The map �E �IdW E�C�loc.X/!X�C�loc.X/ then descends to define
a Hermitian line bundle

�W E.X/!X �B�loc.X/;

and z̨ (when defined) and zA descend respectively to define a tautological section and a
tautological unitary connection on E.X/, also denoted by z̨ and zA below. Let X �X
denote the compactification of X over which the diffeomorphisms in (2-8) extend to
define a diffeomorphism between .Œ�1;�L0/� Y�/t ..L0;1�� Y�/ and X �Xc .
When restricted to X �B� .X/�X �B�loc.X/, the bundle E.X/jX�B� .X/ extends to
define a bundle over X �B� .X/, denoted by

�W E.X/!X �B� .X/

below. The tautological section and connection, z̨ (when defined) and zA, extend over
E.X/ and will be denoted by the same notation.

Restricting the tautological connection zA to E.X/jfxg�B�loc.X/
D Ex.X/, one has a uni-

tary connection on Ex.X/. Let z# denote the corresponding principal U.1/–connection
on zBx;loc.X/, ie the principal U.1/–bundle associated to Ex.X/, and let

(2-29) � WD .�x/�.# � z#/ 2�
1.B�loc.X//:

The form # (and consequently its associated e ) is far from unique. However, as
mentioned in Remark 2.1, we are only interested in e ’s equivalence class rel M.X/

or # ’s equivalence class rel ��1x M.X/, where ��1x M.X/ � zB�x;loc.X/ is viewed a
stratified manifold with stratification ∅� � � � � ��1x MkC1.X/� �

�1
x Mk.X/� � � � �

��1x M.X/. For this purpose it suffices to describe #j��1x M1.X/
.

We say that the connection # is integral over M1.X/ if it is induced from a trivialization
�# W C

��! ExjM1.X/ , where C denotes the trivial C–bundle M1.X/�C . Note that
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conversely �# is uniquely determined by # modulo constant U.1/–actions. We also
use �# to denote the associated trivialization U.1/ ��! zB�x;loc.X/jM1.X/ . We require
that

(2-30) # be integral over M1.X/.

Such # exists since there is no obstruction to trivializing U.1/–bundles over 1–
complexes. Since the boundary of each 2–dimensional stratum M of M.X/ lies in
M1.X/, a choice of such # determines a well-defined relative Euler class for the U.1/–
bundle zB�x;loc.X/jM2.X/nM1.X/ (or equivalently, for ExjM2.X/nM1.X/ ). This class in
H 2.M2.X/;M1.X/IZ/ is by definition the equivalence class Œe�M.X/ 2 C

2IZ
M.X/

.

Two connections #1 and #2 that are both integral over M1.X/ differ by #2�#1 D
��xdf on M1.X/, where f is a map f WM1.X/! U.1/DR=Z (such f is unique
modulo constant maps). Thus, Œ.�x/�.#2�#1/�M.X/ 2C

0;R
M.X/

is a closed element. We
say that #1 and #2 are ı–cohomologous if Œdf �D 0 2H 1.M1.X/IZ/. In this case
f factors through a map zf WM1.X/!R, and the restriction zf jM0.X/ defines a class
Œ zf �M 2 C

0IR
M.X/

. We have Œ.�x/�.#2 �#1/�M.X/ D ıŒ zf �M.X/ for ı–cohomologous
#1 and #2 , and hence Œe�M.X/ depends only on the ı–cohomology class of # .

Convention When we wish to emphasize the choice of x , we add a subscript x to
the forms # , z# , � and e introduced above. For example, #x denotes the # associated
to x .

(b) (when d D 1) Let  � X be an embedded oriented circle in the interior of X.
To such a  , we associate a real 1–cocycle Œ� �M.X/ 2 C

1IR
M.X/

. Modifying Œ� �M.X/ ,
 is also associated an integral 1–cocycle Œu �M.X/ cohomologous to Œ� �M.X/ . Let

hol W B�loc.X/! U.1/DR=Z

be the map sending an element d2C�loc.X/ to the holonomy of A2Conn.E/ associated
to d. Let

� WD d hol 2�1.B�loc.X//:

This is an integral closed 1–form on B�loc.X/ and defines a class Œ� �M.X/ 2 C
1;R
M.X/

.
For the purpose of defining cobordism maps, it is often desirable to replace Œ� �M.X/ 2

C
1;R
M.X/

with a cohomologous element

u D Œ� �M.X/� ı" ;
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" 2 C
0IR
M.X/

, so that u 2 C
1;Z
M.X/

� C
1;R
M.X/

. We call u an “integral correction” of
Œ� �M.X/ . A choice of integral correction u is equivalent to a choice of lifting,

h WM0.X/!R

for hol jM0.X/WM0.X/!R=Z, as ı" D ıŒh �M.X/ . Different choices of h differ
by elements in C 0IZM.X/

.

Part 2: product cobordisms and A�.M/–actions In this part we apply the con-
struction in Part 1 to the case of product cobordisms. Let X D R�M, M being a
closed connected Spinc 3–manifold. The cocycles e and � on B� .X/ described
below, loosely speaking, will take the form of pullbacks from corresponding cocycles
on B� .M/. The latter cocycles are chosen to represent generators of the cohomological
algebra

(2-31) H�.B� .M/IZ/DH�.B�loc.M/IZ/

'H�.CP1IZ/˝H�.H 1.M IR/=H 1.M IZ/IZ/

DA�.M/:

(See eg Proposition 9.7.1 of [17].) Let U 2 H 2.CP1IZ/ be the generator of the
polynomial algebra H�.CP1IZ/, and let ftigi be a basis of H1.M IZ/=Tors '
H 1.H 1.M IR/=H 1.M IZ/IZ/. We use the same notation U and ti to denote the
corresponding generating elements of the algebra (2-31). We shall introduce 2–cocycles
�U representing U and 1–cocycles �ti representing ti , and the cobordism maps
associated to pullbacks of these cocycles are referred to respectively as U –actions or
ti –actions on the monopole Floer complex VC.M/. Together they generate the A�.M/–
actions on VC.M/. The choice of �U depends on a choice of a point p 2M, while the
choice of �ti depends on the choice of an embedded circle i �M representing ti .

Before proceeding, we make some preparatory remarks on B�loc.X/ and its variants
in the case X D R �M. As explained in [17], by a unique continuation theorem
M.R�M/ falls in a smaller blown-up configuration space

B�loc.R�M/D Conn.det SC/��� .R�M;SC/� B�loc.R�M/;

which is often more convenient to work with. (See Section 6.3 of [17] for more details
on the “� –model” B� .) Here, �� .R�M;SC/� �� .R�M;SC/ consists of elements
.A; .‰ ; ‰// such that ‰jfsg�M ¤ 0 for all s 2 R. By construction, there exists for
each s 2R a map

…sW B�loc.R�M/! B� ; .M/
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which is defined by restricting A and ‰ to fsg � M � X. When restricted to
B� .R�M/ WD B�loc.R�M/\B� .X/, …s has well-defined limits as s!˙1,

…˙1W B� .R�M/! B� .M/:

An element in d2B�loc.R�M/ defines a path d.s/ in B� .M/: s 2R 7!…sd2B� .M/.
Conversely, a path d. � /W R! B� .M/ together with a rs , the latter being the @

@s

component of an A 2 Conn.E/, determines a d 2 B�loc.R �M/. Denote the rs
associated to d by rd

s . This corresponds to the second term in [17, (4.10)], and is a lift
of the vector field @

@s
on the base R�M to the total space of the bundle E .

As M.R�M/� B� .R�M/, the cocycles introduced in Part 1 may be defined using
B� .R�M/ in place of B�loc.R�M/.

Translations on R�M induce an R–action on B�loc.R�M/ or B� .R�M/ in the
following manner: For each a 2R, let

�aW R�M !R�M

denote the map sending .s; p/ 2R�M to .sC a; p/. For each d 2 B�loc.R�M/, its
associated rd

s defines a lift of �a to a bundle automorphism of E (or equivalently
of SC ), denoted by �da below. Let

�Ba W B
�
loc.R�M/! B�loc.R�M/

send d to the pullback of d (as a gauge-equivalence class of Conn.det SC/��� .SC/)
via �d�a . Use the same notation, �Ba , to denote the similarly defined map from
B� .R�M/ to itself. In particular, �Ba sends d.s/ to d.sC a/. Let

N{W B� .M/! B� .R�M/

be the embedding that sends a c 2 B� .M/ to R–invariant element dc with dc.s/D c

for all s 2R. The fixed-point set of the R–action on B�loc.R�M/ is the image of N{ ,
and the action is free on the rest of B�loc.R�M/.

The R–actions �Ba preserve the subspace M.R�M/� B� .R�M/, together with all
of its strata. The fixed-point set of the aforementioned R–action on M.R�M/ is

M0.R�M/' C.M/� B� .M/;

and the action is free on all higher-dimensional strata of M.R�M/. Thus, the orbit
space Nk.M/ WD .MkC1.R�M/nMk.R�M//=R is a k–dimensional manifold. As
explained in Section 16.1 of [17], the spaces Nk.M/ are compactified into a stratified
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manifold NC
k
.M/ by adding “(unparametrized) broken trajectories”, and the quotient

map

qRWMkC1.R�M/ nMk.R�M/
=R
�!Nk.M/

extends to a map between the stratified manifolds .MkC1.R�M/=Mk.R�M//C

and NC
k
.M/, also denoted by qR . Recalling that each MkC1.R�M/=Mk.R�M/ is

a disjoint union of moduli spaces of the form Mz.c�; cC/ or Mred
z .c�; cC/, the space

.MkC1.R�M/=Mk.R�M//C above denotes the disjoint union of their respective
compactifications, MCz .c�; cC/ or MredC

z .c�; cC/. Correspondingly, NC
k
.M/ is a

disjoint union of compactified spaces of the form NCz .c�; cC/ WD .Mz.c�; cC/=R/C

or N redC
z .c�; cC/ WD .Mred

z .c�; cC/=R/
C .

(a) (the U –map) Fix p 2M and let x D .0; p/ 2R�M DX. Let

�x W zB�x.R�M/ WD ��1x B� .R�M/! B� .R�M/

be the principal U.1/–bundle obtained by pulling back

�x W zB�x;loc.R�M/! B�loc.R�M/

via the embedding B� .R�M/ ,!B�loc.R�M/. Define �x W zB�x.R�M/!B� .R�M/

similarly. Let zB�p .M/ be the 3–dimensional analog of zB�x .X/; namely, zB�p .M/ WD

C� .M/=Gp.M/; with Gp.M/ � C1.M;U.1// being the subgroup that consists of
maps with value 1 at p 2M. Then, by construction, the map …0 lifts to a map z…0 ,
that fits into the commutative diagram

zB�x.R�M/

�x

��

z…0
// zB�p.M/

�p

��

B� .R�M/
…0
// B� .M/

Regard �pW zB�p .M/! B� .M/ as a principal U.1/–bundle and let # 0p 2�
1.zB�p .M//

denote a principal U.1/–connection on this bundle. We will choose the principal
U.1/–connection # from Part 1(a) to be of the form

# D . z…0/�# 0p:

By the unique continuation theorem (see [17, Proposition 7.2.1]), …0jM.R�M/ is an
isomorphism, and we choose # 0p to be integral over …0M1.R�M/, so that # meets
the integrability requirement (2-30). Given p 2M, the 2–cocycle �U on B� .M/ used
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to define the U –action is the Euler form e 0p D .�p/�d#
0
p of the bundle zB�p .M/. It is

straightforward to verify that indeed Œe 0p�D U 2H
�.B� .M/IZ/. Let

VUp WD VmŒe�.R�M/W VC.M/! VC.M/;

where e D .�x/�.d#/ D…�0e 0p as before. We call this degree �2 cobordism chain
map the U –map associated to p on the monopole Floer complex VC.M/.

It is desirable to express Up in terms of integrals over the unparametrized moduli
spaces, Nk.M/, in a way similar to the formulas (2-15)–(2-16) for the differential @
of the monopole Floer complex. For this purpose we digress to make some preparatory
observations.

Let .a; b/2R�R 7! �a��
B
b

be the product R�R–action on .R�M/�B�loc.R�M/,
ie the base space of the bundle E.R�M/, and use the same notation to denote the
lift via zA of this R�R–action to the total space, E.R �M/. By construction, the
tautological zA and z̨ (when defined) on E.R�M/ are invariant under pullback of the
antidiagonal R–action; namely,

.Id� �Ba /
�
z̨ D .�a � Id/� z̨; and similarly for zA:

Let Rd � B�loc.R �M/ denote the R–orbit through a d 2 B�loc.R �M/ and let
yp WD R � fpg � R �M denote the R–orbit through x D .0; p/. Then the afore-
mentioned antidiagonal R–action on E.R �M/ defines a bundle isomorphism ��

between E.R �M/j yp�fdg ' Ej yp and E.R �M/jfxg�Rd ' Ex.X/jRd , and parallel
transports via zA along the two paths yp�fdg and fxg�Rd in .R�M/�B�loc.R�M/

are identified under �� . Note that the connection zAj yp�fdg on E.R�M/j yp�fdg 'Ej yp

is precisely the restriction of rd
s to Ej yp . This is identified via �� with the connec-

tion zAjfxg�Rd on E.R �M/jfxg�Rd ' Ex.X/jRd , which corresponds to z#jRd on
zB�x;loc.R�M/jRd . (Recall the definition of z# from Part 1(a).) Observe, by the way,
that Ex.X/ ' E.R�M/jfxg�B�loc.R�M/ admits an R–action a 2 R 7! Id� �Ba , and
the associated R–action on zB�x;loc.R �M/ is precisely the lift of the R–action on
B�loc.R�M/ via z# . Namely, denoting the lift of �Ba by the same notation, we have the
commutative diagram

zB�x;loc.R�M/

�x

��

�Ba
// zB�x;loc.R�M/

�x

��

B�loc.R�M/
�Ba

// B�loc.R�M/
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Let R WD Œ�1;1� � R, and so in the present setting X D R �M. Suppose d 2

B� .R �M/. Then, by definition, �Ba .d/ converges as a ! ˙1 (in the subspace
topology of B� .R�M/� B�loc.R�M/) respectively to

�B˙1.d/D N{.…
˙1d/:

Let Rd� B� .R�M/ denote f�Bs .d/gs2R . Thus, the paths yp � fdg and fxg �Rd in
.R�M/�B� .R�M/ extend respectively to arcs .R�fpg/�fdg and fxg�Rd. The
previously introduced bundle isomorphism �� extends to define a bundle isomorphism

��W E.R�M/j.R�fpg/�fdg 'EjR�fpg
��! E.R�M/j

fxg�Rd ' Ex.R�M/jRd:

The assumption that d 2 B� .R�M/ also ensures that parallel transport via rd
s along

R� fpg gives a well-defined unitary holonomy map

holE
yp
.d/ 2 Hom.Ej.�1;p/; Ej.1;p//' Hom.Ej.�1;p/�fdg;Ej.1;p/�fdg/:

As ��� preserves zA, the holonomy of zA along fxg �Rd also gives a well-defined
unitary element agreeing with �� ı holE

yp
.d/ ı ��1� in

Hom.Ex.R�M/jfN{.c�/g; Ex.R�M/jfN{.cC/g/;

where c˙ WD…
˙1.d/. The space of unitary elements in

Hom.Ex.R�M/jfN{.c�/g; Ex.R�M/jfN{.cC/g/

is precisely

zB�x.R�M/jfN{.c�/g �U.1/
zB�x.R�M/jfN{.cC/g '

zB�p .M/jfc�g �U.1/
zB�p .M/jfcCg:

This is the fiber over .c�; cC/ of the U.1/–bundle

zB�p .M/�U.1/ zB�p .M/D .zB�p .M/� zB�p .M//=diagonal U.1/–actions
�p�p
���! B� .M/�B� .M/;

where �p�p is the quotient map by the residual U.1/–action. Let

hol ypW B� .R�M/! zB�p .M/�U.1/ zB�p .M/

be the map that sends d to the element in zB�p .M/ �U.1/ zB�p .M/ corresponding to
�� ı holE

yp
.d/ ı ��1� . This map is a lift of the map …@ D…�1 �…1W B� .R�M/!

B� .M/ �B� .M/ in the sense that �p�p ı hol yp D …@ . Meanwhile, letting z…a D
z…0 ı �a , the map z…@ WD z…�1 � z…1W zB�x.R�M/! zB�p .M/� zB�p .M/ is in turn a
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lift of hol yp under the quotient map

��W zB�p .M/� zB�p .M/! zB�p .M/�U.1/ zB�p .M/:

A choice of # 0p determines a principal U.1/–connection on the bundle

�p�pW zB�p .M/�U.1/ zB�p .M/! B� .M/�B� .M/;

which we denote by # 0p�p . Since # 0p is integral over …0M1.R�M/, it also determines
a trivialization �p�pW U.1/ ��! zB�p .M/�U.1/ zB�p .M/j…0M1.R�M/�…0M1.R�M/ of
the bundle �p�p over …0M1.R�M/�…0M1.R�M/. As �p�p.M.R�M//�

C.M/�C.M/�…0M1.R�M/�…0M1.R�M/, combining the trivialization �p�p
with z…@ , we get a map

h ypWM.R�M/! U.1/DR=Z:

Observe that the maps z…@ , …@ , …1 , z…1 , …�1 , z…�1 and h yp are all invariant
under the respective R–actions on their domains, and therefore descend to define
maps from the orbit spaces under the R–actions. Our convention is to denote the
corresponding maps from B� .R�M/=R, zB� .R�M/=R or M.R�M/=R by adding
underlines to the notation. For example, h yp D h yp ı qR . By construction, we have

.hol yp/
�# 0p�p D�dh yp and .hol yp/

�# 0p�p D�dh yp over Nk.M/:

Let �# 0p W C!zBp.M/j…0M1.R�M/ be a trivialization inducing # 0p , and use the notation
to denote the associated trivialization of Ep.M/j…0M1.R�M/ , Ep.M/ being the Her-
mitian line bundle associated to zBp.M/. Using �� to identify Ej.˙1;p/ respectively
with Ep.M/jfc˙g , we have

e2�i h yp.d/ D .�# 0p /
�1
ı holE

yp
.d/ ı �# 0p 2C�:

Meanwhile, given d 2 B� .R�M/ and an arbitrary zd 2 ��1x .d/,Z
Rzd
# D

Z
Rd
� DW �h yp.d/ 2R;

where � is as in Part 1(a)’s (2-29), with x set to be Pp WD .0; p/ 2R�M. In particular,
when d 2M1.R�M/,

h yp.d/D h yp.d/ mod Z:

Like h yp , the function h yp.d/WM.R�M/!R is invariant under the R–action on M,
and hence induces a function h ypW N .M/ WD

S
k Nk.M/!R, with

h yp D h yp mod Z over N0.M/:
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This function can be used to write

(2-32) Œ� Pp�M.R�M/ D�

X
d2N0.M/

h yp.d/�
1
d ;

where f�1dgd2N0.M/ is the canonical basis for C 1M.R�M/
. One may extend by con-

tinuity both h yp and h yp to the spaces of broken trajectories NC
k
.M/ as respectively

R=Z– and R–valued functions. With this extension we have h yp.d/D
P

di
h yp.di / for

dD fdigi 2NCk .M/, and h yp D h yp mod Z over the 0–dimensional strata .NC
k
.M//0 .

Consequently,

up WD Œdh yp�NC1 .M/
� ıŒh yp�NC1 .M/

2 C
1IZ

NC1 .M/
� C

1IR

NC1 .M/
I

namely, Œup�NC1 .M/
is an integral correction of Œ�.hol yp/�# 0p�p�NC1 .M/

D Œdh yp�NC1 .M/
.

We next express VUp in terms of integrals of up over NC1 .M/. According to (2-19)
and (2-23), the coefficients of VUp take the form of

he;M2;z.X I c�; cC/i D he;M2;z.X I c�; cC/i

or
he;Mred;2

z .X I c�; cC/i D he;Mred;2
z .X I c�; cC/i;

where X DR�M. Let M be one of the compactified moduli spaces M2;z.X I c�; cC/

or Mred;2
z .X I c�; cC/ named above. This is a 2–dimensional stratified submanifold

of M.X/. Let MDM nM1.X/ denote the top-dimensional stratum of M, and let
MC be the larger compactification of M by adding (parametrized) broken trajectories.
The latter carries a stratification of the form

∅� .MC/0 � .MC/1 � .MC/2 DMC:

Meanwhile, M consists of R–orbits; let N WD M=R � N1.M/, and use NC �
NC1 .M/ to denote the compactification of N by adding unparametrized broken tra-
jectories. It is stratified as ∅� .NC/0 � .NC/1 DNC . The strata of MCz .c�; cC/,
MredC
z .c�; cC/, Mz.c�; cC/, Mred

z .c�; cC/, NCz .c�; cC/ or N redC
z .c�; cC/ are de-

scribed in [17, (24.27)–(24.28) and Proposition 24.6.10]. Applied to the case under
discussion, this entails:

(2-33) � .M/0 D N{.fc�; cCg/� N{.C.M//.

� .NC/0 consists of finitely many once- or twice-broken trajectories. We
denote such a broken trajectory in the form d D .di /i , where each di 2

N0.M/ and i 2 f1; 2g or f1; 2; 3g.
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� The 1–dimensional strata of M consists of R–orbits in B� .X/. More
precisely, .M/1 n .M/0 D

S
dD.di /i2.NC/0

S
i Rdi .

� .MC/1 is a union of two parts,

.MC/1 D r�1.M/0[ r�1..M/1 n .M/0/:

In the first part, r�1xc' .NC/1 for each xc 2 .M/0 � C.M/, while on the
second part, r restricts to an isomorphism from rW r�1..M/1 n .M/0/ to
.M/1 n .M/0 .

Our strategy to compute he;Mi is to introduce a map z& WMC! zB�x;loc.X/ so that the
following diagram commutes:

(2-34)

MC

r

��

z&
// zB�x;loc.X/

�x

��

M
&
// B�loc.X/

where & WM2.X/!B�loc.X/ denotes the embedding. This means that z& jM is then a lift
of the embedding & jM under �x . We choose this lifting so that z&.M/� zB� .R�M/�

zB�x;loc.X/ is tangent to the R–action. Such a choice is specified in turn by a lift z&N
of N�N1.M/ to zN1.M/. As an extension of z& jM, z& ’s image is also tangent to the
R–action on zB� .R�M/. With z& chosen, we then write

(2-35) he;Mi D he;Mi D hz&�e;Mi D hz&�e;MCi

D hz&�#; @ŒMC�i D hz&�#; Œ.MC/1�i;

using [17, Theorem 24.7.2 and Lemma 21.3.1]. By (2-33), the last term above is written
as a sum

hz&�#; Œ.MC/1�i D hz&�#; r�1.M/0iC hz&
�#; r�1.M1 nM0/i

D hz&�N .
z…�/�# 0p;N

C
i � hz&�N .

z…C/�# 0p;N
C
iC h� Pp;M1 nM0i

D �h.hol yp/
�# 0p�p;N

C
i �

X
d2.NC/0

sign.d/h yp.d/:

Note that the first term in the last line above is independent of the choice of z&N ; it
is also independent of the choice of # 0p , since, by (2-34), …NN lies in a fiber of
zB� .M/ �U.1/ zB� .M/, over which # 0p is the standard U.1/–invariant volume form
generating H 1.U.1/IZ/. To summarize, we have

(2-36) he;Mi D hup;NCi; hdh yp;NCi D he � ıŒ� Pp�M.R�M/;Mi:
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(b) (the ti –maps) Given an embedded oriented circle  � M, one may define a
3–dimensional counterpart of the 1–form � in Part 1(b) above: let

h0 W B
� .M/! U.1/DR=Z

be the map sending a d2B� .M/ to the holonomy along  of A2Conn.E/ associated
to d, and set

� 0 D dh0 2�
1.B� .M//:

By construction � 0 is closed and its cohomology class Œ� 0 � 2H
1.B� .M/IZ/ equals

Œ� 2H1.M IZ/=Tors under the isomorphism

H1.M IZ/=Tors'H 1.H 1.M IR/=H 1.M IZ/IZ/'H 1.B� .M/IZ/:

Let P WD f0g �  �R�M. Then � P D…�0�
0
 and Œ� P �M.X/ 2 C

1IR
M.X/

. Let

u P D Œ� P �M.X/� ıŒh P �M.X/ 2 C
1IZ
M.X/

be an integral correction of Œ� P �M.X/ 2C
1IR
M.X/

, as described in Part 1(b). In the present
case, M0.X/'…0 C.M/� B� .M/, and the function h P WM0.X/!R in Part 1(b)
takes the form of …�0h

0
 , where

h0 W C.M/!R

is a lift of h0 jC.M/W C.M/!R=Z. Noting that the strata of M.X/ are R–spaces in
this product cobordism case, we have

h P D…
�
0h
0
 D…

�
s h
0
 D hfsg� ;

Œ� P �M.X/ D Œ…
�
0�
0
 �M.X/ D Œ…

�
s �
0
 �M.X/ D Œ�fsg� �M.X/

for all s 2 Œ�1;1�. Thus, for our purpose, P may be taken to be fsg �  �R�M

for arbitrary s .

Let t WD Œ� 2H1.M IZ/=Tors and let

PtW yB�t .M/! B� .M/

be the Z–covering of B� .M/ with �1.yB�t /��1.B� .M// being the kernel of the map
tW �1.B� .M//'H 1.M IZ/! Z. The function h0 W B� .M/! U.1/DR=Z lifts to
an R–valued function

yh W yB�t .M/!R:
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This lift yh is unique modulo addition by constant, Z–valued functions, and it can be
fixed by choosing a basepoint yc0 2 yB�t .M/ with h0 .c0/D0 mod Z, where c0 WD Pt.yc0/.
Namely, let yh be such that

yh .yc0/D 0 2R:

Given an arc bW Œ0; 1�! B� .M/, the difference yh .yb.1//� yh .yb.0// takes the same
value for any lift ybW Œ0; 1�! yB�t .M/ of b; we denote this value by �b

yh 2 R. It
depends only on h0 and not on the choice of the lift yh . In particular, any d 2N .M/

defines an arc bd in B� .M/, and we adopt the shorthand �d
yh WD�bd

yh . This value
only depends on the relative homotopy class of d. Observing that

R
Rd � P D�d

yh , we
have

Œ� P �M.R�M/ D

X
d2N0.M/

.�d
yh /�

1
d 2 C

1IR
M.R�M/

:

An integral correction u P of Œ� P �M.R�M/ can be written in a similar fashion by
replacing the function yh W yB�t .M/! R in the preceding discussion by a modified
function

x W yB�t .M/!R;

where x D yh � P�t "
0
 for a function "0 W B� .M/!R satisfying "0 jC.M/ D h

0
 .

Returning to the subject of A�–actions, take  D i �M to be one that represents
ti 2H1.M IZ/=Tors. The ti –map associated to i is defined to be

Vmti D Vmi WD VmŒu Pi �.R�M/W VC.M/! VC.M/:

This corresponds to the 1–cocycle �ti D .Pti /�.dx / on B� .M/.

It will also be handy to introduce an analog of Part 2(a)’s up (see (2-36)): Given
d 2 N .M/, let �d xi be defined in the same way as �d

yhi above. Let ui denote
the function on N .M/ that sends each d 2 N .M/ to �d xi . Note that ui is Z–
valued, and hence defines a class in C

0IZ
N .M/

, denoted by the same notation. The
coefficients appearing in the formula for mti then may be reexpressed as integrals
of ui over N .M/:

hu Pi ;Mi D hui ;N i;

where M is a 1–dimensional stratum in M.R�M/ and N DM=R is the correspond-
ing stratum in N .M/. In general, we use the notation VnŒu� WD VmŒu� when X DR�M

is a product cobordism and the coefficients in the formula for VmŒu� may be expressed
as integrals of u 2 C kN .M/

over N .M/ in the way described above. For example, we
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write

(2-37) Vmi D VnŒui �; VUp D VnŒup�:

Part 3: cochains on B� .X/ from noncompact d –submanifolds of X In this part
we consider d –submanifolds in X that are “asymptotically cylindrical” in the sense
described below, and use them to define cochains on B� .X/ (or, more generally, on
various bundles over B� .X/) in a manner similar to Part 1. These cochains are often
useful for defining chain homotopy equivalences between Floer complexes, as will be
demonstrated by examples.

(a) (when d D 1) Let M1;M2 2E label two ends of X, allowing M1DM2 . We say
that an oriented connected 1–submanifold ��X is a path from p1 2M1 to p2 2M2

if �\ .X �Xc/ consists of two connected components of the following form: the first
component is .�1; L/� fp1g � .�1; L/�M1 or .L;1/� f�p1g � .L;1/�M1

under the diffeomorphisms in (2-8), depending on whether M1 is a negative end or
a positive end, and the second component is .�1; L/� f�p2g � .�1; L/�M2 or
.L;1/�fp2g� .L;1/�M2 under the diffeomorphisms in (2-8). We shall define a 1–
cochain Œ���M.X/ 2 C

1IR
M.X/

and its integral correction Œ���M.X/ 2 C
1IZ
M.X/

, beginning
by introducing generalizations of notions such as hol yp , #p�p , �p�p , etc, previously
encountered in Part 2(a).

Fix choices of # 0p1 2�
1.zB�p1.M1// and # 0p2 2�

1.zB�p1.M2// as described in Part 2(a)
and note that zB�p1.M1/�U.1/zB�p2.M2/ is a principal U.1/–bundle over B�.M1/�B�.M2/

and # 0p1 and # 0p2 together define a principal U.1/–connection on this bundle, which
we denote by # 0p2�p1 : Consider the commutative diagram

(2-38)

zB�p1.M1/� zB�p2.M2/

��
��

epri

ss
�p1��p2

vv

zB�pi .Mi /

�pi
��

zB�p1.M1/�U.1/ zB�p2.M2/
pr0
i

oo

pri
ss

�p2�p1
��

B� .Mi / B� .M1/�B� .M2/pri
oo

for iD1 or 2, where pri denotes projecting to the i th factor and �� denotes quotienting
by the diagonal U.1/–action. Then

(2-39) # 0p2�p1 D .��/Š.epr�1#
0
p1
^epr�2#

0
p2
/D .pr02/

�# 0p2 D�.pr01/
�# 0p1 ;
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where .��/ŠW �2.zB�p1.M1/�zB�p2.M2/!�1.zB�p1.M1/�U.1/ zB�p2.M2// is integration

over the fibers of �� . Let zB�
�
.X/ and zzB�

�
.X/ be pullback bundles defined by the

commutative diagram

(2-40)

zzB�
�
.X/

zz…@
�

//

z�
��

z��

##

zB�p1.M1/� zB�p2.M2/

��

��

�p1��p2

vv

zB�
�
.X/

z…@
�

//

��

��

zB�p1.M1/�U.1/ zB�p2.M2/

�p2�p1
��

B� .X/
…@
�

// B� .M1/�B� .M2/

M.X/
?�

OO

…@
�

// C.M1/�C.M2/
?�

OO

where …@
�
WD…M1 �…M2 , and …Mi WD…˙1jMi�Y˙ . For i D 1; 2, let

�# 0pi
W U.1/! zB� .Mi /j…0M1.R�Mi /

be a trivialization of the U.1/–bundle zB� .Mi / over …0M1.R�Mi /�B� .Mi /. Over
C.M1/�C.M2/�…0M1.R�M1/�…0M1 � .R�M2/� B� .M1/�B� .M2/, the
U.1/�U.1/–bundle �p1��p2 W zB�p1.M1/�zB�p2.M2/!B� .M1/�B� .M2/ is equipped
with a trivialization �# 0p1 � �# 0p1 . This trivialization factors through a trivialization,
�p2�p1 , of the U.1/–bundle, �p2�p1 W zB�p1.M1/�U.1/ zB�p2.M2/!B� .M1/�B� .M2/

over C.M1/�C.M2/�B� .M1/�B� .M2/ and a trivialization, �� , of the U.1/–bundle
��W zB�p1.M1/� zB�p2.M2/! zB�p1.M1/�U.1/ zB�p2.M2/ over

zc WD ��1p2�p1.C.M1/�C.M2//� zB�p1.M1/�U.1/ zB�p2.M2/:

The trivializations �p2�p1 and �� above are compatible respectively with # 0p2�p1 and
zpr�1#

0
p1
C zpr�2#

0
p2

, which are in turn integral respectively over C.M1/�C.M2/ and zc
as the # 0pi satisfy (2-30). All the trivializations above are determined by # 0p1 and # 0p2
modulo constant U.1/–maps.

Identify the Hermitian line bundle associated to the principal U.1/–bundle

��W zB�p1.M1/� zB�p2.M2/! zB�p1.M1/�U.1/ zB�p2.M2/

with the bundle Hom.pr�1Ep1.M1/; pr�2Ep2.M2//, and use Epi to denote the fiber of the
bundle E!Mi at pi 2Mi . Given d 2 C� .X/, let holE� .d/ 2Hom.Ep1 ; Ep2/ denote
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the holonomy along � of the A 2 Conn.E/ associated to d. Observing that given a
zd 2 zB�

�
.X/, the value holE� .d/ is identical for all representatives d 2 C� .X/ of zd, this

then defines a map, also denoted by hol� , from zB�
�
.X/ to zB�p1.M1/� zB�p2.M2/ that

fits into the commutative diagram

(2-41)

zzB�
�
.X/

hol�
//

z�

��

zB�p1.M1/� zB�p2.M2/

��

��

zB�
�
.X/

z…@
�
//

hol�
44

zB�p1.M1/�U.1/ zB�p2.M2/

Since …@
�
.M.X// � C.M1/�C.M2/ � B� .M1/�B� .M2/ and z…@

�
. �M.X// �zc �

zB�p1.M1/�U.1/zB�p2.M2/, we may compose hol� j �M.X/ with the trivialization �� to get
a map h�W �M.X/� zB�

�
.X/! U.1/DR=Z. Let

#� WD dh�;

a closed 1–form on �M.X/. Note that #� depends only on # 0p1 and # 0p2 , not the
choices of �# 0p1 and �# 0p2 . Let z…Mi

�
WD pr0i ı z…

@
�

and observe that both #� and

(2-42) . z…@�/
�# 0p2�p1 D .

z…
M2
�
/�# 0p2 D�.

z…
M1
�
/�# 0p1

define principal U.1/–connections on the bundle ��W �M.X/!M.X/. Thus,

(2-43) #�� . z…
@
�/
�# 0p2�p1 D �

�
���

for a 1–form �� on M.X/, and, correspondingly, a Œ���M.X/ 2C
1IR
M.X/

. Note that ��
does not depend on the choice of either # 0p1 or # 0p2 , since varying the choice of either
changes #� and . z…@

�
/�# 0p2�p1 by the same amount.

As observed in Remark 2.2, with �� constructed from forms on the bundle zB�
�
.X/,

the cobordism map VmŒ��� is defined by a generalization of the formula in [17]. Let
m#
[
Œ��� and Sm#

[
Œ��� be defined as a sum of integrals in the usual way, ie by (2-23), the

explicit formula for �mŒ���.X/, generalizing (2-20), is

(2-44)
�
mooŒ��� m

u
o Œ����mouŒ��� �muuŒ���

�
;

where �mouŒ��� WD �SmsuŒ���@os �x@sumos Œ���CxnsuŒdh yp2 �m
o
s Œ1�;�muuŒ��� WD �SmuuŒ���� SmsuŒ���@us �x@sumus Œ���CxnsuŒdh yp2 �m

u
s Œ1�

(2-45)
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when p1 2 Y� and p2 2 YC ; when p1 and p2 are both in YC , then the xnsuŒdh yp2 �’s in
the formulas above are replaced by xnsuŒdh yp2 ��xn

s
uŒdh yp1 �. When p1 and p2 both belong

to Y� , �mŒ��� is given by (2-20). (In this case it is LmŒ��� that gains additional terms.)

Example Let M be connected, and take X DR�M to be a product cobordism. Let
��R�M be the graph of a path x�. � /W R!M that sends the .�1;�L0/�R to
p1 2M and .L0;1/�R to p2 2M. Let M be as in Part 2(a). We choose a lifting z&�
of the embedding & WM! B� .X/ in a way parallel to (2-34), namely such that the
following diagram commutes:

(2-46)

MC

r
��

z&�
// zB�
�
.X/

��

��

z…@
�
// zB�p1.M/�U.1/ zB�p2.M/

�p2�p1

��

M
&
// B� .X/

…@
�
// B� .M/�B� .M/

As observed previously, over .& ı…@
�
/M � C.M1/ � C.M2/ � B� .M/ � B� .M/,

the bundle �p2�p1 W zB�p1.M/�U.1/ zB�p2.M/ is trivialized by �p2�p1 . This induces a
trivialization of its pullback bundle ��W zB��.X/! B� .X/ (via . z…@

�
/� ) over M &

,�!

B� .X/. Choose z&� to be constant with respect to this trivialization. Then . z…@
�
/�# 0p2�p1

vanishes over z&�..MC/1n.MC/0/D��1� .M1nM0/. As #� 2�1.B� .X// is closed
by construction, arguing as in (2-35) and the subsequent discussions, again using
[17, Theorem 24.7.2 and Lemma 21.3.1] and (2-33), we have

(2-47) 0D hz&�� .d#�/;M
C
i

D hz&��#�; @ŒM
C�i D hz&��#�; Œ.M

C/1�i

D hz&��#�; r
�1.M/0iC hz&

�
�#�; r

�1.M1 nM0/i

D hz&�� .
z…@�/
�# 0p2�p1 ; fN{c�; N{cCg �NCiC h��;M1 nM0i

D hz&�� .
z…
M1
�
/�# 0p1 ; fN{c�g �NCi � hz&�� . z…

M2
�
/�# 0p2 ; fN{cCg �NCi

C hŒ���M.X/; @ŒM�i

D he Pp1 ;Mi � he Pp2 ;Mi

C hŒ���M.R�M/� Œ� Pp1 �M.R�M/C Œ� Pp2 �M.R�M/; @ŒM�i:

(To see the last two lines in the preceding expression, recall (2-36) and (2-42).) Sum-
marizing, we have

(2-48) e Pp2 � e Pp1 D ıu� 2 C
2IZ
M.R�M/

;
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where

u� WD Œ���M.R�M/� Œ� Pp1 �M.R�M/C Œ� Pp2 �M.R�M/ 2 C
1IR
M.R�M/

:

Note that u� in fact has integral coefficients, ie u� 2 C
1IZ
M.R�M/

� C
1IR
M.R�M/

. To see
this, recall (2-32) and write

u� D
X

d2N0.M/

�Z
Rd
��C h yp1.d/� h yp2.d/

�
�1d :

Meanwhile, for a d in M.c�; cC/=R,Z
Rd
�� mod ZD

Z
Rd
z&�� .dh�/ mod ZD h�

�
z&�.N{.cC//

�
� h�

�
z&�.N{.c�//

�
2R=Z:

Let d2 C� .R�M/ represent an element in z��1
�
q�1R .d/ and let  �R�M be the loop

formed by the union of four arcs .R�fp1g/[.R�f�p2g/[.f1g��/[.f�1g�.��//
in R�M, where ��M is the closure of the image of the path �. � /W R!M. Then

h�
�
z&�.N{.cC//

�
� h�

�
z&�.N{.c�//

�
C h yp1.d/� h yp2.d/D�

i

2�
ln.holE .d//D 0 2R=Z;

and hence the coefficients in u� are
R

Rd ��� h yp1.d/C h yp2.d/ 2 Z.

Let VK� D VmŒu��W VC.M/! VC.M/, a degree �1 map defined in the same manner
as VmŒ���, namely as in (2-44)–(2-45) with xnsuŒdh ypi � there replaced by xnsuŒupi �D.Upi /

s
u .

It follows from (2-48) and [17, Proposition 25.3.4] that

(2-49) VUp2 �
VUp1 D Œ

VK�; V@�:

Namely, VK� defines a chain homotopy equivalence between the two U –maps VUp2
and VUp1 .

The arguments in the preceding example generalizes readily to cobordisms X of
the types considered in Section 2.4. Note that the diagram (2-46) and the first three
lines of (2-47) hold in general. When X is not a product cobordism, the fourth line
of (2-47) has a simple modification by replacing its first term by the more general
hz&�
�
. z…@

�
/�# 0p2�p1 ; r

�1.M/0i, where r�1.M/0 fibers over .M/0 , with fibers consist-
ing of 1–dimensional strata of NC.M1/ or NC.M2/.

The map yK� in the example has an analog in this setting, which we denote by the same
notation,

VK�.X/ WD VmŒ���.X/C V‚p2 � VmŒ1�.X/� V‚p1 � VmŒ1�.X/:(2-50)
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In the above,
V‚pi WD VmŒ� Ppi �.R�Mi /D�VnŒh yp�.Mi /

is used to denote both an endomorphism on VC.Mi / and its associated endomorphism,
V‚pi ˝ 1, on VC.Y˙/. Meanwhile, V‚pi � VmŒ1�.X/ denotes either the composition
V‚pi VmŒ1�.X/ or VmŒ1�.X/ V‚pi , depending on whether pi 2 Y� or pi 2 YC . Note that

while VmŒ���.X/ is defined for coefficient ring KDR, arguments similar to those in
the preceding example show that VK� is in fact defined for coefficient ring KDZ. The
arguments also give rise to an analog of the identity (2-49),

(2-51) VUp2 � VmŒ1�.X/�
VUp1 � VmŒ1�.X/D Œ

VK�; V@�:

Remark 2.4 Instead of the formula given in (2-50), it is possible to express VK� as

VK� D VmŒu��.X/;

with u� 2 C
1IZ
M.X/

, in a way parallel to (2-48). This often yields cleaner formulas in
later discussions but is less practical, being not as concrete as (2-50). In what follows
we alternate between these two equivalent description of VK� , depending on which is
more convenient in the context.

(b) (when d D 2) For each Mi 2 E , let i � Mi be an embedded (oriented)
circle or the empty set. Let † � X be an embedded oriented surface asymptotic to
figi2E in the following sense: †\ .X �Xc/ is the union of connected components
of the following form: under the diffeomorphisms in (2-8), for each Mi there is a
component .�1; L0/ � .�i / � .�1; L0/ �Mi if Mi is a negative end, and it is
.L0;1/� i � .L

0;1/�Mi if Mi is a positive end. Let F†W B� .X/! R be the
function sending a d 2 B� .X/ to

F†.d/ WD

Z
†

iFA

2�
;

where A 2 Conn.E/ is the connection associated to an arbitrary representative of d.
The function F† depends only on the relative homology class of †: for another
embedded surface †0 asymptotic to the end figi2E ,

F†0 �F† D
1
2
hc1.s/� c1.K

�1/; Œ†0�†�i:

Let � 0i 2�
1.B� .Mi // and h0i W B

� .Mi /!R=Z be as defined in Part 2(b) if i ¤∅,
and let � 0i WD 0 and h0i D 0 if i D∅. Then

(2-52) dF† D
X
i2E

.…Mi /�� 0i :
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Thus, an integral correction of ŒdF†�M.X/ D ıŒF†�M.X/ 2 C
1IR
M.X/

takes the form
of ıF† , where F† 2 C

0IZ
M.X/

� C
0IR
M.X/

is given by

(2-53) F† WD ŒF†�M.X/�

X
i2E

Œ.…Mi /�h0i �M.X/;

where h0i W C.Mi /!R is as in Part 2(b).

Example Take X D R�M again to be the product cobordism, and let † be such
that s 7! †\ .fsg �M/ forms a homotopy between the circles �; C � M, both
representing the element ti 2H1.M IZ/=Tors. Applying equations (2-53) and (2-52)
to this setting, and recalling from Part 2(b) the definition and properties of u P , we have

(2-54) ıF† D u PC � u P� :

By Proposition 25.3.4 of [17], this implies that

(2-55) Vm� � VmC D Œ
V@; VmŒF†�.R�M/�:

Namely, VmŒF†� defines a chain homotopy equivalence between the two ti –maps
Vm� WD VmŒu P� � and VmC WD VmŒu PC �.

The preceding example also generalizes readily. When X is not a product cobordism,
the identities (2-54) and (2-55) have respectively the analogs

(2-56) ıF† D
X
i2E

Œ.…Mi /��i �; �
X
i

VmŒ1�.X/� Vmi D Œ
V@; VmŒF†�.X/�;

where VmŒ1�.X/� Vmi denotes the composition map VmŒ1�.X/ Vmi when i � YC , and
it denotes � Vm�i VmŒ1�.X/ when i � Y� .

Remark 2.5 In view of (2-25), the actions VUp and Vmti defined in Part 2 above
extend to the case when M is not necessarily connected, and together they define a
A�.M/ WDKŒU �˝

V�
H1.M IZ/=Tors–action associated to each choice of p and ftigi

for possibly disconnected M. These more general VUp and Vmti are chain maps as in
the connected case; in fact it follows as a straightforward consequence of the case
for connected 3–manifolds, already verified in [17] in the process of defining the
A�–actions on the monopole Floer homology bHM . The arguments in Part 3(a) show
that in this more general setting, VUp1 and VUp2 are chain homotopy equivalent when
p1 and p2 belong to the same connected component of M, but not if p1 and p2
lie on different components of M. In fact, the cohomology classes Œ�p1 �; Œ�p2 � 2
H�.B� .M/IZ/DH�.B� .M1/IZ/˝H�.B� .M2/IZ/ are independent. Generalizing
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the definition of VUp , given a 0–cycle p consisting of finitely many signed points pi
in M, let

VUp WD
X
i

sign.pi / VUpi :

Suppose M DMt WDM1 tM2 consists of two connected components M1 and M2 ,
and so B� .Mt/ D B� .M1/ � B� .M2/. Suppose pi 2 Mi for i D 1; 2. Then the
spaces zB�p1.M1/� zB�p2.M2/ and zB�p1.M1/�U.1/ zB�p2.M2/ in the second column of the
diagram (2-38) are respectively U.1/�U.1/– and U.1/–bundles over B� .Mt/, and
we abbreviate them respectively as zzB�p1;p2.Mt/ and zB�p2�p1.Mt/. It is worth noting
that zB�p2�p1.Mt/ is of the same homotopy type as B� .M1 #M2/ and M1 #M2 being
the connected sum of M1 of M2 along p1 and p2 . While the Floer complex yC.Mt/
in Part 2 above (heuristically) reflects the topology of B� .Mt/, the connected sum
theorem in Section 6 relates the Floer complex yC.M#/ (associated with B� .M#/) not
directly to yC.Mt/, but to a “Floer complex associated with zB�p2�p1.Mt/”. Using
the description of zB�p2�p1.Mt/ as an S1–bundle over B� .Mt/, the latter complex
is constructed using what was called the “algebraic S1–bundle” operation in [23],
described in more detail in Section 4 below. The ingredients of this construction
consist of a chain-complex for the orbit space of the S1–action, endowed with a
“U –map” associated to its Euler class. The Euler class of the bundle zB�p2�p1.Mt/ is
pr�2 e Pp2 � pr�1 e Pp1 ; so, in the setting under discussion, these are yC.Mt/, endowed with
U –map

(2-57) yUt WD 1˝ yUp2 �
yUp1 ˝ 1D

yUp2�p1 :

The precise definition of (the hat flavor of ) “the Floer complex for zB�p2�p1.Mt/”
is then what is called S yUt

yC�.Mt/ in Part 3 of Section 6.1. There, for any given
p 2Mt DM we also introduce an associated U –map on this Floer complex. Two
such U –maps associated to different points p; p0 2M are chain homotopy equivalent
even if p and p0 belong to different connected components of M. (See Lemma 6.4
below.)

Part 4: A�–actions under large r perturbations Let M be connected and let Q
denote one of the generating elements of U or ti of A�.M/, U and ti being as
defined in the beginning of Part 2. In the nonbalanced setting discussed in [22], a
particular choice of p and the i was made for the case when M is the auxiliary
manifold Y in Theorem 1.1 (see Part 7 of Section IV.1.3), and the associated U –maps
and ti –maps were defined concretely. In this part we relate the description therein with
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the more general and abstract construction given in Part 2 above. The same arguments
can be used to reinterpret the type of cobordism maps in Parts 1 and 3 under large r
perturbations in a manner similar to [22]. Details will be provided for some particular
3–manifolds and cobordisms (including Y and the product cobordism R�Y from [22]
as special cases) in Section 3 below.

In the context of [22] as well those to be discussed in Section 3, the spinor bundle S

on M splits as E˚E˝K�1 , and hence also a splitting of SC on R�M, which we
denote by the same notation. As pointed out in Part 2(a), in this case the tautological
section z̨ on E.R�M/ or E.R�M/ is well defined.

The nonbalanced assumption implies that there are no reducible Seiberg–Witten solu-
tions, leading to significant simplifications. To name a few: this allows one to replace
the blowup space B� occurring in last part by the space B before blowing up. It also
implies that U – and xti –maps are trivial, and yU D LU DW U and ymti D Lmti WD mti .
Moreover, the relevant moduli spaces are manifolds with corners in this setting; namely
(2-18) holds and Œ@M�D @ŒM�.

The generating set of the relevant Floer complex, C.M/, in [22] is denoted by Z D
ZSW;r . For large r, this is a finite set, and its elements are all represented by elements
of the form .A; .˛; ˇ// 2 Conn.E/ � �.E ˚E ˝K�1/ with ˛�1.0/ consisting of
finitely many points in M. This makes it possible to choose the point p 2M used
to define the U –map and the embedded circles i used to define the ti –maps to be
mutually disjoint and to all lie in the complement of ˛�1.0/�M. Write the map, mQ ,
associated to each Q in a form similar to (2-14) and (2-15) (with mU WD U ):

mQ D
X

c1;c22Z

X
z2�1B.M Ic1;c2/

wQ.c1; c2I z/�.z/I

and, in the monotone case, let wQ.c1; c2/D
P
z wQ.c1; c2I z/. The discussion in the

rest of this part works for both wQ.c1; c2I z/ and wQ.c1; c2/, but for simplicity only
the latter will be mentioned.

(a) (the U –map associated to p 2M ) In the formulation of Part 2(a), the coefficients
of the Up–map are given by

wU .c1; c2/D he;M2.c1; c2/i:

This is the Euler number of the bundle E.R � M/jM2.c1;c2/
relative to the trivi-

alization �# j@M2.c1;c2/�M1.R�M/ . In comparison, Section IV.1.3’s wU .c1; c2/ is
taken to be the signed count of elements in M2;p.c1; c2/, where Mk;p.c1; c2/ �
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Mk.c1; c2/ consists of elements d 2Mk.c1; c2/ represented by some .A; .˛; ˇ// 2
Conn.E/��.SC/ with ˛ vanishing at x D .0; p/ 2X DR�M. Suitable genericity
assumptions on .T;S/ and p were imposed so that for all c1; c22Z , Mk;p.c1; c2/D∅
for k < 2 and M2;p.c1; c2/ consists of finitely many regular points. Let z̨x 2
�.Ex.R �M// be the section obtained by restricting the tautological section z̨ to
Ej
fxg�B.R�M/�X�B.R�M/ D Ex.R�M/. Then the space Mk;p.c1; c2/ is precisely

the zero locus of the section z̨x on

Mk.c1; c2/� Bloc.R�M/:

The fact that Mk;p.c1; c2/ D ∅ for all c1 and c2 for k < 2 implies that z̨x is
nowhere-vanishing on M1.R �M/, and hence z̨x=jz̨xj defines a trivialization of
Ex.R�M/j@M2.c1;c2/�M1.R�M/ , and the Euler number of the complex line bundle
Ex.R�M/jM2.c1;c2/

relative to this trivialization is precisely the Euler characteristic of
M2;p.c1; c2/DM2.c1; c2/\ z̨

�1
x .0/, namely the value of wU .c1; c2/ defined in [22].

This agrees with the expression from Part 2(a) if # therein is chosen so that z̨x=jz̨xj is
constant with respect to the trivialization �# on M1.R�M/. As observed in Part 1(a),
the cocycle e 2 C 2IZM.R�M/

depends on the ı–cohomology class of # , which in turn
depends on the class Œ�p�M.R�M/ 2 C

2IZ
M.R�M/

. The aforementioned choice in the
large-perturbation setting is natural in the sense that under proper setup, one expects

(2-58) Œ�p�M.R�M/! 0 and Œh yp�NC1 .M/
! 0 as r!1,

which in turn is based on the expectation that, roughly speaking,

(2-59) jrA˛j ! 0 pointwise away from ˛�1.0/ as r!1I

or, put in another way, a variant of [30, Proposition 4.1] holds. A weak version of the
latter in the setting of Section 3 is provided in Lemma 7.6.

To see how (2-58) would follow from (2-59), recall (2-32) and note that, as

M1.R�M/\ z̨�1.0/D∅;

j˛j
ˇ̌
yp

is nowhere-vanishing for all d 2M1.R�M/. Let .A; .˛; ˇ// 2 C.R�M/ be a
representative of the aforementioned d, and use yA˛ to denote the connection defined
on .R�M/ n˛�1.0/ satisfying ryA˛ .˛=j˛j/D 0. Thus, for d 2M1.R�M/,

h yp.d/D�

Z
Rd
�p D�

Z
yp

.��/
�� Pp D

i

2�

Z
yp

.A� yA˛/! 0 as r! 0

if (2-59) holds, and (2-58) follows as a consequence.
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(b) (the ti –map associated to i �M ) According to Part 2(b),

(2-60) wti .c1; c2/D hu Pi ;M1.c1; c2/i

D

X
d2N0.c1;c2/

sign.d/.�d xi /

D h� Pi ;M1.c1; c2/i � h…
�
0h
0
i
; @M1.c1; c2/i:

If i lies on the complement of ˛�1.0/ for all .A; .˛; ˇ// representing elements c

in C.M/, there is a natural choice of h0i W C.M/!R among the ZC.M/–many possible
lifts of h0i jC.M/ , leading to a natural choice of ui . Namely, one sets

(2-61) h0i .c/D
i

2�

Z
i

.A� yA˛/

in this case. With this choice of h0i , the corresponding xi satisfies

xi .c/D holi . yA˛/ mod Z for all c 2 C.M/;

where holi . yA˛/ 2 U.1/DR=Z denotes the holonomy of yA˛ along i . Such i can
be found in large r–perturbation settings when a suitable variant of (2-59) holds; in
fact, with such i ,

(2-62) h0i ! 0 as r!1:

This may indeed be arranged in the setting of this series of articles. In various parts
of [22] as well as in latter parts of this article (eg (3-10)), choices of xi were made via
explicit formulas, and (2-62) in this context is given a precise reformulation in terms
of xi in Lemma 3.2.

In Part 7 of Section IV.1.3, the integer �d xi in (2-60) is given an alternative description
as the algebraic intersection number between ˛�1.0/ and the cylinder R�i �R�M.
To relate this with the definition in Part 2(b), note that by the choice of i , the section
˛jR�i�R�M of the bundle EjR�i is nowhere-vanishing over the boundary of the
cylinder @.R � i / � f�1;1g �M, and the aforementioned intersection number
agrees with the relative Chern number of EjR�i relative to the trivialization over
@.R� i / defined by ˛=j˛j. This relative Chern number in turn can be expressed asZ

R�i

i

2�
F yA˛
D�d xi :
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3 Filtered monopole Floer homologies

The algebraic recipe for Ozsváth and Szabó’s definition of the four flavors of Heegaard
Floer homologies, labeled by the superscripts �, 1, C and ^, was summarized
abstractly in Section 4 of [23]. In this section, we explain how the same recipe may be
applied in the Seiberg–Witten context to define analogs of Ozsváth and Szabó’s Floer
homologies. These intermediate Floer homologies play a pivotal role in the proof of
Theorem 1.1.

3.1 Motivation and sketches of construction

The aforementioned recipe hinges on the existence of certain filtration on a Floer
chain complex with local coefficients in the group ring KŒZ� D KŒU; U�1�, with
U corresponding to the generator 1 2 Z. This Floer complex with local coefficients
constitutes the1 flavor of the Ozsváth–Szabó construction, while the “filtration” refers
to the filtration of the coefficient ring KŒU; U�1� by submodules

� � � � UKŒU ��KŒU �� U�1KŒU �� � � � �KŒU; U�1�:

If the differential of the 1 flavor of the Floer complex preserves this filtration, then
it induces a filtration on the 1 flavor Floer complex by KŒU �–subcomplexes, which
are all isomorphic via multiplication by powers of U. This defines the � flavor Floer
complex. With these two basic flavors in place, the C and the ^ flavors are defined so
that they fit into short exact sequences (see (3-18) below) inducing what are called the
fundamental exact sequences of corresponding Floer homologies. In [23], the existence
of such a filtration is attributed to the existence of what was termed a “semipositive
1–cocycle”. The 1–cocycle used here refers to the cocycle that defines the local system
on the 1 flavor Floer complex. The “semipositivity” condition serves to guarantee
that the differential is filtration-preserving. Note that the 1 flavor of Floer homology
depends only on the cohomology class of this cocycle. The other three flavors of
Ozsváth and Szabó’s construction depend on the choice the cocycle that defines the
semipositivity condition.

Section 4.2 of [23] provides some examples where this recipe may be applied. Section 6
of the same article sketched how such semipositive 1–cocycles might arise in certain
versions of Seiberg–Witten Floer theory associated to equations of the form of (2-5).
In particular, choosing the metric and 2–form w in (2-5) to reflect the data that go into

Geometry & Topology, Volume 24 (2020)
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the definition of Heegaard Floer homology provides a bridge to relate the Heegaard
and Seiberg–Witten Floer homologies.

To elaborate, the local system underlying the Seiberg–Witten analog of the Ozsváth–
Szabó construction is closely related to what was denoted by �� in [17] (see the
example in the end of their Section 22.6), where � is a singular 1–cycle in a certain
3–manifold M. Use Œ.A; ‰/�2B� to denote the gauge-equivalence of .A; ‰/. In [17],
this local system associates to each point on B� the “fiber” R, and, to each path
fŒ.A.�/; ‰.�//�g� from Œ.A�; ‰�/� to Œ.AC; ‰C/�, an isomorphism R� � End.R/
between the fibers over the endpoints. The latter isomorphism is given by multiplication
by the real number

(3-1) e.i=2�/
R
�

R
�
d
d�

A.�/:

Note that the exponent is the difference of the holonomy of A� along the cycle ��M
from that of AC , and it defines a real 1–cocycle in B� . Meanwhile, as only points
in C � B� and paths constituting the sets M1.c�; cC/ with c�; cC 2 C enter the
definition of a monopole Floer complex, it suffices to consider the holonomy difference
of paths corresponding to elements in M1.c�; cC/. The observation leading to [23]’s
construction of filtered monopole Floer homologies (in the sense of Ozsváth and Szabó)
is the following:

(3-2) For monopole Floer complexes associated to certain $ in the form of (2-3)
with large r and a certain choice of �, the value of the aforementioned holonomy
difference is very close to a nonnegative integer.

(See also (2-62).)

Associating to each element in M1.c�; cC/ its corresponding integer, one has a (par-
tially defined) integer 1–cocycle on B� with which one may define a Floer complex
with more refined local coefficients than �� . We denote the latter local system by ƒ� .
It replaces the fibers R over C of �� by the group ring KŒZ� D KŒU; U�1�; and it
replaces the isomorphism induced by an element d in M1.c�; cC/ between these
fibers, namely (3-1), by U n where n denotes the aforementioned nonnegative integer
associated to d. The fact that n � 0 in all cases has the following consequence:
Use the corresponding monopole Floer complex with local coefficients, ƒ� , as the
1 flavor Floer complex. There is filtration on this chain complex, CM�.M Iƒ�/, by
subcomplexes of KŒU �–modules. This can be used to define the other three flavors of
Floer complexes.
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The program described in [23] assumes various plausible conjectures and assertions that
come from an extension of the geometric picture in the last author’s work relating the
Seiberg–Witten and Gromov invariant for closed 4–manifolds (see [31; 30]). A proof
of these conjectures constitute a major part of the technical hurdle for implementing the
program in [23]. The difficulties arise because the 2–form $ in [23] must have zeros.

In this series of articles [19; 20; 21; 22], the roadblock to the approach in [23] is
circumvented by a modification of [23]’s outline. Very roughly, the manifold M in [23]
is replaced by the manifold denoted by Y in [20]. This is obtained from M by adding
further 1–handles along the zeros of w on M. The 2–form w extends into Y as a
nowhere-vanishing closed 2–form, which we also denote by w . Over the middle of the
added 1–handle, this w approximates da for a certain contact form a , and as the special
1–cycle � (denoted by  therein) lies away from the zeros of w on M, this 1–cycle also
embeds in Y . This was denoted by  .z0/ in [19; 20; 21; 22]. The technical challenge in
this new approach involves, among other things, the analog of (3-2) for the monopole
Floer complex associated to Y , w and �D  .z0/ . Some of these technical issues are
dealt with in [22]. Those that remain are dealt with in Sections 7–9 of this article.

In Section 3.2 below, we specify the class of 3–manifolds, denoted by YZ therein,
together with the 2–form w on it and the 1–cycle � for which positively results
of the kind (3-2) hold. Section 3.3 describes the sort of cobordisms X for which
the companion statements hold. See Propositions 3.4, 3.5, 3.10, 3.12 and 3.15. The
remaining subsections give precise statements of the desired positivity results. The
formulation here involves a “cut-off” version of the connection A (called yA), so that in
place of (3-2), its associated holonomy difference is integer-valued. (See Lemma 3.2.)
The conditions on YZ and X are introduced more for technical convenience rather
than essential reasons, and the statements in Sections 3.4–3.7 may conceivably hold
for more general 3–manifolds and 4–dimensional cobordisms.

3.2 The 3–manifold YZ

Let Z denote a given connected, oriented closed 3–manifold; and let YZ denote
the manifold that is obtained from Z by attaching a 1–handle at a chosen pair of
points, denoted by .p0; p3/ below. In the proof of the main Theorem 1.1, Z is taken
to be either S3 , the manifold M in the statement of Theorem 1.1, or a manifold
that is obtained from M by attaching some number of 1–handles. Although YZ is
diffeomorphic to the connected sum of Z and S1�S2 , it is viewed for the most part as
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Zı [H0 with H0 the attached 1–handle and with Zı being the complement of a pair
of coordinate balls about the chosen points p0 and p3 in Z . The manifold YZ has a
distinguished embedded loop that crosses the handle H0 once. This loop is denoted
by  . The three parts of this subsection say more about the geometry of YZ near H0 ,
near  , and in general.

Part 1 The geometry of YZ near H0 is just like that given in Section II.1A. By way
of a reminder, the description of the geometry requires the a priori specification of
constants ı� 2 .0; 1/ and R > �100 ln ı� . Also needed are coordinate charts centered
on p0 and p3 . The latter are used to identify respective neighborhoods of these points
with balls of radius 10ı� in R3 . The pullback of the standard spherical coordinates
on R3 gives spherical coordinate functions on the neighborhood of p0 , these denoted
by .rC; .�C; �C//. There are corresponding coordinate functions for the neighborhood
of p3I these are denoted in what follows by .r�; .��; ��//.

The handle H0 is diffeomorphic to the product of an interval with S2 . The interval
factor is written as Œ�R� 7 ln ı�; RC 7 ln ı�� and u is used to denote the Euclidean
coordinate for this interval. The spherical coordinates for the S2 factor are written
as .�; �/. The handle H0 is attached to the coordinate balls centered on p0 and p3 as
follows: Delete the rC < e�2R.7ı�/�1 part of the coordinate ball centered on p0 and
the corresponding part of the coordinate ball centered on p3 . Having done so, identify
H0 with the respective rC 2 Œe�2R.7ı�/�1; 7ı�� and r� 2 Œe�2R.7ı�/�1; 7ı�� parts
of these coordinate balls with H0 by writing

(3-3) .rCDe�RCu; .�CD�; �CD�// and .r�De�R�u; .��D���; ��D�//:

The handle H0 has a distinguished closed 2–form, this being 1
2

sin � d� d� . This
2–form is nowhere zero on the constant u cross-sectional spheres and thus orients these
spheres. Granted this orientation, then 1

2
sin � d� d� has integral 2 over constant u

spheres.

Part 2 The loop  intersects H0 as the � D 0 arc. Thus it has geometric intersection
number 1 with each uD constant sphere. This loop is oriented so that the corresponding
algebraic intersection number is C1. A tubular neighborhood of  is specified with
a diffeomorphism to the product of S1 and a disk about the origin in C . The latter
is denoted by D and its complex coordinate is denoted by z . The diffeomorphism
identifies the z D 0 circle in S1�D with  . The circle S1 is written in what follows
as R=.`Z/ with ` > 0 being a chosen constant. The affine coordinate for R=.`Z/
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is denoted by t . The product structure on such a neighborhood is constrained where it
intersects H0 by the requirement that the H0 coordinate u on the intersection depend
only on t . A neighborhood with these coordinates is fixed once and for all; it is denoted
by U .

Part 3 Use the Mayer–Vietoris principle to write the second homology of YZ as

(3-4) H2.YZ IZ/DH2.ZIZ/˚H2.H0IZ/:

The convention in what follows is to take the generator of H2.H0IZ/ to be the class
of any cross-sectional sphere with the orientation given by the 2–form sin � d� d� .
Fix a class in H 2.YZ IZ/ which has even pairing with the classes in H2.YZ IZ/ and
pairing 2 with the generator of the H2.H0IZ/ summand in (3-4). This class is denoted
in what follows by c1.det S/, and it is necessarily nontorsion by the above assumption.

There is a corresponding closed 2–form on YZ whose de Rham cohomology class is
that of c1.det S/. In particular, there are forms w of this sort satisfying the following
additional constraints:

(3-5) � The form restricts to H0 as 1
2�

sin � d� d� .

� The form restricts to U as i
2�
g.jzj/ dz ^ dxz with g denoting a strictly

positive function.

� There is a closed 1–form on YZ , typically denoted by � below, with the
following properties:

(a) It has nonnegative wedge product with w .

(b) It restricts to U as dt , and restricts to H0 as H.u/ du with H.u/ > 0

for all u.

Fix such a 2–form as the perturbation form w in (2-5).

The metric on YZ is chosen to satisfy the following constraints:

(3-6) � The metric appears on H0 as the product metric of an S2–independent
metric on the interval Œ�R � ln.7ı�/; RC ln.7ı�/� and the round metric
d�2Csin2 � d�2 on the S2 factor. Meanwhile, the curvature 2–form of AK
on H0 is i

2�
sin � d� d� .

� The metric appears on U as dt2Cg.jzj/ dz˝dxz with g being the function
in the second bullet of (3-5). Meanwhile, AK has holonomy 1 on  and its
curvature 2–form on U is iw .
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Many of the lemmas and propositions in the rest of this section depend implicitly on
the radius of Dr and on the injectivity radius of the Riemannian metric. They also
depend implicitly on the norms of w , the curvature of AK , the Riemannian curvature,
and the norms of their derivatives up to some order less than 10.

There are suitable choices for � with positive but small as desired P –norm that vanish
on H0 [U . This last property is not a direct consequence of an explicit assertion
in [17] but it follows nonetheless from their constructions.

The reference connection AE is chosen constrained only to the extent that it is flat
on H0 and is flat with holonomy 1 on U .

The function on Conn.E/ � C1.YZ IS/ of central concern in what follows is the
analog here of the function that is defined in (IV.1-16). This function is denoted by X .
The definition requires the a priori choice of a smooth function }W Œ0;1/! Œ0;1/

which is nondecreasing, obeys }.x/D 0 for x < 7
16

and }.x/D 1 for x � 9
16

. As
in [22], it proves convenient to choose } so that its derivative, }0, is bounded by
210.1�}/3=4 . The definition of X uses the fact that w is nowhere zero on U . In
particular, Clifford multiplication by �w on U splits S over U as the direct sum of
eigenbundles. This splitting is

(3-7) SDE˚E˝K�1

with the convention being that �w acts as Ci jwj on E . A given section  of S is
written with respect to this splitting over U as a pair denoted by jwj1=2.˛; ˇ/.

Granted this notation, use } with a given pair cD .A; / 2 Conn.E/�C1.YZ IS/
to define the connection

(3-8) yAD A� 1
2
}.j˛j2/j˛j�2.x̨rA˛�˛rA x̨/

on EjU . The salient point is that the connection yA is flat on the part of U where
j˛j2 > 9

16
(this is where } D 1) and the A–derivative of ˛=j˛j is zero on this same

part of U . This can be seen from the formulas

(3-9) � F yA D .1�}.j˛j
2//FAC}

0.j˛j2/rA˛^rA x̨ ;

� r yA
˛ D .1�}.j˛j2//rA˛C}.j˛j

2/ d.ln j˛j/˛ .

Meanwhile, the connections yA and A are equal where j˛j2 � 7
16

(this is where }D 0).
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With yA understood, then the value of the function XD X on the given configuration
cD .A; / 2 Conn.E/�C1.YZ IS/ is defined by rule whereby

(3-10) X.c/D
i

2�

Z


. yA�AE /:

Remark 3.1 To relate with the general discussion in Part 2(b) of Section 2.5, note that
yA from (3-8) agrees with the connection yA˛ over  ; and so setting "0 .c/D

R
 .
yA�A/

for c 2 B� .M/ would meet the requirement that "0 jC.M/ D h0 when h0 is given
by (2-61). Meanwhile, the reference connection AE plays the role of the basepoint
yc0 2 yB� .M/ in Section 2.5 in the following sense: Let .A0; .˛0; ˇ0// be an arbitrary
representative of yc0 and for any yc2 yB�t .M/, let .A; .˛; ˇ// be an arbitrary representative
of yc. Then x .yc/, as defined in Section 2.5’s Part 2(a), equals

x .yc/D yh .yc/�…�0"
0
 .yc/D

i

2�

�Z


.A�A0/�

Z


.A� yA/

�
D

i

2�

Z


. yA�A0/:

The last term above equals (3-8) when A0 D AE . Note that yc0 and AE are required
to satisfy certain constraints, namely both hol .A0/ D 0 mod Z and hol .AE / D 0
mod Z.

The following lemma supplies a fundamental observation about X :

Lemma 3.2 If the conditions in (3-5)–(3-6) hold , then there exists � > � with the
following significance: Fix r> � and a 1–form � 2� with P –norm less than 1. The
function X has only integer values on the solutions to the corresponding .r; �/ version
of (2-5).

This lemma is proved in Section 7.3.

3.3 4–dimensional cobordisms

This subsection describes in general terms the sorts of cobordisms that are considered.

To start, let Z� and ZC denote two versions of the manifold Z and let Y� and YC
denote the respective Z D Z� and Z D ZC versions of YZ . There is no need to
assume that either Y� or YC is connected, but if not, then the handle H0 is attached
to the same connected component. Use � to denote the Y� version of the curve 
and use C to denote the YC version. The corresponding versions of U are denoted
in what follows by U� and UC .
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Of interest here is a smooth, oriented, 4–dimensional manifold X with the properties
listed below, in addition to those in (2-8):

(3-11) � There exists an embedding of R� Œ�R� ln.7ı�/; RC ln.7ı�/��S2 into X
that pulls back s as the Euclidean coordinate on the R factor. Moreover,
the composition of this embedding with the diffeomorphism in the second
bullet identifies the s < 0 part with .�1; 0/�H0 in .�1; 0/�Y� ; and
the composition with the diffeomorphism from the third bullet identifies
the s > 0 part with .0;1/�H0 in .0;1/�YC .

� There exists an embedding of R � S1 into X that pulls back s as the
Euclidean coordinate on the R factor. Moreover, the composition of this
embedding with the diffeomorphism in the second bullet identifies the
s < 0 part of R� S1 with .�1; 0/� � ; and the composition with the
diffeomorphism from the third bullet identifies the s > 0 part of R�S1

with .0;1/� C .

The image in X of the embedding of R� Œ�R� ln.7ı�/; RC ln.7ı�/��S2 from the
first bullet above is denoted by U0 .

The notation used in the next constraint has C denoting the image in X of R�S1 as
described by the second bullet of (3-11). This constraint requires that the � and C
versions of ` are equal:

(3-12) � There exists ` > 0 and a diffeomorphism of a neighborhood of C to the
product of R�R=.`Z/ with a disk about the origin in C . This disk is
denoted by D.

� The diffeomorphism identifies the Euclidean coordinate on R�R=.`Z/�D

with s .

� The s < 0 and s > 0 parts of the neighborhood are in .�1; 0/�U� and
in .0;1/�UC , respectively. Moreover, the diffeomorphism on these parts
of the neighborhood respects the respective splittings of U� and UC as
.�1; 0/�R=.`Z/�D and .0;1/�R=.`Z/�D.

By way of an explanation, a diffeomorphism of this sort exists if the conormal bundle
to C in X has a nowhere-zero section that restricts to the s < 0 part of X as the real
part of the C–valued 1–form dz along � and restricts to the s > 0 part of X as the
real part of the C–valued 1–form dz along C . The tubular neighborhood in (3-12) is
denoted in what follows by UC . The diffeomorphism in (3-12) is used, often implicitly,
to identify UC with R�R=.`Z/�D.
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In addition to those listed in (2-12), the 2–form wX to use in the Seiberg–Witten
equations is required to satisfy the following additional constraint:

(3-13) The pullback of wX to U0 via the embedding from the fourth bullet of (3-11)
is twice the self-dual part of 1

2
sin � d� d� and its pullback to UC via the

embedding in (3-12) is twice the self-dual part of i
2�
g.jzj/ dz ^ dxz.

Meanwhile, the metric on X is required to satisfy the following constraints in addition
to those in (2-9):

(3-14) � The metric pulls back from U0 via the embedding of the first bullet of (3-11)
as the product metric defined by the Euclidean metric on the R factor and
an R–independent product metric on the Œ�R� ln.7ı�/; RC ln.7ı�/��S2

factor.
� The metric pulls back from UC via the embedding in (3-12) as the product

metric given by the quadratic form ds2C dt2Cg.jzj/ dz˝ dxz .

Extensions to UC and U0 of the Y� and YC versions of the line bundles K and E and
their connections AK and AE are needed for what follows. There is no obstruction
to making these extensions. Even so, it is necessary to constrain AK and AE on Y�
and YC so that extended versions of AK and AE on UC [U0 exist with the curvature
of the extended version of AK pulling back via the embeddings from the first bullet
of (3-11) and (3-12) as sin � d� d� and g.jzj/ dz ^ dxz . Meanwhile, the pullbacks of
the curvature of AE via these embeddings is zero. Extensions with this property are
assumed implicitly.

The definitions in [17] are sufficiently flexible so as to allow for the following: for
any given r > � , there are suitable perturbation terms for (2-10) with positive but
as-small-as desired P–norm that vanish on UC and on the image of R�H0 via the
embedding map from the first bullet of (3-11).

With regards to notation and conventions, the propositions and lemmas that follow
refer only to (2-10). Even so, all assertions still hold for the versions with an extra
perturbation term if the perturbation term has P –norm bounded by e�r2 or has small,
r–independent P–norm and vanishes on UC and on the image of R �H0 via the
embedding from the first bullet of (3-11). Proofs of the propositions and lemmas will
likewise refer only to (2-10). The modifications that are needed to deal with the extra
perturbation terms are straightforward and so left to the reader.

The second set of constraints require the choice of constants c � 1 and r � 1. By way of
notation, one of the upcoming constraints uses the embeddings from the second and third
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bullets of (2-8) to write wX on the jsj 2 ŒL�4;L� part of X as wX D ds^�w�Cw�
with w� denoting a closed, s–dependent 2–form on Y� or YC , and with � here
denoting the Hodge star for the metric g in the second bullet of (2-9).

(3-15) (1) The constant L in (2-9) is less than c . The constant Ltor in (2-12) is equal
to c ln r .

(2) The norm of the Riemannian curvature tensor and those of its covariant
derivatives up to order 10 are less than r 1=c on the s 2 Œ�L;L� part of X.

(a) The injectivity radius is larger than r�1=c on the s 2 Œ�L;L� part of X.

(b) The metric volume of the s–inverse image in X of any unit interval is
bounded by c .

(3) The metric g from (2-9)’s second bullet obeys j @
@s
gj � r 1=c .

(4) The norm of wX is bounded by c . The norms of its covariant derivatives
to order 10 are bounded by r 1=c on the s 2 Œ�L;L� part of X.

(a) The 2–form wX is closed on the jsj � L� 4 part of X.

(b) Use the embeddings from the second and third bullets of (2-8) to write
wX on the jsj 2 ŒL� 4;L� parts of X �Xtor as wX D ds^�w�Cw� .
Then @

@s
w�Ddb , where b is a smooth, s–dependent 1–form on the rele-

vant components of Y� or YC with
R
.X�Xtor/\jsj�1.ŒL�4;L�/

jbj2< r�1=c .

(c) The 2–form wX is closed on the components of the L�4�jsj�Ltor�4

part of Xtor .

(d) Use the embeddings from the second and third bullets of (2-8) to write
wX on the jsj 2 ŒLtor� 4;Ltor� parts of Xtor as wX D ds ^�w�Cw� .
Then @

@s
w�D db where b is a smooth, s–dependent 1–form on the rele-

vant components of Y� or YC with
R
Xtor\jsj�1.ŒLtor�4;Ltor�/

jbj2 < r�1=c .

(5) There is a smooth, closed 1–form on X, denoted by �X below, with norm
bounded by c and such that:

(a) The pullback of �X to .�1;�L��Y� and to ŒL;1/�YC via the em-
beddings from the second and third bullets of (2-8) is an s–independent
1–form on Y� and YC .

(b) The pullback of �X to UC via the embedding from (3-12) is dt and
its pullback to U0 via the embedding from the first bullet of (3-11) is
H.u/ du with H. � /� c�1 .

(c) �.ds ^ �X ^wX /� �r�1=c on the jsj 2 ŒL� 4;1/ part of X.

Note that item (4) of the preceding constraints ensures that the condition (2-21) holds.
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Definition 3.3 The metric and wX on X are said to be .c; r /–compatible when one
of the following conditions are met:

(3-16) � The space X DR�YZ , the metric has the form ds2C g with g being an
s–independent metric on YZ , and the 2–form wX is the s–independent
form ds^�wCw . Moreover, there exists a closed 1–form on YZ , denoted
by � below, that restricts to U as dt , and restricts to H0 as H.u/ du with
H. � / > c�1 , and is such that � ^w � �r�1=c .

� The metric and wX obey the constraints in (2-9), (2-12), (3-13), (3-14)
and (3-15).

By way of a look ahead, the notion of .c; r /–compatibility is invoked below with r
given by the constant r in (2-10).

3.4 Positivity on cobordisms

An analog of the connection that is defined in (3-8) plays a role in what follows. This
connection is denoted in what follows by yA. To define it, keep in mind that wX ¤ 0
on UC and so Clifford multiplication by wCX on SC over UC or .�1;�2��H0 or
Œ2;1/�H0 splits SC as a direct sum of eigenbundles, this written as

(3-17) SC DE˚ .E˝K�1/

with it understood that wX acts as multiplication by i jwX j on the leftmost summand
(namely, E ). (This splitting is the analog of the splitting in (3-7)). A section,  , of S

is written with respect to this splitting over UC as

 D jwX j
1=2.˛; ˇ/:

Meanwhile, A is written as AK C 2A with A being a connection on E . Granted
this notation, write yA using the formula in (3-8) with it understood that the covariant
derivatives of ˛ that appear have nonzero pairing with the vector field @

@s
. This

connection is flat where j˛j2 > 9
16

and ˛=j˛j is yA–covariantly constant. Meanwhile,
yA is equal to A where j˛j2 � 7

16
. The formulas for the curvature of yA and the yA–

covariant derivative of ˛ is given in (3-9) with it understood that FA and rA˛ now
have components that have nonzero pairing with @

@s
.

With a look ahead at the upcoming propositions, note that the integral of iF yA over C is
proved to be well defined when .A; / is an instanton solution to (2-10). This is proved
using integration by parts to express the integral of iF yA as the difference between
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integrals of the iR–valued 1–form yA�AE over respective s� 1 and s��1 slices
of C.

The first proposition below concerns the integral of iF yA on C when X, its metric, and
the 2–forms wX and w� define the product cobordism.

Proposition 3.4 Assume that X, the metric and wX can be used to define a product
cobordism once � is chosen. Assume in addition that YZ has a closed 1–form, �˘ ,
such that �˘ ^w � 0, whose restriction to U is dt and whose restriction to H0 is
H du with H being a strictly positive function of u. Given c � 1, there exists � > �
with the following significance: Fix r � � and � 2� with either P–norm bounded
by e�r2 or with P –norm bounded by 1 but vanishing on R� .H0[U /. Let c� and
cC denote solutions to the .r; �/ version of (2-5) on YZ with a.c�/� a.cC/� r2�1=c .
Suppose that dD .A;  / is an instanton solution to the corresponding version of (2-10)
on X with s!�1 limit c� and s!1 limit cC . Then i

R
C F yA � 0.

Proposition 3.4 is a special case of the next proposition, which concerns the integral
of iF yA on C when the relevant data does not necessarily define the product cobordism.

Proposition 3.5 Assume that X and wX obey the conditions in Section 3.3, and that
the metric on X obeys (2-9) and (3-14). Then there exists � > � such that given any
c � � , there exists �c with the following property: Fix r � �c and assume that the
metric and wX are .c; r D r/–compatible data. Fix �� and �C from the respective
Y� and YC versions of � with either P–norm less than e�r2 or with P–norm less
than 1 but vanishing on the respective Y� and YC versions of H0[U . Let c� and
cC denote solutions to the .r; ��/ version of (2-5) on Y� and .r; �C/ version of (2-5)
on YC with a.c�/� a.cC/� r2�1=c . If dD .A;  / is an instanton solution to (2-10)
with s!�1 limit c� and s!1 limit cC , then i

R
C F yA � 0.

Proposition 3.5 is proved in Section 8.2.

3.5 The bound for a.c�/�a.cC/ in Proposition 3.5

Proposition 3.5 concerns only those instanton solutions to (2-10) that obey the added
constraint a.c�/� a.cC/� r2�1=c . The two propositions that are stated in a moment
are used to guarantee that this constraint is met in the cases that are relevant to the
body of this paper. What follows sets the stage for the first proposition.
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Definition 3.6 Fix c > 1. The metric on YZ and the 2–form w are said to define
c –tight data when there exists a positive, c –dependent constant with the following
significance: Use the metric, the 2–form w , a choice of r greater than this constant and
a chosen 1–form from � with P–norm less than 1 to define (2-5). If c is a solution,
then jaf.c/j< r2�1=c .

Proposition 3.7 Let YZ denote a compact, oriented Riemannian 3–manifold with
a chosen Riemannian metric and a Spinc –structure with nontorsion first Chern class.
Let w denote a harmonic 2–form on YZ whose de Rham class is this first Chern class.
Assume that w has nondegenerate zeros on any component of YZ where it is not
identically zero. Then the metric and w define a c –tight data set if c is sufficiently
large.

This proposition is proved in Section 7.8.

This notion of being c –tight is used in the second of the promised propositions. To
set the stage for this one, suppose that X is a cobordism of the sort that is described
in Section 3.3. Fix a metric on X and the auxiliary data as described in (2-9), (2-12)
and (3-13), and let dD .A; / denote an instanton solution to a given r> � version
of (2-10). Use c� and cC to denote the respective s!�1 and s!1 limits of d.
Associated to d is a certain first-order, elliptic differential operator, this being the
operator that is depicted in (IV.1-21) when X is the product cobordism. The operator
in the general case is written using slightly different notation in (2.61) of [37]. This
operator has a natural Fredholm incarnation when the respective Y� version of fs is
constant on a neighborhood of c� and the YC version is constant on a neighborhood
of cC . Use {d to denote the corresponding Fredholm index. By way of a relevant
example, {d is equal to fs.cC/� fs.c�/ when X and the associated data define the
product cobordism. Section 8.7 associates an integer, {dC , to d, which is defined
without preconditions on c� and cC . The latter is equal to the maximum of {d and 0
in the case when {d can be defined.

Proposition 3.8 Assume that X obeys the conditions in Sections 2.2 and 3.3, that
the metric on X obeys (2-9) and (3-14) for a given L> 100, and that wX obeys the
conditions in (2-11) and (2-12) for a given L� � LC 4. Then there exists � > � such
that for any given c � � , there exists �c with the following significance: Suppose that
the respective pairs of metric and version of w on Y� and YC define c –tight data.
Fix r > �c and fix �� and �C from the respective Y� and YC versions of � with
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P –norm less than 1 so as to define (2-10) on X. Let d denote an instanton solution to
these equations with {dC � c . Use c� and cC to denote the respective s!�1 and
s!1 limits of d. Then a.c�/� a.cC/ < r2�1=c .

This proposition is proved in Section 8.7.

3.6 The cases when YZ is from fM t .S 1 �S 2/; Y g, fYkgkD0;:::;G or
fYk t .S

1 �S 2/gkD0;:::;G�1

In what follows, the notation YZ stands, in addition to the manifold itself, also implicitly
for its associated metric and 2–form w from Part 3 of Section 3.2.

The body of this article is concerned with 2GC 3 specific versions of YZ , these being
as follows: The first manifold of interest is M and S1 � S2 and the second is the
manifold Y from Section II.1. The next GC 1 manifolds are labeled as fYkgkD0;:::;G
with a given k 2 f0; : : : ; Gg version being the manifold that is obtained from M by
attaching the handle H0 as directed in Part 2 of Section II.1A and attaching k of the
handles from the set fHpgp2ƒ as directed in Part 1 of Section II.1A. Note in this regard
that Y and YG are the same manifold, endowed with different metric and 2–form w .
Their main difference is the behavior of w over the attached handles Hp : for Y it
approximates certain standard contact form (see (9-51) below), while for YG it is
harmonic (see Proposition 3.9). The last G manifolds of interest are the disjoint unions
of the various k 2 f0; : : : ; G� 1g versions of Yk and S1 �S2 .

Part 1 Let YZ denote the disjoint union of M and S1 � S2 . To see about the
constraints in Section 3.2, take Z to be the disjoint union of M and S3 . The handle H0
is attached to S3 so as to obtain S1 � S2 . Write S1 as R=.2�Z/ and let t denote
the corresponding affine coordinate. Use the spherical coordinates .�; �/ for S2 . The
loop  is the � D 0 circle in S1 �S2 .

To see about w and the metric, consider first their appearance on S1 �S2 . Take the
2–form w on S1�S2 to be sin � d� d� and the metric to be H dt2Cd�2Csin2 � d�2

with H denoting a positive constant. If the first Chern class of det.SjM / is torsion, take
w D 0 on M and take any smooth metric. If the first Chern class of det.SjM / is not
torsion, take a metric on M such that the associated harmonic 2–form with de Rham
cohomology class that of c1.det.SjM // has nondegenerate zeros. Take w in this case
to be this same harmonic 2–form. By way of a parenthetical remark, a sufficiently
generic metric on M will have this property. See for example [11] for a proof that
such is the case.
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The data just described obeys the conditions in Section 3.2. Use Proposition 3.7 to see
that this data is also c –tight for a suitably large version of c .

Part 2 Let YZ denote the manifold Y that is described in Section II.1. Suffice it
to say for now that Y is obtained from Y0 via a surgery that attaches some positive
number of 1–handles to the Mı part of Y0 . This number is denoted by G .

The 2–form w is described in Section II.1E. See also Part 3 of Section IV.1.1. Let b1
denote the first Betti number of M. Part 2 of Section II.1D describes a set of b1C 1
closed integral curves of the kernel of w that have geometric intersection number 1
with each u = constant 2–sphere in H0 . One of these curves intersects H0 as the
� D 0 arc. This is the curve  .z0/ in the notation from Part 2 of Section III.1A. Use
the latter for  . It follows from what is said in (II.1-5) and Part 2 of Section II.1D that
the  has a tubular neighborhood with coordinates as described in Section 3.2 such
that the 2–form w has the desired appearance. Section II.1E and (IV.1-5) describe a
closed 1–form on Y that can be used to satisfy the requirements in the third bullet
in (3-5). This 1–form is denoted by �˘ .

A set of Riemannian metrics on Y that have the desired form on H0 are described
in Part 5 of Section IV.1.1. Although not stated explicitly, a metric of the sort that is
described in Part 5 of Section IV.1.1 can be chosen so that it has the desired behavior
on some small radius tubular neighborhood of  . Note that the set of metrics under
consideration are obtained from the choice of an almost complex structure on the kernel
of a 1–form ya given in (IV.1-6). These almost complex structures are taken from the
set Jech that is described in Theorem II.A.1 and Section III.1C. None of the conclusions
in [20; 21; 22] are compromised if the almost complex structure from Jech is chosen
near  so that the metric obeys the constraints in (3-6). To be sure, the chosen almost
complex structure must have certain genericity properties to invoke the propositions and
theorems in these papers. These genericity results are used to preclude the existence of
certain pseudoholomorphic subvarieties in R�Y . An almost complex structure giving
a metric near  that obeys (3-6) is not generic. Even so, the subvarieties that must be
excluded can be excluded using a suitably almost generic almost complex structure
from the subset described in Jech that give a metric that is described by (3-6) near  .
What follows is the key observation that is used to prove this: the curves to be excluded
have image via the projection from R� Y that intersects the complement of small
radius neighborhoods of  . A detailed argument for the existence of the desired almost
complex structures from Jech amounts to a relatively straightforward application of
the Sard–Smale theorem along the lines used in the proof of Theorem 4.1 in [12].
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It follows from Lemma IV.2.5 and Proposition IV.2.7 that the metric just described
together with w define a c –tight data set on Y for a suitably large choice for c .

Part 3 This part of the subsection considers the case when YZ is some k 2 f0; : : : ; Gg

version of Yk . As noted previously, the manifold Yk is obtained from M by attaching
the handle H0 in the manner that is described in Part 2 of Section II.1A and attaching
k of the handles from the set fHpgp2ƒ as described in Part 1 of Section II.1A. Part 3
in Section II.1A defines a subset Mı �M and the constructions of both Y and Yk
identify Mı as a subset of both. The curve  .z0/ that was introduced above in Part 2
sits in the latter part of Y and so it can be viewed using this identification as a curve
in Yk . Use this Yk incarnation of  .z0/ for the curve  .

The proposition that follows says what is needed with regards to the 2–form w and
the metric to use on Yk .

Proposition 3.9 Fix k 2 f0; : : : ; Gg. There exists a nonempty set of Riemannian
metrics on Yk with the following two properties: Let w denote the metric’s associated
harmonic 2–form with de Rham cohomology class that of c1.det S/. Then w has
nondegenerate zeros. Moreover , the metric and w obey the conditions in Section 3.2.

This proposition is proved in Section 9.2.

The set of metrics in Proposition 3.9 is denoted by Met in what follows. Take the
metric on Yk from this set and take w to be the associated harmonic 2–form with de
Rham cohomology class that of c1.det S/. Proposition 3.7 asserts that the resulting
data set is c –tight for a suitably large choice of c .

Part 4 This part of the subsection discusses the case when YZ is the disjoint union
of some k 2 0; : : : ; G� 1 version of Yk and S1 �S2 . The metric on Y0 comes from
Proposition 3.9’s set Met , and the 2–form w on Yk is the corresponding harmonic
2–form with de Rham cohomology class that of c1.det S/. Any smooth metric can be
chosen for a given S1 �S2 component. The class c1.det S/ is taken equal to zero on
each S1 � S2 component and this understood, the 2–form w is identically zero on
each such component.

What is said in Proposition 3.7 implies that the resulting data set is c –tight for a suitably
large choice of c .
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3.7 Cobordisms with YC and Y� either Y , M t .S 1 � S 2/, from fYkgk ,
or from fYk t .S 1 �S 2/gk

The first proposition concerns the product cobordisms when YZ is one of the manifolds
from the set Y , M t .S1 � S2/, fYkgkD0;:::;G or fYk t .S1 � S2/gkD0;:::;G�1 . The
subsequent propositions concern certain cobordisms of the sort described in Section 3.3
with YC and Y� as follows:

� One is Y and the other is YG .

� One is Yk and the other is Yk�1 t .S1 �S2/ for some k 2 f1; : : : ; Gg.

� One is Y0 and the other is M t .S1 �S2/.

These propositions assume implicitly that the metric and version of w on these mani-
folds are those supplied by the relevant part of Section 3.5. In particular, the metric
and w on M t .S1 �S2/ is described by Part 1 of Section 3.5, and this data on Y is
described in Part 2 of Section 3.5. Meanwhile, the metric on the relevant k 2 f0; : : : ; Gg

version of Yk is from the set Met and w is the associated harmonic 2–form with de
Rham cohomology class that of c1.det S/.

Proposition 3.10 Let YZ denote either M t .S1�S2/ or Y or some k 2 f0; : : : ; Gg

version of Yk with the 2–form w and metric as described in the preceding paragraph.
Given { � 0, there exists � > � with the following significance: Fix any r> � and a
1–form � 2� with either P –norm less than e�r2 or P –norm less than 1 but vanishing
on H0 [U . Use this data with the metric and w to define the product cobordism
X D R� YZ as prescribed in Section 2.1. Suppose that c� and cC are solutions to
the .r; �/ version of (2-5) on YZ with jfs.cC/� fs.c�/j � { , and suppose that d is an
instanton solution to (2-10) on X with s!�1 limit equal to c� and s!1 limit
equal to cC . Then X.cC/� X.c�/.

Proof This follows directly from Propositions 3.4 and 3.7 given what is said in
Section 3.5 about w and the metric.

The next proposition describes cobordisms between Y0 and M t .S1�S2/ of the sort
that obey the conditions in Section 3.3.

Proposition 3.11 Take the metric on M t .S1 �S2/ and harmonic 2–form w to be
as described in Part 1 of Section 3.5. The metric on M t .S1 � S2/ determines a
corresponding set of metrics in the Y0 version of Met . Choose a metric from this set
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and take w on Y0 to be the associated harmonic 2–form with de Rham class c1.det S/.
Denote one of Y0 or M t .S1 � S2/ by Y� and the other by YC . There exists a
cobordism that obeys the conditions in Section 3.3 and the conditions in the list below.
This list uses X to denote the cobordism manifold :

� The function s on X has exactly one critical point. This critical point has index
3 when Y� D Y0 and index 1 when Y� DM t .S1 �S2/.

� There is a metric on X with an associated self-dual 2–form that are .c; r /–
compatible if L and c are sufficiently large and if r > � .

This proposition is proved in Section 9.4.

The next proposition uses C to denote the cylinder in Proposition 3.11’s cobordism
that is described by the first bullet of (3-11). The proposition also reintroduces the
notation in (3-9).

Proposition 3.12 Take w and the metric on Y0 and on M t .S1 � S2/ to be as
described in Proposition 3.11. Denote one of Y0 or M t.S1�S2/ by Y� and the other
by YC . Take the cobordism space X, the metric on X, and the associated self-dual
2–form wX to be as described by Proposition 3.11. Given k � 0, there exists � > �
with the following significance: Fix r > � and 1–forms �� and �C from the Y�
and YC versions of � with either P –norm less than e�r2 or with P –norm less than 1
but vanishing on the Y� and YC versions of H0 [ U . Let d D .A; / denote an
instanton solution to the resulting version of (2-10) with {dC � k . Then i

R
C F yA � 0.

Proof The proposition follows directly from Propositions 3.5, 3.8 and 3.11 given what
is said in Section 3.5 about the respective Y0 and M t .S1�S2/ metrics and versions
of w .

The next set of propositions are analogs of Propositions 3.11 and 3.12 in the case
when one of Y� and YC is some k 2 f1; : : : ; Gg version of Yk and the other is
Yk�1 t .S

1 � S2/, or when one is Y and the other is YG . The propositions that
follow assume that c1.det S/ on each k 2 f0; : : : ; Gg version of Yk vanishes on the
cross-sectional spheres in any p 2ƒ version of Hp and that it has pairing 2 with the
cross-sectional spheres in H0 . This class is also assumed to be zero on the S1 �S2

component of any k 2 f0; : : : ; Gg version of Yk�1 t .S1 � S2/. Meanwhile, its
restriction to the H2.M IZ/–summand from the associated Mayer–Vietoris sequence
for the various k 2 f0; : : : ; Gg versions of H2.YkIZ/ is assumed to be independent
of k .
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Proposition 3.13 There exists, for each k 2 f0; : : : ; Gg, a subset to be denoted by
Met.Yk/ in the Yk version of Met with the following significance: Let Met.Y0/
denote the subset from Proposition 3.11. For each k 2 f1; : : : ; Gg, take a metric
from an open subset of Met.Yk�1/ and a metric on S1 � S2 to define a metric on
Yk�1t .S

1�S2/. Take w on Yk�1t .S1�S2/ to be the associated harmonic 2–form
with de Rham class c1.det S/. The chosen metric determines a corresponding subset
of metrics Met.Yk/�Met . Take a metric from the latter subset and take w to be the
associated harmonic 2–form with de Rham class c1.det S/. Take Y� to be one of Yk
and Yk�1 t .S

1 � S2/, and take YC to be the other. There exists a cobordism that
obeys the conditions in Section 3.3 and the conditions listed below. This list uses X to
denote the cobordism manifold :

� The function s on X has precisely one critical point. This critical point has
index 3 when YC has the S1 �S2 component and it has index 1 when Y� has
the S1 �S2 component.

� There is a metric on X with an associated self-dual 2–form that are .c; r /–
compatible if L, c and r > � .

This proposition is proved in Section 9.5.

The next proposition considers the case when one of Y� and YC is Y and the other
is YG .

Proposition 3.14 Take w and the metric on Y to be as described in the opening
paragraphs of this subsection. Take the metric on YG from a certain nonempty subset of
Met.YG/ and take w on YG to be the associated harmonic 2–form with de Rham class
that of c1.det S/. Take Y� to be one of Y and YG and take YC to be the other. There
exists a cobordism that obeys the conditions in Section 3.2 and the conditions listed
below. This list uses X to denote the cobordism manifold :

� The function s on X has no critical points.

� There is a metric on X with an associated self-dual 2–form that are .c; r /–
compatible if L, c and r > � .

The proof of Proposition 3.14 is in Section 9.7.

The upcoming proposition uses C to denote the cylinder in Propositions 3.13 and 3.14’s
cobordism that is described by the first bullet of (3-11). Notation from (3-9) is also
used.
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Proposition 3.15 Let X denote one of the cobordism manifolds that are described
in Propositions 3.13 and 3.14 with c1.det S/ and the 2–form and metrics on Y� , YC
and X as described therein. Given { � 0, there exists � > � with the following
property: Fix r > � and 1–forms �� and �C from the Y� and YC versions of �
with either P–norm less than e�r2 or with P–norm less than 1 but vanishing on the
Y� and YC versions of H0[U . Let dD .A; / denote an instanton solution to the
resulting version of (2-10) with {dC � { . Then i

R
C F yA � 0.

Proof The proposition follows directly from Propositions 3.5, 3.8, 3.13 and 3.14 given
what is said in Section 3.5.

3.8 Filtered Floer homologies and filtration-preserving chain maps

This subsection is divided into two parts. In the first part, we associate to each
triple .YZ ; w; / described in Section 3.2 a system of filtered monopole Floer ho-
mologies HMı.YZ ; rwIƒ / for ı D �;1;C;^ and r> � , in the manner described
in Section 3.1. Recall the constraint on the cohomology class Œw� from Part 3 of
Section 3.2. Together with the first bullet of (3-5), this implies that CM�.YZ ; rwIƒ /
is associated with a negative-monotone, nonbalanced perturbation. For reasons that will
become clear in a moment, we use CMı.YZ ; hwiIƒ / to denote CM�.YZ ; rwIƒ /
for r � � and similarly for its homology. (The notation hwi stands for the ray
RCŒw� � H 2.YZ IR/.) This includes, as special cases, the triple .M;w; / in [23]
(M is denoted by Y0 in this article), and the triple .Y; w;  .z0// in Section II.1A.

In the second part, a filtration-preserving chain map from CM�.Y�; hw�iIƒ�/ to
CM�.YC; hwCiIƒC/ is associated to each triple .X;$X ; C / described in Section 3.3.
To explain the notation, X is a cobordism from the 3–manifold Y� to YC , while $X
is a self-dual 2–form on X related to w� and wC as prescribed by (2-11). What is
denoted by C signifies an embedded surface in X, with ends � � Y� and C � YC ;
see the second bullet of (3-11).

Part 1 To accomplish this task, begin by introducing the (partially defined) integral
1–cocycle on B� .YZ/ defining ƒ . This local system associates each c 2 Zw;r the
group algebra KŒZ� D KŒU; U�1�. To each d 2M1.c�; cC/ it associates U n.d/ 2
End.KŒU; U�1�/, where n.d/D X.cC/� X.c�/. Here, X is the “modified holonomy
function” given in (3-10). Lemma 3.2 asserts that n.d/2Z for c�; cC2Zw;r . Following
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the recipe in Section 3.1, we then set .CM1; @1/ to be the monopole Floer complex
with twisted coefficients:

CM1 DKŒU; U�1�.Zw;r/;

@1c� D
X

cC2Zw;r

X
d2M1.c�;cC/=R

sign.d/U n.d/cC for c� 2 Zw;r:

The monotonicity condition guarantees that the sum here is finite. The sign.d/ 2 f˙1g
in the preceding expression is assigned according to the orientation convention laid out
in [17].

One may regard CM1 as a chain complex over K, generated by yZw;r D Zw;r �Z.
The generating set yZw;r lies in zB� D C�=G , a Z–covering of B� . Here, G � G
consists of smooth maps uW YZ ! S1 , with deg.uj / D 0. Multiplication by U n

then corresponds to a deck transformation on this Z–covering, and the condition on
c1.det S/ set forth in Part 3 of Section 3.2 then implies that degU D�2. The grading
set of yZw;r is an affine space over Z=cZZ, where cZ 2 2Z is the gcd of the values of
c1.det S/ on H2.ZIZ/ according to the splitting (3-4).

Remark 3.16 (a) Here, we use the same notation U for the map on monopole Floer
complexes described in Part 2 of Section 2.4 and deck transformation here. This is
because for the kind of YZ considered in this article, they turn out identical by the
arguments for the last bullet of Proposition IV.7.6.

(b) The way the monopole Floer chain complex with local coefficients is graded follows
some definitions in the literature, eg what is called a Floer–Novikov complex [24].
The book [17] does not seem to contain an explicit discussion on the grading of Floer
complex with local coefficients.

Suppose that .YZ ; w/ define c –tight data for c > 1 (see Definition 3.6). Take X to
be the product cobordism R� YZ , wX D wC ds ^ �w and C D R�  � X. Let
d 2M.c�; cC/ be as in Proposition 3.5. In this case, i

R
C F yA D 2�.X.cC/� X.c�//

and Proposition 3.5 asserts that one has n.d/� 0. Thus,

CM� DK.Z �Z�0/� CM1

is a subcomplex of KŒZ�0�DKŒU �–modules. One may then introduce

CMC D CM1=CM�; bCMD CM�=UCM�:
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The resulting short exact sequences

(3-18) 0! CM�! CM1! CMC! 0 and 0! UCM�! CM�!bCM! 0

induce the fundamental exact sequences on the homologies. As the
V�

H1.YZ/=Tors–
action on the monopole Floer complexes commute with U, the exact sequences above
preserve the A�–module structure.

In Section 3.5, the assumption that .YZ ; w/ is c –tight is verified for the particular
manifolds listed therein. In particular:

(3-19) � When YZ D Y and its associated s, w ,  and metric are as in Part 2 of
Section 3.5,

HMı.Y; hwiIƒ /D Hı.Y /D HıSW

in the notation of [19; 22].
� When YZ D Yk , k 2 f0; : : : ; Gg and its associated s, w ,  and metric

are in Part 3 of Section 3.5, the corresponding HMı.YZ ; hwiIƒ / are
instrumental in the proof for Theorem 1.1. Recalling that Y0 and its
associated s, w ,  and metric are respectively what was denoted by M ,
s, w and  in [23], we observe that

HMı.Y0; hwiIƒ /D HMTı;

introduced in [23].

Note that CMı.YZ ; hwiIƒ / and HMı.YZ ; hwiIƒ / introduced above implicitly
depend on r and .T;S/. According to the convention set forth in Section 1.3, this
is permissible if there are chain homotopies between the monopole Floer complexes
associated with different parameters preserving the A�–module structure. This is
justified by combining the arguments proving Proposition IV.1.4 with what is said in
the upcoming Part 2.

Part 2 We now consider chain maps induced by (nonproduct) cobordisms X described
in Section 3.3. To begin, we introduce an X –morphism from ƒ� to ƒC . (See
Definition 23.3.1 in [17] for “X –morphism”.) This is done in a way similar to the
definition of �C in equation (23.8) in [17]. In [17], a “cobordism” from Y� to YC
refers to a compact 4–manifold with boundary YC t .�Y�/. This corresponds to the
compact part of our X, denoted by Xc D s�1.Œ�Ltor; Ltor�/. The surface C \Xc plays
the role of the singular 2–chain � in (23.8) of [17]. It has boundary C � � , with
C '  ' � . Given c� 2 Zw�;r.Y�/ and cC 2 ZwC;r.YC/, let d denote an element
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in B� .X/ with s!�1 limit c� and s!1 limit cC . Then �C is an isomorphism
from ��.c�/ ' R to �C.cC/ ' R given by multiplication by e.i=2�/

R
C FA . The

analog of �C in our setting, denoted by ƒC below, is given by an homomorphism
from ƒ�.c�/'KŒU; U�1� to ƒC.cC/'KŒU; U�1� for each pair c� and cC . This
is given by multiplication with U n.d/ , where

(3-20) n.d/D
i

2�

Z
C

F yA D XC.cC/� X�.c�/;

the rightmost equality being a consequence of Stokes’ theorem. This is again an integer
according to Lemma 3.2. With ƒC in place, given a k–cochain u 2 Ck.B� .X/IK/ in
the notation of Section 2.4, we define the map

m1Œu�.X; hwX iIƒC /W CM1.Y�/DKŒU; U�1�.Zw�;r/

! CM1.YC/DKŒU; U�1�.ZwC;r/
by the rule

Zw�;r.Y�/ 3 c� 7!
X

cC2ZwC;r.YC/

X
i

hu;Mk.X; c�; cC/iU
n.di /cC;

where i runs through each connected component of Mk.X; c�; cC/ and, for every i ,
di is an element in the corresponding connected component. In order for the sum
on the right-hand side to be well defined, we assume that H 2.X; Y�/ D 0 and wX
satisfies (2-22).

To proceed, suppose .Y�; w�/ and .YC; wC/ are c –tight and consider

C.X; hwX iIƒC /jCM�.Y�/:

Suppose furthermore that .X;wX / satisfies the conditions in Propositions 3.5 and 3.8.
By these propositions, the integers n.di / in (3-20) are nonnegative, implying that the
image of C.X; hwX iIƒC /jCM�.Y�/ under m1 lies in CM�.YC/. Use

m�Œu�.X; hwX iIƒC /W CM�.Y�/! CM�.YC/

to denote this map. It is straightforward to see that both m1 and m� are chain maps,
given that CM1 is a variant of monopole Floer complexes, and the nonnegativity
of the integers n.d/ appearing in the formulas for @1 and m1 . These then induce
homomorphisms between the respective homologies,

HM�.X; hwX iIƒC /W HMı.Y�; hw�iIƒ�/! HMı.YC; hwCiIƒC/

for ı D �;1. Like those in Part 1, these maps preserve the A�–module structure.
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4 Some homological algebra

As mentioned in Section 1, the purpose of this section is to review the algebraic
background for the upcoming Proposition 5.9. The latter is used to relate the formula
for monopole Floer homology of a connected sum, given in Proposition 6.11 below,
in terms of the monopole Floer homology with balanced perturbation that appears in
Theorems 1.1 and 1.4. This computation turns out to be a simplest manifestation of the
so-called “Koszul duality”, well known in certain circles. For a sampling of literature
on this subject, see eg [4; 15; 10]. The variant most relevant to this article is discussed
in [10], which relates the ordinary chain complex of an S1–space, equipped with an
H�.S

1/–module structure capturing the S1–action, with the S1–equivariant chain
complexes of the same space, which are naturally endowed with H�.BS1/–module
structures. We need however only a small portion of the full machinery in [10]. Thus,
in this section we give a self-contained though elementary exposition of the relevant
part of this story, tailored to our needs.

4.1 Terminology and conventions

By a modules over H�.BS1/ we mean a chain complex with a module structure
over KŒu�, where u acts as a chain map of degree �2. The prime examples of
such modules in this article are the monopole Floer complexes. In parallel, a module
over H�.S1/ stands for a chain complex with a module structure over KŒy�, where
y acts as a degree 1 chain map. An example that appears later is the chain com-
plex to compute the monopole Floer homology of a connected sum; see (6-13) in
Proposition 6.7. Meanwhile, a graded homology module H� will be viewed as a chain
complex with zero differentials. We use capital letters U and Y to denote the chain
maps corresponding to the action of u and y .

Definition 4.1 A morphism from one module over H�.BS1/ to another is a K–chain
map which commutes with U –actions. Morphisms between H�.S1/–modules are
defined similarly, with Y replacing U. We shall also often encounter a weaker notion:
a p–morphism between two H�.BS1/–modules is a K–chain map which commutes
with U –actions up to K–chain homotopy.

4.2 From H �.BS 1/–modules to H�.S 1/–modules

Given a module .C; @C / over H�.BS1/, we define the module SU .C / over H�.S1/D
KŒy� as follows:
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(4-1) .SU .C /; SU .@C //D .C ˝KŒy�; @C ˝ | CU ˝y/;

where the homomorphism | W KŒy�!KŒy� is defined by

|.aC by/D a� by for a; b 2K;

and the y–action is simply the multiplication 1˝ y (| was denoted by � in [23];
compare equation (5.1) therein).

To see that SU .C / is indeed a chain complex, note that the condition SU .@C /2 D 0 is
equivalent to the pair of identities @2C D 0, and Œ@C ; U �D 0.

Lemma 4.2 A p–morphism ˆ between two H�.BS1/–modules .C.1/; @.1// and
.C.2/; @.2// induces an H�.S1/–module morphism SU .ˆ/ between SU.1/.C.1// and
SU.2/.C.2//, where U.1/ and U.2/ denote the u–action on C.1/ and C.2/ , respectively.
Furthermore:

� SU .ˆ/ is injective if ˆ is injective , and it is surjective if ˆ is surjective.

� Let ˆ0 be another p–morphism of H�.BS1/–modules from .C.1/; @.1// to
.C.2/; @.2//. Then ˆCˆ0 is a p–morphism as well , and

SU .ˆCˆ
0/D SU .ˆ/CSU .ˆ

0/:

� Let ‰ be a p–morphism of H�.BS1/–modules from .C.2/;@.2// to .C.3/;@.3//.
Then ‰ ıˆ is a p–morphism as well , and

(4-2) SU .‰ ıˆ/D SU .‰/ ıSU .ˆ/:

Proof As a p–morphism, ˆ satisfies both

(4-3) ˆ@.1/�.�1/
deg.ˆ/@.2/ˆD 0; ˆU.1/�U.2/ˆDKˆ@.1/C.�1/

deg.ˆ/@.2/Kˆ

for a K–linear homomorphism Kˆ . This is equivalent to the identity

(4-4) SU .ˆ/SU .@.1//� .�1/
deg.ˆ/SU .@.2//SU .ˆ/D 0;

where SU .ˆ/W C.1/˝KŒy�! C.2/˝KŒy� is defined as

(4-5) SU .ˆ/Dˆ˝ |
deg.ˆ/

CKˆ˝y:

This verifies that SU .ˆ/ is a chain map. Moreover, since the y–action on SU .C.1//
and SU .C.2// is multiplication by 1˝ y , it is immediate that SU .ˆ/ commutes with
the y–actions on both sides. The claim that SU preserves injectivity and surjectivity
can be checked directly from the definition of SU .ˆ/.
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Since the construction of SU .ˆ/ is linear, the second item in the statement of the
lemma is obvious.

To verify the third bullet about the composition of p–morphisms, let

SU .‰/D‰˝ |
deg.‰/

CK‰˝y:

Then (4-2) is straightforward to verify, given that

K‰ıˆ DK‰ ıˆC .�1/
deg.‰/‰ ıKˆ:

The fact that ‰ ıˆ is a p–morphism follows directly from (4-4) and its analog for ‰ .

The first bullet may be directly verified after writing out the definition of SU .ˆ/
explicitly. More is said in the proof of Lemma 4.7 below.

Remark 4.3 Given a p–morphism ˆ, the H�.S1/–morphism SU .ˆ/ given in (4-5)
apparently depends on the choice of the degree .degˆC 1/ map Kˆ . By (4-3), two
different choices of Kˆ , say Kˆ and K 0ˆ , differ by a chain map:

Œ@C ; Kˆ�K
0
ˆ� WD .Kˆ�K

0
ˆ/@.1/C .�1/

deg.ˆ/@.2/.Kˆ�K
0
ˆ/D 0:

We say that Kˆ and K 0ˆ are homotopic if there exists a degree degˆ linear map
ZˆW C.1/! C.2/ such that

Kˆ�K
0
ˆ D Œ@C ; Zˆ� WD @.2/Zˆ�Zˆ.�1/

deg.ˆ/@.1/:

Let SU .ˆ/ and SU .ˆ/0, respectively, denote the versions of SU .ˆ/ defined using Kˆ
and K 0ˆ . They are chain homotopic when Kˆ and K 0ˆ are homotopic:

(4-6) SU .ˆ/�SU .ˆ/
0
D .Œ@C ; Zˆ�/˝y D ŒSU .@C /;�Zˆ˝y�:

(Keep in mind that in our notation, Œ � ; � � stands for a commutator in a graded sense.)
Thus, for a given ˆ, the homology H�.SU .ˆ/IK/ depends only on the (relative)
homotopy class of Kˆ .

Definition 4.4 Two H�.BS1/–modules .C.1/; @.1// and .C.2/; @.2// are said to be
p–homotopic if there exist p–morphisms ˆW C.1/! C.2/ and ‰W C.2/! C.1/ , and
H1W C.1/! C.1/ and H2W C.2/! C.2/ , such that

‰ ıˆ� Id.1/ D Œ@.1/;H1�; ˆ ı‰� Id.2/ D Œ@.2/;H2�:

They are said to be homotopic if ˆ, ‰ , H1 and H2 are morphisms. The notion of
two H�.S1/–modules being homotopic is defined similarly.
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Lemma 4.5 Suppose two H�.BS1/–modules .C.1/; @.1// and .C.2/; @.2// are p–
homotopic via p–morphisms ˆW C.1/ ! C.2/ and ‰W C.2/ ! C.1/ as above. Then
the H�.S1/–modules SU .C.1/ ) and SU .C.2// are homotopic via the maps SU .ˆ/
and SU .‰/.

Proof By assumption, there exist H1 and H2 such that ˆ and ‰ satisfy

‰ ıˆ� Id.1/ D Œ@.1/;H1�; ˆ ı‰� Id.2/ D Œ@.2/;H2�:

We need to verify the identities

SU .‰/ ıSU .ˆ/� Id.1/ D ŒSU .@.1//; SU .H1/�; ŒSU .ˆ/; Y �D 0;

SU .ˆ/ ıSU .‰/� Id.2/ D ŒSU .@.2//; SU .H2/�; ŒSU .‰/; Y �D 0:

It suffices to verify the first and the third identities, since the second and the fourth are
entirely parallel.

To verify the first identity, use (4-2) and the fact that ‰ ıˆ� Id.1/ D Œ@.1/;H1� to
reduce it to

SU .Id.1//D Id:

This holds by taking ‰ D Id.1/ and K‰ D 0 in (4-5).

To verify the third identity, simply plug in the definition of SU .ˆ/ and Y D I ˝y .

4.3 From H�.S
1/–modules to H �.BS 1/–modules

First, introduce the KŒu�–modules

(4-7)
V � WD uKŒu�; V1 WDKŒu; u�1�;

V C WDKŒu; u�1�=uKŒu�; V ^ WDKŒu�=uKŒu�:

These modules by definition fit into the short exact sequences

0! V �
iV,�! V1! V C! 0;(4-8)

0! V � u
�! V �! V ^! 0:(4-9)

We shall frequently view these four modules as a system, and write them collectively
as V ı . The same convention applies to the various systems of modules we construct
out of these four below.

Geometry & Topology, Volume 24 (2020)
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Definition 4.6 [13; 23] Given a module .C; @C / over H�.S1/, we define the fol-
lowing system of modules over H�.BS1/DKŒu�:

(4-10) .EıY .C /; EY .@C // WD .C ˝V
ı; @C ˝ 1CY ˝u/ for ı D �;1;C;^;

where the u–action is the multiplication 1˝u.

The fact that EY .@C /2 D 0 again follows directly from the definition of H�.S1/–
modules: @2C D 0, ŒY; @C �D 0 and Y 2 D 0. By taking tensor product of (4-8)–(4-9)
with C, one has the corresponding short exact sequences of KŒu�–modules

0!E�Y .C /
Id˝iV
���!E1Y .C /!ECY .C /! 0;(4-11)

0!E�Y .C /
Id˝u
���!E�Y .C /!E^Y .C /! 0:(4-12)

It is also straightforward to verify that the maps in the above exact sequences commute
with EY .@C /, and therefore they induce long exact sequences of H�.BS1/–modules
associated to .C; @C /,

� � �!H�.E
�
Y .C //

iV�
�!H�.E

1
Y .C //!H�.E

C

Y .C //
ıV�
�!H��1.E

�
Y .C //!� � �;(4-13)

� � �!H�.E
�
Y .C //

u
�!H�.E

�
Y .C //!H�.E

^
Y .C //!H��1.E

�
Y .C //!� � �:(4-14)

We call (4-13)–(4-14) the (first and second) fundamental exact sequences for the
H�.S

1/–module C. For convenience of later reference, we denote the short exact se-
quences of H�.BS1/–modules (4-11) and (4-12) by EY .C / and EY .C /, respectively.
Correspondingly, the long exact sequences (4-13) and (4-14) are denoted by H.EY .C //
and H.EY .C //. It is straightforward to verify the assertion in the following lemma
and so we leave it to the reader to check that:

Lemma 4.7 A morphism � between H�.S1/–modules .C.1/; @.1// and .C.2/; @.2//
induces a system of H�.BS1/–module morphisms

Eı.�/W EıY.1/.C.1//!EıY.2/.C.2//; � 7! � ı 1;

for ı D �;1;C;^, where Y.1/ and Y.2/ denote the y–actions on .C.1/; @.1// and
.C.2/; @.2//, respectively. Moreover:

� Eı.�/ is injective if � is injective; it is surjective if � is surjective.

� Let �0 be another morphism of H�.S1/–modules between .C.1/; @.1// and
.C.2/; @.2//. Then �C�0 is an H�.S1/–morphism as well , and

Eı.�C�0/DEı.�/CEı.�0/:
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� Let  be another morphism of H�.S1/–modules between .C.2/; @.2// and
.C.3/; @.3//. Then  ı� is an H�.S1/–morphism as well , and

(4-15) Eı. ı�/DEı. / ıEı.�/:

� The system of morphisms Eı.�/ combine to define morphisms of short exact
sequences of H�.BS1/–modules

E.�/W EY .C.1//! EY .C.2// and E.�/W EY .C.1//!EY .C.2//:

Correspondingly, their induced maps on homologies H�.EY .�// combine to
define morphisms of long exact sequences of H�.BS1/–modules

H.EY .�//W H.EY .C.1///!H.EY .C.2///;

H.EY .�//W H.EY .C.1///!H.EY .C.2///:

Proof The proofs are straightforward; thus we shall say no more than making the
following remarks: Both EıY and SU preserve injectivity and surjectivity due to the
same reason, namely they can be written in polynomial form (in u and y , respectively,
which defines a filtration), where their 0th order term takes the form of a tensor product
of the original morphism and an automorphism. This in turn implies that both of them
takes short exact sequences to short exact sequences.

Lemma 4.8 Let C.1/ and C.2/ denote homotopic H�.S1/–modules. Then EıY .C.1//
and EıY .C.2// are homotopic H�.BS1/–modules.

Proof By assumption, there exist morphisms ˆW C.1/! C.2/ and ‰W C.2/! C.1/ ,
and H1W C.1/! C.1/ and H2W C.2/! C.2/ , such that

(4-16) ‰ ıˆ� Id.1/ D Œ@.1/;H1�; ˆ ı‰� Id.2/ D Œ@.2/;H2�:

Lemma 4.7 claims that Eı.ˆ/W EıY .C.1// ! EıY .C.2// and Eı.‰/W EıY .C.2// !

EıY .C.1// are systems of morphisms. Meanwhile, the desired identities are

(4-17)
Eı.‰/ ıEı.ˆ/� Id.1/ D ŒEY .@.1//; E

ı.H1/�;

Eı.ˆ/ ıEı.‰/� Id.2/ D ŒEY .@.2//; E
ı.H2/�:

We shall only verify the first identity, since the second is similar. For this purpose,
apply Eı to the first identity in (4-16), then apply Lemma 4.7 and subtract the first
line of (4-17) to the resulting identity. This leads to

Eı.Id.1//� IdD ŒY;H1�˝u:

This is true because of the definition of Eı and the fact that H1 is a morphism.
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4.4 Koszul duality

The functors SU and E� may be viewed as inverses of each other in the following
sense:

Proposition 4.9 (a) Let .C; @C / be an H�.BS1/–module. Then there is a system
of isomorphisms of H�.BS1/–modules

(4-18) H�.E
ı
Y SU .C //'H�.C ˝KŒu� V

ı/:

Moreover , these isomorphisms have the following naturality properties:

(i) They are natural with respect to p–morphisms of H�.BS1/–modules.

(ii) They combine to define isomorphisms of long exact sequences of H�.BS1/–
modules

H.EY SU .C //'H.C ˝KŒu� V /; H.EY SU .C //'H.C ˝KŒu� V /:

Here , H.C˝KŒu�V / and H.C˝KŒu�V / respectively denote the long exact
sequence induced by the short exact sequences of H�.BS1/–modules ,

0! C ˝KŒu� V
�
! C ˝KŒu� V

1
! C ˝KŒu� V

C
! 0;

0! C ˝KŒu� V
� 1˝u
��! C ˝KŒu� V

�
! C ˝KŒu� V

^
! 0:

(b) Let .C; @C / be an H�.S1/–module. Then there is an isomorphism of H�.S1/–
modules

H�.SUE
�
Y .C //'H�.C /:

Proof (a) Written out explicitly,

EıY SU .C /DC ˝KŒy�˝V ı; EY SU .@C /D @C ˝ |˝1CU ˝y˝1C1˝y˝u:

View this as a filtered complex by the total degree in the C ˝ V ı factor. Then the
E1–term of the associated spectral sequence is simply

(4-19) C ˝Kfyg˝V ı=
�
.U ˝y˝1C1˝y˝u/.C ˝Kf1g˝V ı/

�
'C ˝KŒu�V

ı;

with differential d1 given by �@C . This spectral sequence degenerates at E2 , and we
have H�.EıY SU .C //'H�.C ˝KŒu�V

ı/, as claimed. As the u–action on EıY SU .C /
is 1˝1˝u and the u–action on C is U, the quotient in (4-19) shows that the isomor-
phism preserves the KŒu�–module structure. Property (ii) also follows immediately
from this computation.
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On the other hand, given a p–morphism ˆ between H�.BS1/–modules .C.1/; @.1//
and .C.2/; @.2//, by Lemmas 4.2 and 4.7 there is a corresponding system of morphisms
of H�.BS1/–modules EıY SU .ˆ/. The naturality property (i) follows from the fact
that these morphisms preserve the filtration.

(b) Written out explicitly,

SUE
�
Y .C /DC˝uKŒu�˝KŒy�; SUE

�
Y .@C /D @C˝1˝�CY ˝u˝�C1˝u˝y:

Filtrate by the total degree of the factor C ˝uKŒu� as in the previous part. Then the
E1–term is

C ˝uKŒu�˝Rfyg=
�
.1˝u˝y/.C ˝uKŒu�˝Rf1g/

�
' C;

on which d1 acts as �@C . The spectral sequence again degenerates at E2 , yielding
the claimed isomorphism H�.SUE

�
Y .C //'H�.C /: To see that the module structures

agree, note that a cycle in the E1–term given by an element �z1 2 C with @C z1 D 0
corresponds to a cycle in SUE�Y .C / of the form Z0˝ 1C z1˝u˝ y , where Z0 2
C ˝uKŒu� satisfies

�..Y ˝u/Z0/˝ 1C ..1˝u/Z0/˝y � .Yz1/˝u
2
˝y D 0:

In other words, Z0 D�.Yz1/˝u, and the cycle in SUE�Y .C / has the form

�.Yz1/˝u˝ 1C z1˝u˝y:

The y–action 1˝ 1˝ y takes this element to �.Yz1/˝ u˝ y , while the element
corresponding to �Yz12C in the E1–term is �.Yz1/˝u˝y as well, since Y 2D0.

Remark 4.10 (a) Spelled out explicitly, (4-18) says that H�.E�Y SU .C //'H�.C /,
and H�.E

1
Y SU .C // is the localization of H�.C / as a KŒu�–module. On

the other hand, note that since V ^ D KŒu�=uKŒu�, E^SU .@C / reduces to
SU .@C /˝ 1, and therefore H�.E^Y SU .C //'H�.SU .C //.

(b) The constructions E�Y , E1Y and ECY above are directly copied from J Jones’s
formulation of the “co-Borel”, “Tate” and Borel (the usual) versions of equivariant
homologies [13]. It is proved in [10] that SU and EY induce isomorphisms of
derived categories.

Remark 4.11 As stated, the general H�.BS1/–module .C; @C / in the present section
is assumed to be Z–graded. For our application however, results in this section are
typically applied to monopole chain complexes VC . These are only relatively graded,
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and the grading group is Z only when c1.s/ is torsion, in other cases it is Z=cs , where
cs 2 2Z. These chain complexes VC are also equipped with a canonical absolute Z=2–
grading. (See [17].) Nevertheless, we observe that such a monopole chain complex VC
can be alternatively interpreted as a Z–graded chain complex .C; @/ with periodicity
cs 2 2Z, namely .Ck; @k/D .CkCcs ; @kCcs/ for all k 2 Z. (For prior appearance of
such interpretation, see eg [24].)

To do this, let VC be a certain monopole chain complex associated to the Spinc –
manifold .M; s/, and let Z � B WD C� .M; s/=C1.M;U.1// denote the generating
set of VC . Denote the coefficient ring of VC by K. Recall that H 1.BIZ/'H 2.M IZ/,
and therefore the class c1.s/ 2 H 2.M IZ/ defines a Z–covering � W zB ! B . Let
zZ WD ��1Z , and consider the chain complex .C; @C / with

C WDK.zZ/ and hzc1; @Czc2i WD
X
zd

sign.zd/

for any pair zc1;zc2 2 zZ . Regarding elements in M1.c1; c2/=R as paths in B from c1
to c2 , zd in the sum above stands for any lift of some d 2M1.c1; c2/=R to zB ending
in zc1 and zc2 , where c� WD �zc� and sign.zd/ WD sign.d/. Since the spectral flow on
B is controlled by c1.s/, the relative grading of this complex .C; @C /, defined by
spectral flow along zd, is Z–valued. Fix a zc0 2 zZ . Then c0D �zc0 is either even or odd
according to the canonical absolute Z=2–grading. Set gr.zc0/D 0 if c0 is even, and set
gr.zc0/D 1 if c0 is odd. Together with the relative Z–grading gr. � ; � / on .C; @C /, we
have an absolute Z–grading by setting

gr.zc/ WD gr.zc0/C gr.zc0;zc/

for any zc 2 zZ . (If zZ D∅, yC is trivial.) With this definition, we then have Ck D VCk0
for any pair k 2 Z and k0 2 Z=cs with k D k0 mod cs . Moreover, given zc1 2 zZ with
gr.zc1/Dk and a d2M1.c1; c2/=R, there is a unique lift zd of d starting from zc1 , whose
endpoint is a lift zc2 2 zZ of c2 . We have gr.zc2/D k� 1. Thus, @C jCk W Ck! Ck�1 is
identical to V@j yCk0 W

yCk0 ! yCk0�1 for the same pair k and k0 as before.

5 Balanced Floer homologies from monotone Floer chain
complexes

This section reintroduces the fourth flavor of monopole Floer homology, denoted by
HMtot in [23], now renamed eHM in deference to Donaldson’s notation. (See page 187
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of [7].) This definition is a natural byproduct of a reinterpretation of VHM�.M; s; cb/
in terms purely of the KŒU �–module yC�.M; s; cb/ (Corollary 5.3 in [23], restated as
Proposition 5.9 below). This result enables us to appeal to the third author’s “SWDGr”
program, which in our context was carried out in part IV of this series [22]. The latter
constructed an isomorphism from an appropriate variant of ech to a negative monotone
version of monopole Floer homology, which is in turn related to the balanced version
via the following theorem of Kronheimer and Mrowka:

Theorem 5.1 [17, Theorem 31.5.1] Suppose c1.s/ is nontorsion. Let yC�.M; s; cb/
and C�.M; s; c�/D yC�.M; s; c�/ respectively denote the Seiberg–Witten Floer chain
complexes with balanced and negative monotone perturbations. Then there is a chain
homotopy equivalence from the former to the latter. In particular, bHM�.M; s; cb/'
HM�.M; s; c�/.

To be more precise, the statement of Theorem 31.5.1 in [17] concerns only the Floer ho-
mologies. However, the chain homotopy equivalence referred to above was constructed
in its proof.

Remark 5.2 The variant of ech relevant in this series of papers is related to the
negative monotone version of monopole Floer homology, and therefore to bHM� by
the preceding theorem of [17]. This is because the stable Hamiltonian structure used to
define the relevant ech is associated to an nonexact closed 2–form. Note in contrast
that the ordinary embedded contact homology associated to a contact structure is related
to zHM� instead, since the relevant 2–form in this case is exact. As such, it belongs to
the positive monotone situation, and the companion theorem to the one just cited states
that zHM�.M; s; cb/' HM�.M; s; cC/.

5.1 Some properties of the maps i , j and p

In this section, unless otherwise specified, VC� D VC�.M; cb/ denotes the monopole
Floer chain complex associated to an oriented Riemannian, Spinc 3–manifold with a
balanced perturbation. Similarly, let VHM� D VHM�.M; cb/.

Recall from Proposition 22.2.1 in [17] that bHM� , zHM� and HM� are related by a
long exact sequence

(5-1) � � � ! HM�
i�
�!zHM�

j�
�!bHM�

p�
�! HM��1

i�
�! � � � ;
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which we shall call the fundamental exact sequence of monopole Floer homologies.
The maps i� , j� and p� in the sequence above are respectively induced by maps

i W C ! LC ; j W LC ! yC ; pW yC ! C ;

which, written in block form with respect to the decomposition

(5-2) C D C s˚C u; LC D C o˚C s; yC D C o˚C u;

are given by

(5-3) i D

�
0 �@uo
1 �@us

�
; j D

�
1 0

0 �x@su

�
; p D

�
@os @

u
s

0 1

�
:

It is shown in [17] that they are respectively chain maps of degree 0, degree 0 and
degree �1.

Lemma 5.3 The maps i , j and p are p–morphisms of H�.BS1/–modules.

Proof It is verified in [17] (for KDZ) that ŒV@; VU �D0 for the to, from and bar versions
of monopole Floer chain complexes. A straightforward though tedious computation
using (5-3) shows that

(5-4)

iU � LU i CKix@C L@Ki D 0;

j LU � yUj CKj L@Cy@Kj D 0;

p yU �Up�Kpy@Cx@Kp D 0;

where Ki , Kj and Kp , written in block form with respect to the same decompositions
(5-2), are

Ki D

�
0 �U uo
0 �U us

�
; Kj D

�
0 0

0 �U su

�
; Kp D

�
U os U us
0 0

�
:

As was explained in the proof of Lemma 4.2, the identities (5-4) can be rewritten as

SU .i/SU .x@/�SU .L@/SU .i/D 0;

SU .j /SU .L@/�SU .y@/SU .j /D 0;

SU .p/SU .y@/CSU .x@/SU .p/D 0;

where SU .i/, SU .j / and SU .p/, when written in block form with respect to the same
decomposition (5-2), as matrices with coefficients in KŒy�, are given as follows:

SU .i/D

�
0 �nuo
1 �nus

�
; SU .j /D

�
1 0

0 �xnsu

�
; SU .p/D

�
N o
s N u

s

0 1

�
;

Geometry & Topology, Volume 24 (2020)



HFD HM , V 3563

where

xnsu D
x@suCU

s
uy; n�� D @

�
�CU

�
� y; N s

u D
x@su| CU

s
uy; N �� D @

�
�| CU

�
� y;

these being homomorphisms of KŒy�–modules for any pair of super- and subscripts �
among u, s and o.

Lemma 5.4 The induced maps from i , j and p fit into the long exact sequences

(5-5) � � � !H�.SU .C //
SU .i/�
���!H�.SU . LC//

SU .j /�
����!H�.SU . yC//

SU .p/�
����!H��1.SU .C //

SU .i/�
����! � � � ;

(5-6) � � � !H�.E
ı
Y SU .C //

EıY SU .i/�
������!H�.E

ı
Y SU .

LC//
EıY SU .j /�
������!H�.E

ı
Y SU .

yC//

EıY SU .p/�
������!H��1.E

ı
Y SU .C //

EıY SU .i/�
������!H��1.E

ı
Y SU .

LC// � � � :

The first sequence is a sequence of H�.S1/–modules, and the second one is a sequence
of H�.BS1/–modules.

Proof (a) The proof is based on a modification of the proof of Proposition 22.2.1
in [17]. Recall from [17] the definition of a “mapping cone of �p” . LE; Le/:

LE D yC ˚C ; Le D

�
y@ 0

p x@

�
:

The short exact sequence associated with . LE; Le/, 0! C ! LE ! yC ! 0, induces
a long exact sequence connecting the triple HM, H. LE/ and bHM , with connecting
map p� . Kronheimer and Mrowka [17] show that LE is chain homotopic to LC. The
following diagram summarizes the construction:

LC

k
��

0 // C
N{
//

i

@@

LE
N|
//

l
��

yC //

j

^^

0

LC

where

k D

�
j

…s

�
; l D

�
…o i

�
;
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with
…sW LC D C

o
˚C s! C D C s˚C u;

…oW yC D C
o
˚C u! LC D C o˚C s;

…uW C D C
s
˚C u! yC D C o˚C u

denoting projections to the s , o and u components, respectively.

In terms of these, the proof in [17] reduces to the verification of the identities

lk D Id;(5-7)

kl D IdC LeKCK Le;(5-8)

j D N|k;(5-9)

ki � N{ D Le.KN{/C .KN{/x@;(5-10)

where

K D

�
0 �…u
0 0

�
:

We now want to apply the preceding constructions and identities to the SU versions.
To do so, first observe that the identities (5-4) imply that LE is an H�.BS1/–module,
with the U –map given by

U Le D

�
yU 0

Kp U

�
:

With this defined, it is straightforward to check that N{ and N| are H�.BS1/–morphisms.
We can then use what was said in the previous subsection to form the H�.S1/–modules
.SU . LE/; SU . Le//, and morphisms SU .N{/ and SU . N|/. Lemma 4.2 ensures that

0! SU .C /
SU .N{/
���! SU . LE/

SU . N|/
���! SU . yC/! 0

is a short exact sequence of H�.S1/–modules. Meanwhile, the identities (5-4) can be
used again to verify that

k LU �U LEkC
LKj L@C Le LKj D 0 and lU LE �

LU l C LKi LeC L@ LKi D 0;

where
LKj D

�
�Kj
0

�
and LKi D

�
0 Ki

�
:

This means that l and k are both p–morphisms of H�.BS1/–modules. By Lemma 4.2
we can then form the H�.S1/–module morphisms SU .l/ and SU .k/. The analogs of
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(5-7)–(5-8),

(5-11) SU .l/SU .k/D Id; SU .j /D SU . N|SU .k/;

now follow readily from the naturality property of SU described in Lemma 4.2. Mean-
while, the analogs of (5-8) and (5-10),

SU .k/SU .l/D IdCSU . Le/.K˝ |/C .K˝ |/SU . Le/;

SU .k/SU .i/�SU .N{/D SU . Le/KCKSU .x@/; K WD .K˝ |/SU .N{/;
(5-12)

reduce to the identities

Kj…o�…uKp D 0; …sKi CKp…u D 0; yU…u�…uU �Kj i C jKi D 0;

and these can be directly verified. This proves (5-5).

To verify (5-6), we simply apply EıY to the SU version of [17]’s constructions and identi-
ties obtained above. Since we have shown that .SU . LE/; SU . Le//, SU .N{/, SU . N|/, SU .l/
and SU .k/ are H�.S1/–morphisms, Lemma 4.7 implies that .EıY SU . LE/;E

ı
Y SU . Le//,

EıY SU .N{/, E
ı
Y SU . N|/, E

ı
Y SU .l/ and EıY SU .k/ are H�.BS1/–morphisms, and the

analogs of the identities (5-11) and (5-12) follow without much ado by applying EıY
to them and the naturality properties of EıY described in Lemma 4.7.

5.2 The C� complex and localization

Lemma 5.5 H�.SU .C //D 0:

Proof To compute H�.SU .C //, write

SU .C /D C ˝KŒy�; SU .x@/D x@˝ | CU ˝y:

Filtrate this complex by the degree in the factor C ; this is done just as in the proof of
Proposition 4.9. The E1–term is HM� , and d1 is the u–map on HM� . We claim that
this map is invertible, and therefore H�.SU .C // vanishes.

To see that this is indeed the case, write

(5-13) C D CT ˝KŒx; x�1�;

where CT is the Morse complex of a Morse function on the torus of flat connections,
which is finitely generated. (See Section 25.6 of [17] for a more thorough discussion of
computations of HM� as well as the relevant moduli spaces.) Recall that a generator
a ˝ xm for CT ˝ KŒx; x�1� corresponds to the mth eigenvalue of Da , the Dirac
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operator with the flat connection, where the eigenvalues are ordered by their value
in R, and 1D x0 corresponds to the minimal positive eigenvalue.

The index of the CT factor defines a finite-length filtration on C, with respect to which
U can be written as

PN
kD0 Uk for some N 2 Z�0 . However, U0 D x (understood as

multiplication), because the only possible contribution to U0 comes from the moduli
space of instantons from a ˝ xm to a ˝ xm�1 , and this consists of the space of
gradient flows of the quadratic function

P
m2Z �mj�mj

2 on P .SpanCf�mgm/. Here,
�m denotes a chosen unit-norm eigenvector of �m . This moduli space is CP 1 . The
fact that U0 D x is an invertible operator on CT ˝KŒx; x�1� then means that U is
invertible as well.

It follows from the preceding lemma and Lemma 5.4 that SU .j / induces an H�.S1/–
module isomorphism from H�.SU . LC// to H�.SU . yC//.

Definition 5.6 (see [23, equation (5.6)]) We call the following group the “total”
version of monopole Floer homology:

eHM� WDH�.SU . yC//'H�.SU . LC//:

The motivation for this definition comes from the theory of S1–equivariant theory;
it is related to the equivariant versions of Floer homologies bHM , zHM and HM by
properties expected of the homology of their corresponding S1–space. (The choice of
the accent � in the notation reflects the fact that this is supposed to come from the space
of framed configurations, in accordance with the notation (5.1.1) in [8].) In particular,
the following lemma is a consequence of Proposition 4.9(a)(ii) and Remark 4.10:

Lemma 5.7 eHM� is related to bHM� by the long exact sequence

(5-14) � � � !bHM�
U
�!bHM��2!eHM�!bHM��1! � � � :

The following lemma is invoked in the next subsection:

Lemma 5.8 (localization) Let yC, C, bHM and HM denote the monopole Floer
complexes or homologies for a balanced perturbation. Then:

(a) The map iV� W H�.E
�
Y SU .C //!H�.E

1
Y SU .C // is an isomorphism.

(b) The map p� induces an isomorphism of KŒu; u�1�–modules ,

p�W bHM�˝KŒu�KŒu; u
�1�! HM�˝KŒu�KŒu; u

�1�:
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Proof (a) By Proposition 4.9, it is equivalent to consider the localization map
H�.C /!H�.C ˝KŒu�KŒu; u

�1�/. However, we saw in the proof of Lemma 5.5 that
the u–action is invertible on H�.C /.

(b) Tor.KŒu�;KŒu; u�1�/D 0, so we can work at the chain level:

H�. yC ˝KŒu�KŒu; u
�1�/DH�.. yU

N yC/˝KŒu�KŒu; u
�1�/

for any N 2 Z�0 . There are finitely many irreducible Seiberg–Witten solutions; and,
with a balanced perturbation, the Seiberg–Witten action functional is real-valued. We
can therefore order these finitely many irreducibles by their values of action functional.
A nonconstant Seiberg–Witten instanton always decreases the actions unless it is
reducible, so, for sufficiently large N, yUN yC � C u .

Meanwhile, we saw in (5-13) that C u D CT ˝ .xKŒx�/ and C s D CT ˝KŒx�1�.
We also saw in the proof of Lemma 5.5 that U0 D x . Therefore, C u generates
C ˝KŒu�KŒu; u

�1�. This understood, the assertion follows because we can restrict our
attention to C u and the u�u component of p is the identity.

5.3 Monopole Floer homologies from twisted tensor products

The modules SU .C / and EY .C / are “twisted tensor products” (in the sense of
eg [40; 26]), on which H�.BS1/ and H�.S1/ respectively act by simple multiplica-
tions. On the other hand, the duality theorem, Proposition 4.9, tells us the following:
On the homological level, we can replace any H�.BS1/– or H�.S1/–modules by
such twisted tensor products by applying E�Y SU or SUE�Y , respectively. We shall
reformulate the monopole Floer homologies bHM� , zHM� and HM� defined in [17]
accordingly. In addition to these three flavors of monopole Floer homologies, we
will introduce a fourth flavor, eHM� , from this point of view. These four flavors of
monopole Floer homologies will be regarded as a system and denoted collectively
by VHM� below. We call bHM� , zHM� , HM� and eHM� the from, to, bar and total
versions of monopole Floer homology, respectively. Just as bHM� , zHM� and HM� are
to be viewed as versions of equivariant homologies of the equivariant Seiberg–Witten
Floer stable homotopy type (represented by a pointed S1–space) SWF.Y; c/ that is
introduced in [27], what we denoted by eHM� can be viewed as the (nonequivariant)
homology of SWF.Y; c/ itself.

We now state the main result of this subsection:
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Proposition 5.9 [23, Corollary 5.3] Let yC denote yC.M; s; cb/ and VHM denote
VHM.M; s; cb/. There is a system of isomorphisms (as H�.BS1/–modules) from
H�.E

ı
Y SU .

yC// to VHM� , taking the fundamental exact sequence of equivariant ho-
mologies for SU . yC/ to the fundamental exact sequence of monopole Floer homologies.
In particular , we have the following commutative diagram of H�.BS1/–modules:

(5-15)

� � �H�.E
�
Y SU .

yC//
iV�
//

��

H�.E
1
Y SU .

yC// //

��

H�.E
C

Y SU .
yC//

ıV�
//

��

H��1.E
�
Y SU .

yC//� � �

��

� � �bHM�
p�

// HM��1
i�

//zHM��1
j�

//bHM��1� � �

where the vertical arrows are H�.BS1/–module-isomorphisms.

Proof of Proposition 5.9 Regard VC as Z–graded complexes as prescribed in Remark
4.11 and consider the following diagram, denoted by D below:

EY SU .j /
��

EY SU .j /
��

EY SU .j /
��

EY SU .j /
��

� � �H�C2.E
C

Y SU .
yC// //

EY SU .p/

��

H�C1.E
�
Y SU .

yC//
iV�
//

EY SU .p/

��

H�C1.E
1
Y SU .

yC// //

EY SU .p/'

��

xh

vv

H�C1.E
C

Y SU .
yC//� � �

EY SU .p/

��

� � �H�C1.E
C

Y SU .C //
//

EY SU .i/

��

H�.E
�
Y SU .C //

iV�

'

//

EY SU .i/

��

H�.E
1
Y SU .C //

//

EY SU .i/

��

H�.E
C

Y SU .C //� � �

EY SU .i/

��

� � �H�C1.E
C

Y SU .
LC//

'

ıV�
//

EY SU .j /'

��

H�.E
�
Y SU .

LC//
iV�
//

EY SU .j /

��

H�.E
1
Y SU .

LC// //

EY SU .j /

��

H�.E
C

Y SU .
LC//� � �

EY SU .j /'

��

� � �H�C1.E
C

Y SU .
yC// //

EY SU .p/

��

Lh

66

H�.E
�
Y SU .

yC//
iV�
//

EY SU .p/

��

H�.E
1
Y SU .

yC// //

EY SU .p/'

��

H�.E
C

Y SU .
yC//� � �

EY SU .p/

��

� � �H�C1.E
C

Y SU .C //
//

EY SU .i/

��

H�.E
�
Y SU .C //

iV�

'

//

EY SU .i/

��

H�.E
1
Y SU .C //

//

EY SU .i/

��

H�.E
C

Y SU .C //� � �

EY SU .i/

��

All rows and columns above are exact sequences of H�.BS1/–modules: the rows are
fundamental exact sequences of equivariant homologies of SU . yC/, SU .C / and SU . LC/,
and the columns are the exact sequences from (5-6).

By Proposition 4.9, the exact sequence in the second column is isomorphic to the
first fundamental exact sequence of the monopole Floer homologies (5-1), namely the
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second row in (5-15). Therefore we shall henceforth replace the second column by

� � �
j�
�!bHM�

p�
�! HM�

i�
�!zHM�

j�
�!bHM��1

p�
�! � � � :

Our goal is therefore to construct an isomorphism from the exact sequence in the first
or fourth row to the exact sequence in the second column:

� � �H�C1.E
�
Y SU .

yC//
iV�

//

O
��

H�C1.E
1
Y SU .

yC// //

xh
��

H�C1.E
C

Y SU .
yC//� � �

Lh
��

� � �H�C1.E
�
Y SU .

yC//
EY SU .p/

// H�.E
�
Y SU .C //

EY SU .i/
// H�.E

�
Y SU .

LC//� � �

To see this, note that in the third column of D, the map

EY Su.p/W H�.E
1
Y SU .

yC//!H�.E
1
Y SU .C //

is an isomorphism by the preceding lemma and Proposition 4.9. Thus, H�.E1Y SU . LC//
is trivial. This in turn implies that the map

ıV �W H�C1.E
C

Y SU .
LC//!H�.E

�
Y SU .

LC//

in the third row of D is an isomorphism. For the same reasons, the map

iV� W H�.E
�
Y SU .C //!H�.E

1
Y SU .C //

on the first and fifth rows of D is an isomorphism as well, and thus H�.ECY SU .C //
is trivial too. This in turn implies that the map

EY SU .j /W H�.E
C

Y SU .
LC//!H�.E

C

Y SU .
yC//

on the first and fourth columns is an isomorphism. We now take

yhD Id; xhD i�1V � ıEY SU .p/;
LhD ıV� ı .EY SU .j //

�1;

and the proposition follows.

Remark 5.10 The chain complex yC in the statement of the preceding proposition
may be replaced by CM.M; s; c�/ (yet VHM still stands for VHM.M; s; cb/). When c.s/
is nontorsion, this follows from Lemmas 4.5 and 4.8 and Theorem 5.1. When c1.s/
is torsion, this is simply because CM.M; s; c�/ D CM.M; s; cb/. As we remarked
previously in Section 2.1, in this case, monotone, balanced and exact perturbations are
identical notions.
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6 Monopole Floer homology under connected sum

We follow the (by now) traditional approach to connected sum formula for Floer
homologies that appeared in the instanton Floer homology setting in [9; 7]. To proceed,
some setting-up is required.

6.1 Preparations

Let M1 and M2 be closed, oriented, connected 3–manifolds, and s1 and s2 be Spinc –
structures on M1 and M2 , respectively. Denote by Mt DM1tM2 the disjoint union
of M1 and M2 . Let st D .s1; s2/ denote the Spinc –structure on Mt given by s1
and s2 .

Part 1: Spinc –structures and gradings Recall from [17] the interpretation of Spinc –
structures and grading via oriented 2–plane fields on the 3–manifold M. Denote by
J.M/ the set of homotopy classes of oriented 2–plane fields on the 3–manifold M.
According to Proposition 23.1.8 of [17], this may be identified with the set of gradings
of the manifold M, as defined in [17, page 424]. There is a Z–action on J.M/,
defined by modifying a representing plane field in a ball in M [17, Definition 3.1.2].
Its quotient is the set of Spinc –structures over M, Spin.M/ D J.M/=Z. The orbit
over s 2 Spin.M/ is the set of gradings for the Spinc –structure s, which we denote
by J.M; s/. Let cs be the divisibility of c1.s/. The stabilizer of the orbit J.M; s/

is csZ; therefore J.M; s/ is a torsor under Z=csZ.

Let B.p1/ and B.p2/ be respectively open balls centered at p1 2M1 and p2 2M2 ,
and 'W B.p1/ n fp1g ! B.p2/ n fp2g be an orientation-reversing map such that

(6-1) M# WDM1 #M2 WD .M1 n fp1g[M2 n fp2g/=�' :

As described in [17], the Z–action on J.Mi / is induced from the C 0.Yi ;SO.3//–
action on the space of plane fields on Mi . Each element in the group Z is represented
by an even-degree element in C 0.Mi ;SO.3// sending Mi nB.pi / to 12SO.3/. Since
this map has even degree, we may choose it to send pi 2 B.pi / to 1 as well. The
orientation-reversing map ' then defines an isomorphism

�J W .J.M1/� J.M2//=x�! J.M#/;

where x��Z�Z denotes the antidiagonal. This isomorphism is equivariant with respect
to the residual Z–action on �J W .J.M1/ � J.M2//=x� and the Z–action of J.M#/.

Geometry & Topology, Volume 24 (2020)



HFD HM , V 3571

Thus, by taking the quotient on both sides above, one has an induced isomorphism

�S W Spin.M1/�Spin.M2/! Spin.M#/:

Let s# D �S .s1; s2/.

Note that restrictions of �J to orbits of the Z–actions give rise to isomorphisms (also
denoted by �J )

�J W .J.M1; s1/� J.M2; s2//=x�! J.M#; s#/

as affine spaces under Z=c#Z, where c# is the gcd of cs1 and cs2 .

Recall from Part 4 of Section 2.4 the definition of . yC.Mt/; y@Mt/ as a product complex
of yC.M1/ and yC.M2/. Through out this section, we adopt the same assumption
that the Floer complex VC.M1/ comes from a nonbalanced perturbation; in particular,
yC.M1/D CM.M1/ in our notation. As observed there, this assumption implies that
VC.M#/ is also associated with a nonbalanced perturbation, and yC.M#/DCM.M#/ as

well. Given an stD .s1; s2/2 Spin.Mt/' Spin.M1/�Spin.M2/, we use J.Mt; st/

to denote the Zc# –grading .J.M1/�J.M2//=x� on . yC.Mt; st/; y@Mt/ induced from
the natural bigrading of the latter as a product complex.

Remark 6.1 The canonical Z=2Z–grading [17, Section 22.4] of �J .�1; �2/ differs
from the sum of the canonical Z=2Z–grading of �1 and �2 by 1.

Part 2: A�–actions on yC.Mt/ and CM.M#/ Use the connected sum decomposi-
tion of M# , (6-1), to define a splitting

H1.M#IZ/'H1.M1IZ/˚H1.M2IZ/;

and, correspondingly, a factorization of the algebra

(6-2) A�.M#/'A�.M1/˝KŒu�A�.M2/

'KŒU �˝
V�
.H1.M1IZ/=Tors/˝

V�
.H1.M2IZ/=Tors/:

This factorization is used to identify A�.M#/ with

A�.Mt/ WDKŒU �˝
V�
.H1.MtIZ/=Tors/

DKŒU �˝
V�
.H1.M1IZ/=Tors/˝

V�
.H1.M2IZ/=Tors/:

(Note that A�.Mt/ ¤ H�.B� .Mt/IZ/ D A�.M1/˝Z A�.M2/ with A�.Mt/ so
defined.)
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Recall the description of A�.M/–actions on monopole Floer complex from Section 2.5’s
Part 2 and Remark 2.5. These depend on the choice of a point p 2M for the U –
map, and a circle  �M representing t for each element t 2 ftigi , the latter being
a basis of H1.M IZ/=Tors. We denote the associated maps on the Floer complex by
VmU D VUp D VU or Vm D Vmt , depending on emphasis and context. The choices for the
manifolds discussed in this section, M� DM1 , M2 , M# or Mt , are given as follows.

For the H1.M�IZ/=Tors–actions, choose b1.M1/ mutually disjoint embedded circles

Œ1�
i in M1 so that p1 …

S
i 
Œ1�
i and ftŒ1�i D Œ

Œ1�
i �gi forms a basis of H1.M1IZ/=Tors.

Choose similarly b1.M2/ mutually disjoint embedded circles  Œ2�j in M2 so that p2 …S
j 

Œ2�
j and ftŒ2�j D Œ

Œ2�
j �gj forms a basis of H1.M2IZ/=Tors. Use f Œ1�i gi , f

Œ2�
j gj

and f Œ1�i gi [f
Œ2�
j gj to define the H1.M�IZ/=Tors–actions on yC.M�/ respectively

for M� DM1;M2;Mt . For M� DM# , regard all the  Œ1�i ’s and  Œ2�j ’s as embedded
circles in M# through (6-1), and use them to define the H1.M#IZ/=Tors–action on
CM.M#/.

The U 2A�.M�/–actions for M� DM1 , Mt or M# are given as follows. Choose a
point p 2M1 disjoint from fp1g [ f

Œ1�
i gi . This p can also be viewed as a point in

M� DM1 or Mt , or a point in M� DM# via (6-1). We use yUp D yUp.M�/ to denote
the associated U –action on the monopole chain complex yC.M�/ for such M� . Note
that yUp.Mt/D Up.M1/˝ 1 on the product complex yC.Mt/D CM.M1/˝ yC.M2/.

Remark 6.2 As already noted, yUp and yUp0 induce different U –actions on bHM.Mt/.
This is however irrelevant for our purposes, namely deriving and applying the connected
sum formulas, Propositions 6.7 and 6.11. See Lemma 6.4 below. We choose p to be
on M1 because CM.M1/ is assumed to be associated with a nonbalanced perturbation,
and for our application this perturbation is of the type discussed in Part 4 of Section 2.5,
where Up has a nice geometric interpretation.

Part 3: A�.Mt/–actions on SUt
yC�.Mt/ Let yUt D yUp2�p1 be as in (2-57). (To

simplify notation, we shall frequently drop the hat from yUt ; that is, Ut WD yUt in what
follows.) The statement of the upcoming connected sum theorem relates CM�.M#/

with SUt.
yC�.Mt//; the Floer complex is obtained by applying Section 4.2’s SU

operation to yC�.Mt/, with the latter regarded as an H�.BS1/–module generated by
the U D yUt–action above.

Abstractly, an A�.Mt/–action on yC�.Mt/ can be used to define a corresponding
A�.Mt/–action on SUt yC�.Mt/, due to the following observations: Given any gen-
erator Q D U or ti of A�.Mt/ and any map ymQ on yC.Mt; st/ underlying the
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Q–action on the Floer homology, ymQ is a p–morphism from yC.Mt; st/ to itself in
the language of Section 4. This in turn is because ymQ and yUt induce commutative maps
on Floer homology. Thus, by Lemma 4.2, SUt.ymQ/ is defined (albeit nonuniquely),
and is an H�.S1/–morphism from SUt.

yC�.Mt; st// to itself.

With the A�.Mt/–action on yC�.Mt/ fixed in the previous part, we define the Q–
action on SUt yC.Mt; st/ to be the map SUt.ymQ/. In the notation of (4-5), these take
the form

SUt.
yUp/D yUp˝ 1C yK yUp

˝y; SUt.ym /D ym ˝ | C yKm ˝y;

where yKmQ are chain homotopy maps satisfying (4-3). In other words, they satisfy

Œ yUp; yUt�D y@.Mt/ yKUp C
yKUp
y@.Mt/;

Œym ; yUt�D y@.Mt/ yKm �
yKm
y@.Mt/:

(6-3)

As previously noted, the choice of the chain homotopy maps yKmQ is not unique. In
fact, it was observed in Remark 4.3 that even the homology H�.SUtmQ/ depends on
the choice of yKmQ (modulo homotopy). In this article we adopt a particular choice of
these yKmQ that suits our purposes best and has certain nice properties. In particular,
the homotopy class of yKUp or yKm varies in a consistent manner with p or  , leading
to the desired invariance result, Corollary 6.5 below.

To describe these particular choices of yKmQ , first recall the notions VnŒu�, h yp , u
and y‚p from Section 2.5. Fixing a set of choices for p and the i from Part 2, we set

(6-4) yKUp WD ynŒdht ^ dh yp�C ŒynŒdht�; y‚p�C Œy‚t; yUt�D ynŒut ^ up�;

where u WD up2 � up1 . For each  2 f Œ1�i gi [f
Œ2�
i gj , set

(6-5) yKm WD ynŒudht�C Œym ; y‚t�D ynŒuut�:

We now verify that:

Lemma 6.3 The maps yKUp and yKm given in (6-4) and (6-5) above satisfy the
identities (6-3).

Proof (i) To verify that (6-4) satisfies the first identity in (6-3), let NC D .NC/3
be a 3–dimensional stratified submanifold of NC3 .Mt/. (Recall the notation Nk.M/

and NC
k
.M/ from Section 2.5. Recall also that .NC/k stands for the kth step in the
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stratification, ∅� � � � � .NC/k � � � � �NC , of NC .) Since both dhp and dht are
closed forms, by [17, Lemma 21.3.1, equation (21.4) and Theorem 19.5.4],

0D hd.dht ^ dh yp/; ŒNC�i D hdht ^ dh yp; @ŒNC�i D hdht ^ dh yp; .NC/2i:

By construction, .NC/2 is a union of two types of product spaces, the first being of the
form NC0 .c�; c/�NC2 .c; cC/ or NC2 .c�; c/�NC0 .c; cC/, and the second of the form
NC1 .c�; c/�NC1 .c; cC/. Integrals of dh yp ^ dht over these two subspaces of .NC/2
give respectively the first and the second term of the right-hand side of the identity

(6-6) 0D Œy@; ynŒdht ^ dh yp��� ŒynŒdh yp�; ynŒdht��:

By (2-36), ynŒdh yp�D yUp � Œy@; y‚p�, and similarly for ynŒdht�. Together with the fact
that yUp; yUt are both chain maps, this implies

ŒynŒdh yp�; ynŒdht��D Œ yUp; yUt�� ŒŒy@; y‚p�; ynŒdht��C Œ yUp; Œy@t; y‚t��

D Œ yUp; yUt��
�
y@; Œy‚p; ynŒdht��

�
� Œy@t; Œy‚t; yUp��:

Inserting this back into (6-6), the first line of (6-3) follows readily.

(ii) The second identity in (6-3) is verified using similar arguments. Take now NC D
.NC/2 to be a 2–dimensional stratified submanifold of NC2 .Mt/. The coefficients in
Œy@; ynŒu dht�� are given by terms of the form

hudht; @ŒNC�i D hudht; .NC/1i;

where .NC/1 is a union of product spaces of either the form

NC0 .c�; c/�NC1 .c; cC/ or NC1 .c�; c/�NC0 .c; cC/:

Since u is locally constant, integrals of udht over these spaces take the form of
products

hu ;NC0 .c�; c/ihdht;NC1 .c; cC/i or hdht;NC1 .c�; c/ihu ;N
C
0 .c; cC/i:

By (2-37) and (2-36), this shows that

Œy@; ynŒu dht��D Œm ; yUt� Œy@; y‚t��D Œm ; yUt�� Œy@; Œm ; y‚t��;

leading directly to the second identity of (6-3).

This understood, we may now justify the claim in Remark 2.5 that the U –action on
H�.SUt.

yC�.Mt; st// is independent of p .

Lemma 6.4 For any given p; p0 2Mt , SUt. yUp0/ and SUt. yUp/ are chain homotopic.
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Proof We wish to show that there is a map Z�W SUt. yC/! SUt.
yC/ such that

SUt.
yUp0/�SUt.

yUp/D . yUp0 � yUp/˝ 1C . yKU 0p �
yKUp /˝y D ŒZ�;Dt�:

We choose Z� to be of the form Z�DZ0˝|CZ1˝y , with Z0 and Z1 being maps
from yC.Mt/ to itself, respectively of degree �1 and �2. The preceding identity now
reads

(6-7) yUp0 � yUp D ŒZ0; y@�; yKU 0p �
yKUp D ŒZ1;

y@�C Œ yUt; Z0�:

(i) In the case when p and p0 belong to the same connected component of Mt , there
is a path � in Mt from p to p0 and an associated map yK� , defined in (2-49). Since,
by (2-49), yUp0 � yUp D ŒyK�; y@�, setting Z0 to be

Z�0 WD
yK�

suffices to validate the first line of (6-7). We claim that with Z0 so chosen, and with
KUp given by (6-4), the second line of (6-7) also holds if Z1 is set to be

Z�1 WD �mŒutu��.R�Mt/;

where ut D u yp2 � u yp1 , and ypi denotes R� fpig �R�Mt . In other words,

ynŒup0ut�� ynŒuput�D Œ�mŒutu��.R�Mt/; y@t�C ŒynŒut�; �mŒu��.R�Mt/�:
This identity is essentially a higher-degree variant of (2-49), and is proved by arguments
similar to (2-47). For more details the reader is referred to the proof of (6-75) in the
next subsection, which differs by cosmetic changes from the proof for the preceding
identity.

Let Z�� DZ
�
0 ˝ | CZ

�
1 ˝y denote the version of Z� constructed using �.

(ii) Now suppose that p and p0 belong to different connected components of Mt .
Let p 2M1 and p0 2M2 , �1 �M1 be a path from p1 to p and �2 �M1 be a path
from p2 to p0. Then, by the discussion in case (i) above,

SUt.Up0/�SUt.Up/D SUt.Ut/C ŒZ
�2
� �Z

�1
� ;Dt�:

Meanwhile, according our construction of KUp , we have KUt D 0 and

SUt.Ut/D
yUt˝ 1D Œ1˝ @y ;Dt�:

So we have
SUt.Up0/�SUt.Up/D ŒZ

�2
� �Z

�1
� C 1˝ @y ;Dt�

and we take Z� DZ
�2
� �Z

�1
� C 1˝ @y in this case.
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Corollary 6.5 The A�.Mt/–action on SUt. yC.Mt//, as defined above, induces an
A�.Mt/–action on H�

�
SUt.

yC.Mt//
�

that is independent of choices of p , f Œ1�i gi
and f Œ2�j gj .

Proof The assertion regarding the U –action follows directly from the previous lemma.
To verify the assertion for H1.MtIZ/=Tors–actions, take two embedded circles 
and  0 in Mt representing the same Œ� 2H1.MtIZ/=Tors. Note that they must lie
in the same connected components of Mt , and therefore there exists an embedded
surface in R�Mt from  to  0. We wish to show that there exists a map T� from
SUt.

yC.Mt// back to itself, satisfying

SUt.ym 0/�SUt.ym /D ŒT�;Dt�:

Assume this time that T� is of the form T� D T0˝ 1CT1˝y , where T0 and T1 are
maps from yC.Mt/ to itself, respectively of degree 0 and �1. Then the preceding
identity now reads

(6-8) .ym 0 � ym /D ŒT0; y@�; . yKm0 �
yKm /D ŒT1;

y@�C Œ yUt; T0�:

By (2-55), ym 0 � ym D Œ�mŒF†�; y@t�; so we set

T0 D �mŒF†�.R�Mt/;
so that the first line of (6-8) holds for this T0 . To verify the second line, we choose

T1 D �mŒutF†�.R�Mt/:

With this choice and our construction of yKm , the second line of (6-8) says

ynŒu 0ut�� ynŒuut�D Œ�mŒutF†�.R�Mt/; y@t�C ŒynŒut�; �mŒF†�.R�Mt/�:
The proof of this identity is virtually identical to that for the second line of (6-75), and
the reader is referred to the next subsection for details.

Part 4: the cobordisms V and V, and the cobordism maps V� and V �� Let V WD
.X; s/ denote a cobordism as described in (2-8) and (2-9), with Y�DM# and YCDMt .
Assume that s has a unique critical point of index 3 with critical value 0.

There is a unique Spinc –structure sX on such X with c1.sX /js�1.�c/ D c1.s#/ and
c1.sX /js�1.c/ D c1.st ) for c � 0. Meanwhile, given Œ$i � 2 H 2.Mi /, there is a
unique Œ$#� 2 H

2.M#/ and a Œ!� 2 H 2.X/ that restricts to Œ$1�, Œ$2� and Œ$#�
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respectively on the M1–, M2– and M# –ends of X. Suppose as before that Œ$1�
is nonbalanced with respect to c1.s1/ (and therefore Œ$#� is also nonbalanced with
respect to c1.s#/). Let ! be a closed 2–form on X representing Œ!� above, so that
$X D 2!

C satisfies (2-11). In particular, ! restricts respectively to (pullbacks) of
closed 2–forms $1 , $2 and $# on the M1–, M2– and M# –ends of X. Let $t
denote the 2–form on YC DMt that restricts respectively to $1 and $2 on the M1

and M2 component of Mt .

Let V WD .X;�s/ denote the “time reversal” of V . Given local systems �i on B� .Yi /
for iD1; 2, let �tD�1˝�2 denote the local system on B� .M1/�B� .M2/'B� .Mt/.
Note that X satisfies the condition that ı˙ are both isomorphisms in the first bullet
of Remark 2.3, and thus there is a unique V–morphism �V , which together with
its inverse �V , gives an 1–1 correspondence between local systems on B� .Mt/
and B� .M#/. Let �# denote the local system on B� .M#/ corresponding to �t . Mean-
while, by the second bullet of Remark 2.3, �t is (strongly) .st;$t/–complete if and
only if �# is (strongly) .s#;$#/–complete, and in this case �mŒu�.X; sX ;$X I�X / is
well defined through (2-23).

In what follows, take

yC�.Mt/D yC�.Mt; st;$tI�t/; CM�.M#/D CM�.M#; s#;$#I�#/:

The statement of the upcoming connected sum theorem involves certain maps

V�W �.M#/! SUt
yC�.Mt/ and V

�
� W SUt

yC�.Mt/! CM�.M#/:

These are constructed using the moduli spaces Mk.V; c#; ct/ DMk.V; ct; c#/ of
solutions to (2-10) associated to the Spinc 4–manifold .X; sX / and the perturbation
form $X described above.

Here is how they are defined. Use the shorthand . yCt; y@t/ D . yC.Mt/; y@.Mt//,
.C#; @#/D.CM.M#/; @M#// etc below. Write the chain module of SUt. yCt/, yCt˝ZŒy�,
as the direct sum

(6-9) SUt.
yCt/D yCt˚y yCt:

With respect to this decomposition, its differential takes the block form

(6-10) Dt D

�
y@t 0
yUt �y@t

�
:
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Correspondingly, write the maps V� and V �� in block form with respect to the decom-
position (6-9) as

(6-11) V� D

�
V0
V1

�
; V

�
� D

�
V
�
1 V

�
0

�
;

where Vi W yCt! yC# and V �i W yC#! yCt for i D 0; 1 are defined through cobordism
maps of the form �mŒu�.X; sX ;$X I�X / for X D V or V. These cobordism maps are
defined as in Part 4 of Section 2.4, noting that V and V satisfy the condition (2-26),
and assuming for the rest of this subsection the same completeness condition for �X
alluded to in the end of Section 2.4. Meanwhile, cochains u involved in the definition
of these maps are of the type introduced in Section 2.5’s Part 3(a), with the relevant
arc � chosen as follows. In the present section, let � denote the ascending manifold
of the unique critical point of s ; it is a path in X asymptotic to .p1; p2/ 2Mt D YC .
We orient it so that it begins from p1 2M1 and ends at p2 2M2 . Meanwhile, the
descending manifold of this critical point will be denoted by B ; it is an embedded
3–ball in X that intersects each s�1.c/'M# in a 2–sphere for all c� 0. We orient it
so that it intersects with � positively. Let x� and xB , respectively, denote the descending
and ascending manifold from the unique critical point of �s . These are the same
submanifolds in X as � and B , but equipped with the opposite orientation.

With the above said, we are ready to write down the formulas for Vi and V �i for
i D 0; 1:

(6-12)

V0 D �mŒ1�.V; sX ;$X I�V/;
V1 D yK�.V; sX ;$X I�V/D �mŒu��.V; sX ;$X I�V/
D �mŒ���.V; sX ;$X I�V/C‚tV0;

V
�
0 D �mŒ1�.V; sX ;$X I�V/;
V
�
1 D
yKx�.V; sX ;$X I�V/D �mŒux��.V; sX ;$X I�V/

D �mŒ�x��.V; sX ;$X I�V/�V �0 ‚t;
where ‚t denotes the map from yCtD yC.M1/˝ yC.M2/ to itself, 1˝‚p2�‚p1˝1.
See (2-50) for the definition of yK� .

Remark 6.6 With [17]’s notion of canonical Z=2–gradings suitably generalized, the
maps V� and V �� are of degree 0 with respect to this canonical Z=2–grading. Recall
the characteristic number �.X/ for a cobordism X from Y� and YC , with Y˙ both
connected, from Definition 25.4.1 in [17]. When Y˙ are allowed to be disconnected,
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we generalize the formula in [17] as

�.X/ WD 1
2
.�.X/C �.X/C b1.YC/� b1.Y�/� b0.YC/C b0.Y�//:

With this generalized �.X/, the statements of [17, Lemma 25.4.2 and Proposition 25.4.3]
remain valid: �.X/ 2 Z and is additive under composition of cobordisms, and a map
(if well defined) of the form VmŒu�.X/ is of even or odd degree with respect to this
canonical Z=2–grading depending on the parity of

deg.u/� �.X/:

For X D V; V , �.V/D 0 and �.V/D 1; hence V0 and V �1 are of even degree, while
V1 and V �0 are of odd degree. Hence V� D V0C yV1W C#! yCt˝KŒy� and V �� D
V
�
1 CV

�
0 @y W

yCt˝KŒy�! C# are both of even degree with respect to the canonical
grading. (In fact, they are both of degree 0 when the canonical Z=2–grading lifts to an
absolute grading; see Section 28.3 in [17].) This is not to be confused with the notion
of an even or odd map in the sense of signs when it appears in commutators. In the
latter sense V� is even, while V �� is odd, since V0 and V �0 are even and V1 and V �1
are odd. The parity of a map VmŒu�.X/ (in the sense of commutators) is determined
purely by deg.u/, independent of X. This is because only deg.u/ contributes to the
signs in gluing formulas.

6.2 A connected sum formula for nonbalanced perturbations

Adopt the notation and assumptions from the previous subsection.

Proposition 6.7 Under the above assumptions:

(a) Suppose that Œ$#� is negative monotone, nonbalanced with respect to s# . Let
�# be arbitrary , and �t be determined by �# via �X . Then the maps V� and V ��
given in the previous subsection are well-defined chain maps , and V� defines a
chain homotopy equivalence

(6-13) V�W C�.M#; s#; Œ$#�; �#/! SUt.
yC�.Mt; st; Œ$t�I�t//

respecting the (relative) Z=c# –grading on both sides. Moreover, the map V�
intertwines with the

A�.M#/
(6-2)
'

V�
.H1.M1/=Tors/˝

V�
.H1.M2/=Tors/˝KŒu�DA�.Mt/

actions on the two sides , defined in the previous subsection’s Parts 2 and 3 using
p and f Œ1�i gi [f

Œ2�
j gj .
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(b) Suppose that Œ$1� is nonbalanced with respect to s1 , and that �i is strongly
.si ; Œ$i �/–complete for i D 1; 2. Then the maps V� and V

�
� are well-defined

chain maps , and V� defines a chain homotopy equivalence

V�W C�.M#; s#; Œ$#�; �#/! SUt.
yC�.Mt; st; Œ$t�I�t//

respecting the (relative) Z=c# –grading on both sides. Moreover, the map V�
above intertwines with the

A�.M#/
(6-2)
'

V�
.H1.M1/=Tors/˝

V�
.H1.M2/=Tors/˝KŒu�DA�.Mt/

actions on the two sides defined using p and f Œ1�i gi [f
Œ2�
j gj .

Proof (a) The proof has six steps.

Step 1 In this part we show that the assumption on �X of part (a) ensures that �X
satisfies the completeness conditions alluded to in Remark 2.3, so that the maps Vi
and V �i for i D 0; 1 are well defined. More precisely, we show that the sum

(6-14)
X

c#2C.M#/

X
.c1;c2/2C.M1/�C.M2/

X
z2�0.B� .VIc#;.c1;c2///

hu;Mk;z.c#; .c1; c2//i

has finitely many nonvanishing terms, and therefore V� is a well-defined map between
the (precompleted) chain complexes CM�.M#/ and SUt. yC�.Mt// for any coefficients
�# and its twin �t . To see this, observe that by the well-known compactness property
of spaces of 3–dimensional Seiberg–Witten solutions, CM.M1/D C

o.M1/, C o.M2/

and CM.M#/D C
o.M#/ are all finitely generated over K, while C u.M2/ is finitely

generated over KŒu�, with u having degree �2. Write the generating sets of these
free K–modules respectively as C.M1/ D faigi , Co.M2/ D fb

o
j gj , C.M#/ D fckgk

and Cu.M2/D fb
u
qu
ngq;n , where there are finitely many indices i , j, k and q , and n

runs through all nonnegative integers. Let �� W B� ! B denote the projection of the
blown-up space. The index {d and the topological energy (see [17, Definition 4.5.4 and
page 593] in the case of nonexact perturbations) of an element d 2M.V/ depends only
its relative homotopy class under �� , and the former is controlled via c1.sX /, the latter
through Œ!�� 2�Œc1.sX /�. The monotonicity condition and the compactness property
of M.V/ under bounds on the topological energy then ensures that only finitely ai ,
boj , buq and z appear in the sum on the right-hand side of (6-14). Meanwhile, since
gr.buqu

n/� gr.buqu
m/ D �2.n�m/, the index bound {d D k on the right-hand side

of (6-14) implies that for each q , only finitely many buqu
n appear on the right-hand
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side of (6-14). (The aforementioned compactness result follows from a straightforward
generalization of Theorem 24.5.2 in [17] to include nonexact perturbations.)

The �m.V/ analog of (6-14) involves sum over C.M#/ instead, which consists of finitely
many elements. The finiteness of the relevant sum then follows from the monotonicity
assumption alone.

Step 2 In this step, we show that V� and V �� are (respectively even and odd) chain
maps. This amounts to verifying the identities

(6-15)
y@tV0�V0@# D 0; y@tV1CV1@#� yUtV0 D 0;

@#V
�
0 �V

�
0
y@t D 0; V

�
1
y@tC @#V

�
1 CV

�
0
yUt D 0:

In view of (2-51), these would have followed directly from [17, Proposition 25.3.4] if
the latter’s assumption on the connectedness of Y˙ could be removed. In the specific
setting under discussion, such generalization requires only simple modifications of
what was in [17]. To do so, write the identities in full in terms of mo

o\
, mo]o , @oo.M1/,

@oo.M#/, y@.M2/ and x@su.M2/ as given by (2-17), (2-27) and (6-11). These can be
reduced to the identities in Lemma 25.3.6 in [17] (with many vanishing terms), with
these substitutions:

� Drop the o’s from the double superscript or subscripts o� of m.

� Replace the entries of y@.Mt/D .1˝ @
]

\
.M2/C @

o
o.M1/˝ 1/) by @]

\
.

Theorem 24.7.2 in [17] conveniently supplies us with the general gluing theorem
required for verifying these formulas. (We have at worst rank 1 boundary-obstruction.)

Step 3 In the upcoming three steps, we show that the two chain complexes in (6-13)
are chain homotopy equivalent via V� and V �� . More precisely, we shall show that
their compositions satisfy the identities

V
�
� ıV�� ŒH

0
#; @#�even D V

�
1 ıV0CV

�
0 ıV1 D Id#� ŒZ#; @#�odd;(6-16)

V� ıV
�
� � ŒH

0
t;Dt�even D Idt˝ 1� ŒZt˝ | C X˝y;Dt�odd;(6-17)

or, in block form,�
V0 ıV

�
1 V0 ıV

�
0

V1 ıV
�
1 V1 ıV

�
0

�
�

��
A0 B 0

C 0 D0

�
;

�
y@t 0
yUt �y@t

��
even

D

�
Idt 0

0 Idt

�
�

��
Zt 0

X Zt

�
;

�
y@t 0
yUt �y@t

��
odd
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for certain maps H 0# and Z# from CM.M#/ back to itself, and maps A0, B 0, C 0, D0

and Zt; X from yC.Mt/ back to itself. Here Id# and Idt , respectively, denote the
identity maps from CM.M#/ and yC.Mt/ back to themselves.

The verification of the first identity (6-16) involves the cobordism W# obtained from
composing V with V. This cobordism goes from M# to M# , and contains the circle
�# D � [ x� in its interior. A surgery along �# replacing a tubular neighborhood
S1 �B3 of �# with D2 �S2 yields R�M# . On the other hand, to verify the second
identity (6-17), one composes in the opposite order to get the cobordism Wt from
Mt to Mt . There is an embedded 3–sphere St � Wt obtained by joining the 3–
balls B and xB from Part 4 of the previous subsection. Doing a surgery along St —
namely, replace a tubular neighborhood of it, I �St , by a disjoint union of two 3–balls
B1tB2 — turns Wt into the product cobordism R�Mt . One may find arcs 1 �B1
and 2 � B2 so that under this surgery they join with .� [ x�/ � I � St to yield
R�f�p1; p2g �R�Mt . The cobordisms W# and Wt are equipped with metrics and
Spinc –structures sW# and sWt determined by the metric and Spinc –structure, sX , on
XDV. The closed 2–form ! on X likewise defines, via concatenation, closed 2–forms
!# and !t , respectively, on W# and Wt . Let $W# WD 2!

C
# and $Wt WD 2!

�
# .

Note that like V and V, the composite cobordisms W# and Wt also satisfy the as-
sumption in the first bullet of Remark 2.3. Therefore, given any �# , there is a unique
�W# –morphism which is an isomorphism from �# to itself. In fact, �W# D �V ı �V .
Similarly, given any �t , there is a unique �Wt –morphism from �t which is an
isomorphism from �t to itself, and �Wt D �V ı�V .

The proofs of (6-16) and (6-17) make use of cobordism maps of the form

�mŒu�.W#; s#;$#I�W#/; �mŒu�.Wt; st;$Wt I�Wt/;
as well as their parametrized variants. (We often abbreviate these maps as �mŒu�.W#/

and �mŒu�.Wt/ below.) The manifold Wt does not satisfy the condition (2-26), but
the formula for �m in (2-27) has a straightforward adaptation in this context: simply
replace terms of the form m#

[
in (2-20) by mo#

o[
, and drop all the terms Sm#

[
. Replace @#

[

and x@#
[
, respectively, by @o0.M1/˝ 1C 1˝ @

#
[
.M2/ and 1˝x@#

[
.M2/.

We next describe the relevant cochains u . Let u�# 2C
1IZ
M.W#/

be the 1–cocycle associated
to the circle �# �W# , as defined in Section 2.5’s Part 1(b). Let �t denote the union
�[x��Wt , and use �t� and �tC to denote respectively the arcs x� and � in Wt .
Let u�tC and u�t� 2C

1IZ
M.Wt/

be respectively the 1–cochains defined in Section 2.5’s
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Part 3(a). (The notation u� and ux� is usually reserved for the 1–cochains on B� .V/
and B� .V/ associated to the arcs � and x� in V , which appeared previously in (6-12).)
Define the 2–cochain u�t WD u�t�u�tC 2 C

2IZ
M.Wt/

. Concretely,

(6-18)

�mŒu�t� �.Wt/D yK�t�.Wt/D �mŒ��t� �.Wt/��mŒ1�.Wt/‚t;�mŒu�tC �.Wt/D yK�tC.Wt/D �mŒ��tC �.Wt/C‚t�mŒ1�.Wt/;�mŒu�t �.Wt/ WD yK�t.Wt/
D �mŒ��t�^��tC �.Wt/� yK�tC.Wt/‚tC‚t�mŒ��t� �.Wt/
D �mŒ��t�^��tC �.Wt/C‚tyK�t�.Wt/��mŒ��tC �.Wt/‚t;

where ‚t WD 1 ˝ ‚p2 � 1 ˝ ‚p1 . It will prove useful to denote the 0–cocycle
1 2 C

0IZ
M.Wt/

on B� .Wt/ by u∅ .

The proof of (6-16)–(6-17) involves two ingredients. The first is a set of gluing identities:

(6-19) V
�
1 V0CV

�
0 V1 DmŒu�# �.W#/C ŒH#; @#�even:

(6-20) (1) The map V0V
�
1 D �mŒu�t� �.Wt/C ŒA; y@t�evenCB yUt .

(2) The map V0V
�
0 D �mŒu∅�.Wt/� Œy@t; B�odd .

(3) The map V1V
�
1 D �mŒu�t �.Wt/C Œy@t; C �odd� yUtACD yUt .

(4) The map V1V
�
0 D �mŒu�tC �.Wt/C Œy@t;D�even� yUtB.

The definition of the maps H# , A, B, C and D and the verification of these identities
occupy the remainder of this step and Step 4 below. In short, they all follow from an
adaption of [17, Lemma 26.2.2], together with a parametrized variant of the identity
(2-51). Rephrased in our language, the composition identity in [17], which was stated
for the check version of monopole Floer homology, has the following companion
version in for the hat version: Let W1 be a connected cobordism from Y� to Y0 , and
W2 a connected cobordism from Y0 to YC . Let W DW2 ıW1 denote the composite
cobordism of W1 and W2 . For u1 2 C.B� ..W1/c/IK/ and u2 2 C.B� ..W2/c/IK/,
Kronheimer and Mrowka [17] defined an “inner product” of u1 and u2 , denoted by
u WD c.u1˝ u2/ 2 C.B� .Wc/IK/ (see [17, equation (26.9)]). We have

(6-21) �mŒu2�.W2/�mŒu1�.W1/D �mŒu�.W /C ŒyKŒu�.W /; y@�C yKŒıu�.W /;
where the maps yK are defined via integrations on a certain parametrized moduli space,
and u is a parametrized version of u . (Though cobordism maps VmŒu�.W / were
previously defined for cochains on B�loc.W / instead of those on B� .Wc/, there is a
restriction map, s , from an open dense subset of the former to the latter.) As explained
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in [17], because of unique continuation, it makes no practical difference to work with
either B� .Wc/ or B�loc.W /, or the aforementioned open dense subset of B�loc.W /. The
identity (6-21) is the consequence of applying a Stokes’ theorem to the compactification
of the aforementioned parametrized moduli space. See [17, (26.2)–(26.3)] for the
definition of the aforementioned parametrized moduli space, equations (26.11)–(26.12)
therein for the definition of the associated maps yK (denoted by LK in [17]), and
Lemma 26.2.2 and its siblings in [17] for proofs of the key gluing identities.

Roughly speaking, the proofs of (6-19) and (6-20) follow from applying variants of
(6-21) to W D V ıV and W D V ıV, respectively, with u taken to be u�# in (6-19),
and u set to be u�t� , u∅ , u�t and u�tC , respectively, in items (1)–(4) of (6-20). The
maps H# , A, B, C and D are then given by

H# D yKŒu�# �.W#/;

AD yKŒu�t� �.Wt/;

�B D yKŒu∅�.Wt/D yKŒ1�.Wt/;

C D yKŒu�t �.Wt/;

�D D yKŒu�tC �.Wt/:

(6-22)

A couple of issues need to be addressed to be able to apply (6-21) in our setting. Firstly,
in [17], Y˙ and Y0 are assumed to be connected. As previously explained, there is
no problem adapting to the case when Y˙ is the disconnected manifold Mt . In the
case of (6-19), W# D V ı V is glued along Y0 DMt . This creates no new troubles:
The assumption that only the M2 component of Mt can be associated with balanced
perturbations implies that the straightforward sort of gluing argument applies with
gluing along M1 , leaving the more delicate analysis described in [17] required for M2

alone. The second issue is related to the fact that, recalling the discussion in Section 2.5,
the cochains u and their associated maps �mŒu � and yKŒu � relevant to our discussion
are of a more general sort. In particular, when  is noncompact, unlike those cochains
on B� .Wc/ considered in [17], our u 2 C.B�loc.W /IK/ are sensitive to the behavior
of the Seiberg–Witten configurations over the ends W nWc . To explain this issue in
more detail, as well as to describe the modification to generalize (6-21) to this context,
some preliminary discussions are required.

Here are some key ingredients of [17]’s derivation of (6-21). Let W.S/c denote the
variants of [17]’s W.S/ (see [17, (26.2)] and thereabouts). We write it as

(6-23) W.S/c D .W1/c [
��
�
1
2
S; 1

2
S
�
�Y0

�
[ .W2/c :
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Let W.S/ be the (complete) manifold with cylindrical ends containing W.S/c as its
“compact piece”. (Recall the notation from Section 2.2; they were denoted by W.S/�

in [17].) For example, the cobordisms W#.S/ and Wt.S/ are illustrated respectively
in (6-43) and (6-44) below, where the shaded regions represent the “necks” of length S.
The parametrized moduli spaces involved in the proof of (6-21) are of the following
sort:

MkC1;z.W; c�; cC/ WD
[

S2Œ0;1/

fSg �Mk;z.W.S/; c�; cC/;

MkC1.W; c�; cC/ WD
[
z

MkC1;z.W; c�; cC/;

MC
kC1;z

.W; c�; cC/ WD
[

S2Œ0;1�

fSg �MC
k;z
.W.S/; c�; cC/;

MC
kC1

.W; c�; cC/ WD
[
z

MC
kC1;z

.W; c�; cC/;

with the “fiber at 1”, MC
k;z
.W.1/; c�; cC/ DMk;z.W.1/; c�; cC/, as given in

[17, (26.4)]. Their reducible variants are defined similarly. The compactified moduli
space MC

kC1;z
.W; c�; cC/ maps to a smaller compactification, MkC1;z.W; c�; cC/

embedded in

(6-24) Œ0;1��B� ..W1/c/�B� ..W2/c/;

in a way similar to the map r in Section 2.4. See [17, (26.7)]. This map preserves the
fibration (over Œ0;1�) structure on both spaces, and over the fiber

fSg �MC
k;z
.W.S/; c�; cC/�M

C

kC1;z
.W; c�; cC/; S 2 Œ0;1/;

this map factors through

(6-25) MC
k;z
.W.S/; c�; cC/

r
�! B�loc.W.S//

ı s
�! B�

�
.W.S//c

�ı
s1�s2
���! B� ..W1/c/�B� ..W2/c/;

where r is as in Section 2.4, and, for each i D 1; 2, si W B� ..W.S//c/ı! B� ..W1/c/
denotes the map of restricting to .Wi /c �W.S/. Here, B�loc.W.S//

ı denotes a certain
open dense subset of B�loc.W.S//, and similarly for B� .Wc/ı . The cochains u1 2
C
�
B� ..Wi /c/

�
from (6-21) thus defines a cochain

u D c.u1˝ u2/ WD .s1 � s2/�.u1 � u2/

in C.B� .Wc//, and u in (6-21) refers to the cochain on (6-24) induced from u1 and u2 .
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Use r to denote the aforementioned map from MC
kC1

.W; c�; cC/ to (6-24), and & for
the embedding of MkC1.W; c�; cC/ into (6-24). Use rjS and &jS , respectively, to
denote the restriction of r and & from the fiber over S of MC

kC1
.W; c�; cC/! Œ0;1�

or MkC1.W; c�; cC/! Œ0;1� to B� ..W1/c/�B� ..W2/c/.

The map yKŒu� is constructed from KŒu�#
[

and xKŒu�#
[
, where KŒu�#

[
is a sum of terms

with coefficients taking the form

(6-26) hr�u;MC
kC1;z

.W; c�; cC/i D h&
�u;MkC1;z.W; c�; cC/i;

where k is the degree of u , and similarly for xKŒu�#
[
. Proposition 26.1.6 of [17]

shows that for any k and z , MC
kC1;z

.W; c�; cC/ is a stratified manifold where Stokes’
theorem (in the sense of [17, Lemma 21.3.1]) is applicable. Equation (6-21) is then the
consequence of applying this Stokes’ theorem to integrals of the form

(6-27) hr�.ıu/;MC
kC1;z

.W; c�; cC/i D hr
�u; @ŒMC

kC1;z
.W; c�; cC/�i;

together with an analysis of the structure of .MC
kC1;z

.W; c�; cC//k . That is, the
codimension one stratified submanifold, .MC

kC1;z
.W; c�; cC//k�M

C

kC1;z
.W; c�; cC/,

is described as a union of the form

(6-28) .MC
kC1;z

.W; c�; cC//k

D
�
f1g�MC

k;z
.W.1/; c�; cC/

�
[
�
f0g �MC

k;z
.W.0/; c�; cC/

�
[

[
S2.0;1/

fSg �
�
MC
k;z
.W#.S/; c�; cC/

�
k�1

:

The first two terms on the right-hand side of (6-28) contribute respectively

(6-29)
h.rj1/

�.u1�u2/;MCk;z.W.1/; c�; cC/i;

�h.rj0/
�.u1�u2/;MCk;z.W.0/; c�; cC/iD�hr

�c.u1˝u2/;MCk;z.W; c�; cC/i

to the right-hand side of (6-27), resulting respectively in the left-hand side of (6-21) and
the first term on the right-hand side of (6-21). The last term in (6-21) arises from the
left-hand side of (6-27). The contribution from the last term of (6-28) to the right-hand
side of (6-27) leads to the penultimate term in (6-21), based on the straightforward
adaptation of [17, Proposition 25.3.4] to the parametrized context.

A simple reformulation of [17]’s work suffices to make (6-21) applicable to general
ui 2 C.B�loc.Wi /IK/. Let W1.S/ � .W1/c and W2.S/ � .W2/c be (the closure of)
the two halves of W.S/ when divided in the middle of “the neck”, namely, at the
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3–manifold f0g � Y0 in (6-23). For i D 1; 2, define Wi .1/ to be the previously
introduced complete manifold, Wi . Instead of (6-24), consider another space fibering
over Œ0;1�, whose fiber over S 2 Œ0;1� is

B� .W1.S//�B� .W2.S//DW B� .W2 ıS W1/;

where B� .Wi .S// for i D 1; 2 are both equipped with the topology inherited from
its embedding to B�loc.Wi /. For all S 2 Œ0;1�, B� .W1.S// admits a well-defined
.�1/–limit map by construction, …�1 WD …�1W1 W B

� .W1.S// ! B� .Y�/; like-
wise, B� .W2.S// has a well-defined .C1/–limit map, …1 WD…1W2 W B

� .W2.S//!

B� .YC/. (Recall that these maps played important roles in the construction of the
cochains in Section 2.5. These are not available with the spaces B� ..Wi /c/ used
in [17].) Denote the fibered space by

B� .W2 ıW1/ WD
[

S2Œ0;1�

fSg �B� .W2 ıS W1/:

(This space is homeomorphic to (6-24) if endowed with the stronger Banach topology.)
When S is finite, let …Y0W� W B

� .W�.S//
ı! B� .Y0/ denote the map of restricting to

the 3–manifold f0g � Y0 � W�.S/ for W� D W;W1; W2 . (Again, the superscript ı
is used to denote an appropriate open dense subspace. It is sometimes dropped to
make the notation less cumbersome. As previously mentioned, this makes no practical
difference.) As was done in Section 2, when S D1, let …Y0Wi W B

� .Wi /
ı! B� .Y0/

denote the map of taking .C1/–limits for iD1, and that of taking the .�1/–limits for
i D 2. Slightly abusing notation, we now let si W B� .W.S//ı!B� .Wi .S// for i D 1; 2
denote the map of restricting to Wi .S/�W.S/. Equation (6-25) has straightforward
analog here: For finite S, the map s1 � s2 factors as

(6-30) B� .W.S//ı s1�s2
���! B� .W1.S//�B� .Y0/ B

� .W2.S//

,! B� .W1.S//�B� .W2.S//;

In the above, the fiber product B� .W1.S//�B� .Y0/B
� .W2.S// is regarded as a subspace

of the product B� .W1.S//�B� .W2.S//, where the maps …Y0Wi W B
� .Wi /! B.Y0/ for

i D 1; 2 take the same value. The previously introduced maps r, & , rjS and &jS , as
well as the inner products c.u1˝ u2/, also admit straightforward adaptions, which we
denote by the same notation. For finite S, the restriction of the maps rjS and &jS to
Mk;z.W.S/; c�; cC/ are respectively the composition of r and & with (6-30). The
arguments of [17] still apply with this modification to establish (6-21) in the context of
more general ui 2 C.B�loc.Wi /IK/.
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Even in this (slightly) generalized form, specific applications of (6-21) in our context
are often complicated by the fact that the cochains u constructed in Section 2.5 do not
necessarily take the form of, or have no obvious interpretation as, an inner product
c.u1 ˝ u2/. In view of the roles played by bundles over B� .W / (such as B�x .W /
or B�

�
.W /) in the construction of the cochains from Section 2.5, we typically deal

with this problem by going through various bundles over B� .W2 ıW1/. They are
constructed in a manner similar to what was done in Section 2.5. For example, what
will be called zB�x.W2 ıW1/ is defined as follows.

Take a point x 2 Wc that lies in the 3–manifold Y0 � Wc that separates .W1/c
and .W2/c . (The point x 2 W is denoted by x when regarded as a point in the 3–
manifold Y0 .) Recall the U.1/–bundles �x W zB�x .Y0/! B� .Y0/ and �x W zB�x .W /!
B� .W / from Section 2.5. For finite S, the map …Y0W lifts to a map z…Y0W W zB

�
x .W.S//!

zBx.Y0/� by construction. Meanwhile, for i D 1; 2 and any S 2 Œ0;1�, one may define
z…
Y0
Wi

, �Wix and zB�x .Wi / through the commutative diagram

(6-31)

zB�x .Wi .S//

�
Wi
x

��

z…
Y0
Wi // zB�x .Y0/

�x

��

B� .Wi .S//
…
Y0
Wi // B� .Y0/

Now let
zB�x .W2 ıS W1/ WD zB

�
x .W1.S//� zB

�
x .W2.S//;

zB�x.W2 ıW1/ WD
[

S2Œ0;1�

fSg � zB�x .W2 ıS W1/:

By construction, these are U.1/�U.1/–bundles respectively over B� .W2 ıS W1/ and
B� .W2 ıW1/. The fibered product zB�x .W1.S//�zBx.Y0/ zB

�
x .W2.S//, as a subspace of

zB�x .W1.S//� zB�x .W2.S//, is preserved under the diagonal U.1/–action. The quotient-
ing by this action is�
zB�x .W1.S//�zBx.Y0/ zB

�
x .W2.S//

�
=U.1/� ' B� .W1.S//�B� .Y0/ B

� .W2.S//

,! B� .W1.S//�B� .W2.S//DW B� .W2 ıS W1/;

where U.1/� � U.1/�U.1/ denotes the diagonal.

The previously introduced restriction maps si W B� .W.S//ı!B� .Wi .S// lift to define
maps Qs i W zB�x .W.S//ı! zB�x .Wi .S// for i D 1; 2. With them we have the following
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variant of (6-30) for finite S :

(6-32) zB�x .W.S//
Qs1�Qs2
���! zB�x .W1.S//�zBx.Y0/ zB

�
x .W2.S//

,! zB�x .W1.S//� zB
�
x .W2.S// WD zB

�
x .W2 ıS W1/I

and together they form a commutative diagram

(6-33)

zB�x .W.S//

�Wx

��

Qs1�Qs2
// zB�x .W1.S//�zBx.Y0/ zB

�
x .W2.S//

�
W1
x ��

W2
x

��

embeds
// zB�x .W2 ıS W1/

�
W2ıSW1
x WD�

W1
x ��

W2
x

��

B� .W.S//
s1�s2

// B� .W1.S//�B� .Y0/ B
� .W2.S//

embeds
// B� .W2 ıS W1/

The pair of horizontal maps Qs1 � Qs2 and s1 � s2 in the left square above define a map
between U.1/–bundles (but not the right square), and the map . z…Y0W ;…

Y0
W / between

the U.1/–bundles �Wx W zB�x .W.S//! B� .W.S// and �x W zB�x .Y0/! B� .Y0/ factors
through the bundle map

(6-34)

zB�x .W.S//
�Wx

//

Qs1�Qs2
��

z…
Y0
W

))

B� .W.S//

s1�s2

��

…
Y0
W

uu

zB�x .W1.S//�zBx.Y0/zB
�
x .W2.S//

�
W1
x ��

W2
x
//

z…
Y0
W1
Dz…

Y0
W2

��

B� .W1.S//�B� .Y0/B
� .W2.S//

…
Y0
W1
D…

Y0
W2

��

zB�x .Y0/
�x

// B� .Y0/

As a general rule, in what follows we adopt the convention of adding subscripts
or superscripts W in notation previously introduced in Section 2 to emphasize the
cobordism referred to. For example, …˙1W denote the version of the .˙1/–limit map
…˙1 for the cobordism W , and �Wx is the W version of the projection map �x in
Section 2.

We shall also use other variants of the bundle �W2ıW1x W zB�x.W2 ıW1/!B� .W2 ıW1/.
These are constructed in a similar fashion, with the role of zB�x .Y0/ replaced by other
bundles over B� .Y0/, say zB�� .Y0/, � being a 0–chain in Y0 . The composition formula
(6-21) is verified for a cochain u from Section 2.5 by applying the trick already used
repeatedly in Section 2; see eg the diagrams (2-34) and (2-46). That is, we choose an
appropriate lift of the embedding &W M ! B� .W2 ıW1/ to z&W MC! zB� .W2 ıW1/
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that fit in a commutative diagram of the form

(6-35)

MC

r
��

z&
// zB� .W2 ıW1/

�

��

M
&
// B� .W2 ıW1/

and apply Stokes’ theorem over the top row of the preceding diagram. The cochain
u 2 C.B� .W /IK/ is typically interpreted in terms of inner products by considering a
variant of the diagram (6-33) for finite S. Once in the inner product form, the cochain u
extends to be defined on the fiber at infinity, MC.W.1//, and consequently also a
cochain u suitable for applying the arguments of (6-21). As outlined previously, the
term on the left-hand side of (6-21), �mŒu2�.W2/�mŒu1�.W1/, arises from integrals over
strata in MC.W.1//. To put the integrals in a suitable product form, we must factor
the strata of MC.W.1/; c�; cC/ as products of two spaces, provisionally written as
MCW1.c�; c/�MCW2.c; cC/, with c 2 B� .Y /. Here, MCW1.c�; c/ consists of “broken
W1–paths” from c� to c, and MCW2.c; cC/ consists of “broken W2–paths” from c

to cC . Recall from [17, (26.4)] that a general element of MC.W.1// is defined to be
an element in a product space

(6-36) NC.Y�; c�; c0�/�M.W1; c
0
�; c0�/�NC.Y0; c0�; c0C/

�M.W2; c0C; c
0
C/�NC.YC; c0C; cC/:

There are different ways of organizing this space in the form MCW1.c�; c/�M
C

W2
.c; cC/.

When deriving the hat version of composition formula, we take MCW1.c�; c/ and
MCW2.c; cC/, respectively, to be the first and the second line of the preceding expres-
sion. (For the check version, one takes MCW1.c�; c/ to be the product of the first two
factors in (6-36), and MCW2.c; cC/ the product of the remaining factors.) Applying
[17, Proposition 26.1.6] to write out each entry of the identity from Stokes’ theorem
as a sum in the manner of [17, (26.13)] leads to a variant of the composition formula
(6-21) (but with our generalized definition of the cobordism maps)

(6-37) �mŒu�.W.1//D �mŒu�.W /C ŒyKŒu�.W /; y@�C yKŒıu�.W /:
Depending on how u is expressed in terms of inner products, the left-hand side,�mŒu�.W.1//, will expressed in terms of products of the form �mŒu2�.W2/�mŒu1�.W1/.
Note though that, compared with the long sum in the expression following [17, (26.13)],
in our case there will be additional terms involving boundary-obstructed maps of the
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form xnsuŒu�.Y0/ (including the boundary-obstructed differential x@su.Y0/ that appears in
[17]’s formula). These additional terms are absorbed in our generalized definition of�mŒu� and yKŒu�,

(6-38) �mŒu�.W.1//D �mŒu�.W /C ŒyKŒu�.W /; y@�C yKŒıu�.W /:
Step 4 We now apply the general discussion above to derive the identities (6-19)
and (6-20). What follows describes the formulas in (6-22) in a more explicit manner.
The degree �1 map H#W C#! C# is given by

H# D
X

c1;c22C#

X
z2�0.B� .M#;c1;c2//

h&�u�# ;M1;z.W#; c1; c2/i�#.z/:

For practical purposes, it is often more convenient to work with the more concrete
variant of H# ; this is denoted by PH# D yKŒ��# �.W#/ below and is defined by replacing
u�# in the preceding formula by ��# . The two maps H# and PH# are related by

H# D PH#C Œy@#; yKŒ"�# ��;

where "�# is the parametrized variant of the 0–cochain "�# defined in Section 2.5’s
Part 1(b).

Likewise, the maps A;B;C;DW yCt! yCt , are assembled respectively from the con-
stituents Ao]

o[
; B

o]

o[
; C

o]

o[
;D

o]

o[
W C

o]
t ! C o[t :

A
o]

o[
D

X
c12C

o]
t

X
c22C

o[
t

X
z2�0.B� .Mt;c1;c2//

h&�u�t�;M1;z.Wt; c1; c2/i�t.z/;

B
o]

o[
D

X
c12C

o]
t

X
c22C

o[
t

X
z2�0.B� .Mt;c1;c2//

h&�u∅;M0;z.Wt; c1; c2/i�t.z/;

C
o]

o[
D

X
c12C

o]
t

X
c22C

o[
t

X
z2�0.B� .Mt;c1;c2//

h&�u�t ;M2;z.Wt; c1; c2/i�t.z/;

D
o]

o[
D

X
c12C

o]
t

X
c22C

o[
t

X
z2�0.B� .Mt;c1;c2//

h&�u�tC ;M1;z.Wt; c1; c2/i�t.z/:

(6-39)

The reducible variants of the above, xKŒu�.Wt/, do not appear in the formulas for
A, B, C and D, as by assumption Wt is equipped with nonbalanced perturbations.
However, keep in mind that while B, the simplest map among the four, is assembled
from the above according to the rule (2-20) (substituting m]

[
Œu� therein by Bo]

o[
/, the

more general rule of Remark 2.2 must be applied to construct the more complicated
maps A, C and D from their constituents above. Being a hat version of a cobordism
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map, the formula for A remains the same as that given in (2-20) since both endpoints
of x� fall in Y� . The formulas for C and D contain additional terms from the endpoints
of � in YC , similar to those in (2-44) and (2-45): for KDC or D, the explicit formula
for the cobordism map C or D is

(6-40) KD

�
Koooo Kouoo
yK
oo
ou yK

ou
ou

�
;

where (as the xK–terms vanish)

yK
oo
ou WD �.

x@t/
os
ouKooos C .Ut/

os
ouB

oo
os ;

yK
ou
ou WD �xK

ou
ou� .

x@t/
os
ouKouos C .Ut/

os
ouB

ou
os :

(6-41)

The maps A, C and D above also each has a companion version, denoted respectively
by PA, PC and PD . They are defined from constituents given by the same formulas
as in (6-39), with the cochains u�t� , u�t and u�tC therein replaced by their more
concrete variants, that is, respectively by ��t� , ��t� ^ ��tC and ��tC . The maps PA,
PC and PD are built from these constituents in manners parallel to their sister versions

above, but in the case of PC and PD , all appearances of the boundary-obstructed map
.Ut/

os
ou in (6-41) are replaced by its companion version,

1˝xnsuŒdh yp2 �.M2/�n
o
oŒdh yp1 �.M1/˝ 1DW xn

os
ouŒdhyt�.Mt/:

The aforementioned pairs of maps are related by the formulas

(6-42) AD PA�B‚t; C D PCC‚tA� PD‚tD PCC‚t PA�D‚t; DD PDC‚tB;

where

‚t D 1˝‚p2 �‚p1 ˝ 1D ynŒh yp1 �˝ 1� 1˝ ynŒh yp2 �DW �ynŒht�:

We shall make use of the following figure, which illustrates the construction of H#

schematically:

(6-43) �1–end at M#

S

�#

W#.S/� �#

C1–end at M#Ý the map H#:

The construction of the maps A;B;C;DW yCt! yCt (or their companions PA, PB WD B,
PC and PD ) are illustrated in a similar fashion in the next set of pictures:
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(6-44)

�1–end at Mt S

Wt.S/� x�D �t�

x�
C1–end at MtÝ the map A or PA,

�1–end at Mt S

Wt.S/�∅

C1–end at MtÝ the map B D PB ,

�1–end at Mt S

Wt.S/� �[x�D �t

�x�
C1–end at MtÝ the map C or PC ,

�1–end at Mt S

Wt.S/� �D �tC

�
C1–end at MtÝ the map D or PD.

The dotted 1–submanifold  (possibly empty or disconnected) in each of the cobordisms
W in (6-43) and (6-44) is there to indicate that the map on the right of the picture is
constructed via coefficients given by evaluating the cochain u (or � ) associated to
u 2 C�.B� .W /IK/ (or � ) on relevant parametrized moduli spaces M associated to
W ( D�# in (6-43) and  D�t�;∅; �t; �tC respectively in the four lines in (6-44)).

We now proceed with:

(i) (verifying (6-19)) Reexpressed using the more concrete companion, ��# , of u�# ,
this identity is equivalent to

(6-45) �mŒ�x��.V/ ı �mŒ1�.V/C �mŒ1�.V/ ı �mŒ���.V/DmŒ��# �.W#/C ŒyKŒ��# �.W#/; @#�

DmŒ��# �.W#/C Œ PH#; @#�:

To verify (6-45), we shall apply (6-38) to W DW# , W1 D V, W2 D V and u D ��# .
Note that ı��# D 0, and thus the last term of (6-38) vanishes. The right-hand side
of (6-45) then coincides term by term with the first two terms of the right-hand side
of (6-38). To compute the left-hand side of (6-38), namely �mŒ��# �.W.1//, we claim
that

(6-46) ��# D c.��˝ 1/C c.1˝ �x�/:
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This would then imply that

�mŒ��# �.W.1//D �mŒ�x��.V/ ı �mŒ1�.V/C �mŒ1�.V / ı �mŒ���;
thus establishing (6-45).

To verify (6-46), recall the definitions ��# D d hol�# and hol�# W B
� .W#/!R=Z from

Section 2.5’s Part 1(b). Recall also the bundles and maps in (2-40) and (2-41). Use
zzB�p1;p2.Mt/, zB

�
p2�p1

.Mt/, B� .Mt/ and C.Mt/ to denote the terms, top to bottom, in
the right column of (2-40). (zB�p2�p1.Mt/ and zB�p1�p2.Mt/ denote the same space, but
our convention is to use the notation zB�p2�p1.Mt/ when it is equipped with the U.1/–
action associated to the Thom form # 0p2�p1 given in (2-39). Thus, zB�p1�p2.Mt/ is
endowed with the dual U.1/–action.) Recall the maps hol�W zB��.V/!

zzBp1;p2.Mt/ and
holx�W zB

�
x�
.V/! zzBp1;p2.Mt/ from (2-41) and fix # 0p1 , # 0p2 , �# 0p1 and �# 0p2 as was

done there, using them to define both h�W zB��.V/!R=Z and hx�W zB
�
x�
.V/!R=Z, as

prescribed in Section 2.5’s Part 3(a).

To interpret u�# in terms of inner products, consider now the analog of (6-34): Let
z…
Mt
W#
W zB�p2�p1.W#.S//! zB�p2�p1.Mt/ denote the pullback of …MtW#

W B� .W#.S//!

B� .Mt/ under the map �p2�p1 W zB�p2�p1.Mt/! B� .Mt/. Let

Qs1W zB�p2�p1.W#.S//! zB��.V.S// and Qs2W zB�p2�p1.W#.S//! zB�x�.V.S//

be the direct analogs of their counterparts in (6-34). The analog of (6-33) in the present
context reads

(6-47)

zB�p2�p1.W#.S//

�W
�#
��

Qs1�Qs2
// zB�
�
.V/�zB�p2�p1 .Mt/

zB�
x�
.V/

�V
�
��V
x�
��

embeds
// zB�
�
.V/�zB�

x�
.V/

�V
�
��V
x�
��

B�.W#.S//
s1�s2

//B�.V.S//�B�.Mt/B
�.V.S// embeds

//B�.V.S//�B�.V.S//

Now observe that:

� On the top row, the pullback of the U.1/DR=Z–valued function

(6-48) h� �1C 1� hx�

on zB�
�
.V/� zB�

x�
.V/ to zB�

�
.V/�zBp2�p1 .Mt/

zB�
x�
.V/ � zB�

�
.V/� zB�

x�
.V/ does not

depend on the choices of # 0p1 , # 0p2 , �# 0p1 and �# 0p2 .

� The preceding function is also invariant under the diagonal U.1/–action on
zB�
�
.V/ �zBp2�p1 .Mt/

zB�
x�
.V/, and hence descends to define an R=Z–valued
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function on the space in the middle of the bottom row of the diagram, that
is, B� .V.S//�B� .Mt/ B

� .V.S//:

� The R=Z–valued function hol�# on B� .W#/ agrees with the pullback of the
preceding function under the left arrow in the bottom row of the diagram, and
we have

.�W#/� hol�# D . Qs1 � Qs2/
�.h� �1C 1� hx�/:

Taking the differential on both sides, we have

.�W#/���# D . Qs1 � Qs2/
�.#� � 1C 1�#x�/D . Qs1/

�#�C . Qs2/�#x�

on zB�p2�p1.W#.S//.

� Recalling (2-43), we then have

��# D .s1 � s2/�.�� � 1C 1� �x�/;

since . Qs1/�. z…�/�# 0p2�p1D�. Qs2/
�. z…x�/

�# 0p1�p2 on zB�
�
.V/�zB�p2�p1 .Mt/

zB�
x�
.V/.

Meanwhile, the 1–form �� � 1C 1 � �x� on B� .V/ � B� .V/ is nothing but
c.��˝ 1/C c.1˝ �x�/.

(ii) (verifying (6-20)) These identities follow directly from applying (6-21) to
W DWt , W1 D V and W2 D V, with u taken to be respectively to be u�t� , u∅ D 1,
u�t and u�tC . These cochains have natural interpretations as inner products:

u�t� D c.ux�˝ 1/; u∅ D c.1˝ 1/; u�t D c.ux�˝ u�/; u�tC D c.1˝ u�/:

In the case of item (2) of (6-20), ıu∅D 0 and therefore the last term of (6-21) vanishes.
Meanwhile, a straightforward adaptation of (2-51) to the parametrized setting identifies
yKŒu� in the cases of uDu�t� , u�t and u�tC respectively with the last terms of (6-20)’s
items (1), (2) and (4).

The figures below illustrate the identities in (6-19) and (6-20), as well as hint on their
origins.

� For (6-19):

(6-49) C D �

S
C

S
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� The identity (6-20)(1):

(6-50) D � S C S C S

� The identity (6-20)(2):

(6-51) D C S � S

� The identity (6-20)(3):

(6-52) D � S

C S C S � S

� The identity (6-20)(4):

(6-53) D C S � S � S

In each cobordism in the pictures, s increases from left to right. They are read as
follows: The dashed lines (if present) in the cobordisms stand for 3–manifolds that split
the cobordisms into a composition of what we call “factor cobordisms”. Each factor
cobordism (or the cobordism itself, if it is not split) in the pictures is associated with
a pair .W; /, where W is a cobordism and  is a 1–submanifold (possibly empty)
of W , the latter being represented by dotted arcs or circles. This pair is associated with
a cobordism map of the form

(i) �mŒu � (resp. �mŒ� �) when .W; / is not cylindrical;

(ii) ynŒu � (resp. �mŒdh �) when .W; / is cylindrical, namely, it is of the form
R� .Y; p/, p being a (possibly empty) 0–submanifold in Y ;

(iii) yKŒu � (resp. yKŒ� �) when there is a shaded region in the cobordism.

Composition of cobordisms along the dashed lines correspond to compositions of maps
associated to the factor cobordisms. For example, the dashed line in the first term

Geometry & Topology, Volume 24 (2020)



HFD HM , V 3597

of (6-49) splits the composite cobordism W# into V � � on the left and V � ∅ on
the right. The left part V � � corresponds to the map V1 D �mŒu��.V/, and the right
part corresponds to the map V �0 D �mŒu∅�.V/; therefore this term stands for V �0 V1 .
The dashed line in the last term splits W#.S/ into W#.S/ � �# on the left and the
product cobordism R�M# �∅ on the right. The former corresponds to the map H#

according to (6-43), and the latter corresponds to @# . Thus this term corresponds to
the term @#H# in (6-19). With  again standing respectively for �# , �t� , ∅, �t
and �tC in (6-49), (6-50), (6-51), (6-52) and (6-53), the pictures suggest how each
term of the identity arises from Stokes’ theorem, that is, as the integral u over a
constituent stratum of the “boundary” (to be more precise, see (6-28)) of the relevant
compactified parametrized moduli space. Each such constituent stratum corresponds
to the moduli space of a particular type of “broken W –paths” (in keeping with [17]’s
terminology; see Definition 23.3.2 therein). The type for each term is specified by the
corresponding picture, with dashed lines signifying “breaking points” of the broken
W –path. The integrands in the identities, being defined from differentials of holonomy
maps along  , take the simple form of an inner product under the decomposition when
the dotted arc/circle  does not intersect the dashed line. When they do intersect, the
dashed line splits  into two arcs 1 and 2 , each lying in a factor cobordism under the
decomposition. The holonomy along  being the product of the holonomy along 1
and that along 2 (see eg (6-48)), the integral of � over the spaces of such broken
W –paths is thus a sum of two terms, each involving integrating over one of the �i .
For example, this accounts for the two terms on the left-hand side of (6-19), as well as
the last two terms of (6-53).

Step 5 The identities (6-19) and (6-20) reduce the proof of (6-16) and (6-17) to the
next lemma, with the maps H 0, A0, B 0, C 0 and D0 from (6-16) and (6-17) taken to be

H 0 DH � H; A0 D A� A; B 0 D B � B; C 0 D C � C; D0 DD� D;

H, A, B, C and D being the maps from (6-19) and (6-20), and H , A , B , C and D

being as in the lemma below.

Lemma 6.8 There exist maps H , A , B , C and D , and Z# and Zt , such that

(6-54) Id#� ŒZ#; @#�odd D �mŒu�# �.W#/C ŒH; @#�even;

Idt� ŒZt; @t�odd D �mŒu�t� �.Wt/C ŒA; y@t�evenC B yUt;(6-55)(1)

0D �mŒ1�.Wt/� ŒB; y@t�odd;(6-55)(2)
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Œy@t; X�even� Œ yUt; Zt�even D �mŒu�t �.Wt/C ŒC; y@t�odd� yUtAC D yUt;(6-55)(3)

Idt� ŒZt; @t�odd D �mŒu�tC �.Wt/C Œy@t; D�even� yUtB:(6-55)(4)

Proof These are also consequences of (6-38), taking W D W#; Wt for (6-54) and
(6-55), respectively, and with the same choices of u as in the previous step. The splitting
3–manifolds Y0 �W however are chosen differently from those in the previous step.

In the case of W DW# , we take .W1/c to be a tubular neighborhood of �# , U.�#/,
and so in this case Y0 D @.W1/c ' S1 � S2 , and .W2/c D W# nU.�#/. There is a
diffeomorphism taking the pair ..W1/c ; �#/ D .U.�#/; �#/ to .S1 � B3; S1 � f0g/,
f0g 2 B3 denoting the center of the 3–ball B3 . We denote the embedded circle
S1�f0g � S1�B3 by 0 . In the case when W DWt , we take Y0 to be the 3–sphere
St � Wt described in Step 3. This 3–sphere decomposes Wt as a connected sum
of R�M1 and R�M2 , and for both i D 1; 2, .Wi /c � .Wt/c is a manifold with
boundary diffeomorphic to a product Œ�1; 1��Mi with an interior 4–ball removed.
The rest of the proof is divided into several parts, (i)–(viii) below.

(i) (alternative metrics and perturbations) A preliminary issue needs to be addressed
before we are ready to apply (6-38). Recall that in the statement of the lemma, the cobor-
dism maps �mŒu�.W#/ and �mŒu�.Wt/ refer respectively to �mŒu�.W#; sW# ;$W# I�W#/

and �mŒu�.Wt; sWt ;$Wt I�Wt/, where the metrics and the closed 2–forms !W#

and !Wt are defined via the decompositions of W# and Wt along M# and Mt .
To apply the composition formula (6-21) or (6-38) to the alternative decomposition
described in the preceding paragraph, we need to work with cobordism maps associated
to different choices of metrics and perturbation forms, which are compatible with
the aforementioned alternative decomposition of W# and Wt . However, we claim
that the identities (6-54) and (6-55) are equivalent to identities of the same form
for �mŒu�.W; sW ; 2!CI�W /, W DW# or Wt , with the latter endowed with different
metrics and perturbation forms ! , as long as:

(6-56) The differences are supported on compact regions in W, and in the case of the
perturbation form !, the difference is exact.

(The maps H , A , B C and D will be altered, but that is inconsequential.) This claim
follows from [17, Proposition 25.3.8] (extended in the manner previously described,
and with changes in perturbation forms incorporated).

Slightly reformulated, the hat version of the identity in [17, Proposition 25.3.8] takes the
following form: Suppose there is a path of pairs consisting of a metric and a perturbation
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form on W such that (6-56) holds for the entire path. Denote by �mCŒu�.W / and�mŒu�.W /, respectively, the version of �m�Œu�.W / associated to the pair at the end and
at the beginning of the path. Then

(6-57) �mCŒu�.W /� �m�Œu�.W /D ŒyZŒu�; y@�CyZŒıu�;
where the yZ–maps are defined using parametrized moduli spaces associated to this
path of metrics and perturbations parallel to the definition of the previously introduced
yK–maps, and u is the parametrized variant of u as before. (The Z–maps are analogs
of the LK–maps in [17, Proposition 25.3.8].)

Remark Our signs differ from those in [17, Proposition 25.3.8] because we adopt
the “fiber last” convention of orienting the parametrized moduli spaces, as opposed
to [17]’s “fiber first” convention. This is preferred as it is more consistent with the
orientation convention used for (6-38).

The preceding identity in hand, suppose identities of the form (6-54) and (6-55) are
established for a particular pair of metric and perturbation form. Use �m�Œu�.W / for
the version of cobordism maps associated to this pair, and use H� , A� , B� C� and
D� to denote the version of maps H , A , B C and D in this version of (6-54) and (6-55).
On the other hand, use �mCŒu�.W / to denote the version of cobordism maps associated
to the pair of metric and perturbation appearing in the statement of the lemma. Then
combining the � versions of the identities (6-54) and (6-55) with (6-57), one would
have a C version of the identities (6-54) and (6-55) with respect to a new set of maps
H , A , B C and D , if the latter is set to be

HC D H��yZŒ1�.W#/;

AC D A��yZŒu�t� �.Wt/;

BC D B�CyZŒ1�.Wt/;

CC D C��yZŒu�t �.Wt/;

DC D D�CyZŒu�tC �.Wt/:

To reach the preceding conclusion, we made use of the identities

(6-58)

yZŒıu�t� �.Wt/D
yUtyZŒ1�.Wt/;

yZŒıu�tC �.Wt/D�yZŒ1�.Wt/
yUt;

yZŒıu�t �.Wt/D�yZŒu�tC �.Wt/
yUt� yUtyZŒu�t� �.Wt/:
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In complete parallel to the yK–analogs mentioned in the paragraph preceding (6-49),
these identities are also straightforward adaptations of (2-51).

Now permitted to work with alternative metrics and perturbation forms by the preceding
arguments, we endow W# and Wt with the following sort of metrics and perturbations
for the rest of this proof. For W DWt or W# , we require the metric:

� To agree with a product metric on a tubular neighborhood U.Y0/' Œ�1; 1��Y0
of Y0 �W , where Y0 is S1 �S2 in the case of W# and S3 in the case of Wt .
These are endowed with the standard metrics. (In particular, these metrics on Y0
have positive scalar curvature.)

� To agree with the original metric on the complements of .W#/c and .Wt/c .

� In the case of W# , have restriction to .W1/c ' S1 �B3 that has nonnegative
scalar curvature and is invariant under rotation along the S1 factor.

The abbreviated notation �mŒu�.W#/ and �mŒu�.Wt/ also take on different meanings for
the rest of this proof: they will stand respectively for �mŒu�.W#; sW# ; 2 P!

C
# I�W#/ and�mŒu�.Wt; sWt ; 2 P!Ct I�Wt/, where the metrics are as previously mentioned, and P!#

and P!# are closed 2–forms that

� vanish over U.Y0/;

� are cohomologous respectively to !# and !t ;

� agree respectively with !# and !t on the complements of .W#/c and .Wt/c ;

� are such that P!# vanishes over .W1/c ' S1 �B3 �W# .

Such P!# and P!# exist as !W# and !Wt both restrict to exact forms on Y0 , and !#

restricts to an exact form on .W1/c ' S1 �B3 �W# .

Now write W DW2 ıW1 and define W.S/ according to the recipe (6-23). In the case
W DW# , W1 is regarded as a cobordism from the empty set to S1�S2 ; the �1–end
of W2 consists of two connected components, S1�S2 and M# , but only the S1�S2

component is “glued to” W1 to form W.S/. See Figure 1, top left, for an illustration.
In the case W DWt , the C1–end of W1 consists of two connected components, M1

and S3 , and the �1–end of W2 consists of two connected components as well, S3

and M2 , but only the S3–ends from both sides are “glued” to form W.S/. See Figure 1,
top right. To indicate the 3–manifold where gluing take place in the composition, we
write W# DW2 ıS1�S2 W1 and Wt DW2 ıS3 W1 .
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(ii) (surgered cobordisms) Recall also from Step 3 above that surgery along �# �W#

and St �Wt gives respectively the cobordisms W 0# ' R�M# and W 0t ' R�Mt .
We decompose these surgered cobordisms in a way compatible with the decomposition
of W# and Wt above. In the case when W DW# , the corresponding surgered manifold
is decomposed as W 0# D W2 ıS1�S2 W

0
1 , with .W 01/c ' D

2 � S2 and W2 being as
in the decomposition of W# , W# D W2 ıS1�S2 W1 . Like .W1/c � .W#/c , we also
equip .W 01/c with a metric with nonnegative scalar curvature. See Figure 1, bottom
left, for an illustration. In the case when W D Wt , the surgered manifold has two
connected components, W 0t D �W1 t �W2 . Each connected component �Wi ' R�Mi

for i D 1; 2 is obtained from Wi �Wt by filling in a 4–ball at the boundary 3–sphere
of Wi . Let Bc denote a closed 4–ball equipped with a metric which has nonnegative
scalar curvature, and that is cylindrical on a collar of the boundary. Let B be the
corresponding manifold with one cylindrical end, regarded as a cobordism from the
empty set to S3 , and let B denote the reverse cobordism. We decompose �W1 and �W2 ,
respectively, as �W1 DB ıS3 W1 and �W2 DW2 ıS3 B, where W1 and W2 are as in
the decomposition of Wt . See Figure 1, bottom right, for an illustration.

We now apply the decomposition theorem (6-21) and (6-38) to the composite cobordisms
W DW# , W 0# , Wt and W 0t described above, and illustrated schematically in Figure 1.
In each of the pictures, the dashed line represents Y0 , the 3–manifold where composition
takes place. The shaded regions in each picture, W2�W# and W2�W 0# , and W1�Wt
and W1 � W 0t , are associated with nonbalanced perturbation forms in the relevant
Seiberg–Witten equation, implying that the corresponding moduli spaces of Seiberg–
Witten solutions contain no reducible elements.

(iii) (some useful facts about VC.Y0/) In all four pictures, the Spinc –structure sW
on W restricts to the trivial Spinc –structure on Y0 , denoted by s0 below (s0 is
characterized by the condition c1.s0/D 0). The 3–manifolds Y0 also all carry positive
scalar curvatures, so that Co.Y0/ is trivial and the Floer complex is yC.Y0; s0/ D
C u.Y0; s0/. In fact, Y0 D S1 �S2; S3 respectively in the cases of W# and Wt , and
in both cases VC.Y0; s0/ are explicitly described in [17] (see eg Chapter 36 therein).
We write

(6-59) . yC.S1 �S2; s0/; y@/D .KŒu; y�O1Z ; 0/;

where KŒu; y� is the (graded) polynomial algebra with variables u and y , deg.u/D�2
and deg.y/D 1, and O1Z denotes an element with degree �1. Similarly,

. yC.S3; s0/; y@/D .KŒu�O1; 0/; . LC.S3; s0/; y@/D .KŒu
�1�L1; 0/;
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Figure 1: Top left: W# DW2 ıW1 ; .W1; �#/' .S

1 �B3; 0/; s increases
from left to right. Top right: Wt DW2 ıW1 ; �D �1[x �2 ; x�D x�1[xx x�2 .
Bottom left: W 0# D W2 ıW

0
1 ' R �M# ; W 01 ' D2 � S2 . Bottom right:

W 0t D
OW1 t �W2 ; �Wi D Wi [S3 B

4 ' R �Mi for i D 1; 2; .�1/i ypi D
�i [ i [x�i 'R� f.�1/ipig �R�Mi .

O1 2 yC.S3; s0/ and L1 2 LC.S3; s0/ being respectively the elements of degree �1 and 0
explicitly described in [17]. (In our convention, the plane field on S3 denoted by Œ���
and the plane field on S1�S2 denoted by Œ�0� in [17] both have degree 0.) We also use
the notation un O1 and u�n L1 for n 2Z�0 to denote respectively the element in Cu.S3/

with gr–grading Œ�0��1�2n (equivalently, gr–grading Œ�0��2�2n), and the element
in Cu.S3/ with gr–grading Œ�0�C 2n (equivalently, gr–grading Œ�0�C 2n). The U –
action on C.S3/ is also well known: hc0; U .S3/ci D 1 for any pair c; c0 2 C.S3/ with
gr.c/� gr.c0/D 2.

We are now ready to proceed with:

(iv) (verifying (6-54)) To compute �mŒu�# �.W#/, first note that the 1–cochain u�# has
the simple form of an inner product, u�#D c.u0˝1/ with respect to the decomposition
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of W# shown in Figure 1, top left. Thus, (6-21) is directly applicable. Noting that
ıu�# D 0, this gives us

(6-60) �mŒ1�.W2/�mŒu0 �.S1 �B3/D �mŒu�# �.W#/C ŒyKŒu�# �.W#/; y@#�:

This is compared to the formula obtained by applying (6-21) to W 0# , decomposed as
shown in Figure 1, bottom left, and with the 1–cochain taken to be u D 1D c.1˝ 1/.
Here we have

(6-61) �mŒ1�.W2/�mŒ1�.D2 �S2/D �mŒ1�.W 0# /C ŒyKŒ1�.W 0# /; @#�:

If the manifolds W1 ' S1 �B3 and W 01 'D
2 �S2 above are regarded cobordisms

from the empty set to .S1 �S2; s0/, then �mŒu�.W1/ and �mŒu�.W 01/ are both elements
of yC.S1 � S2; s0/. Alternatively (in line with the definition of closed 4–manifold
invariants in [17]), for a cobordism W from the empty set to Y , �mŒu�.W / 2 yC.Y / can
be defined as �mŒu�.W /D �mŒu�. PW /O1;
where PW is a cobordism from S3 to Y obtained by removing a 3–ball from the
interior of W , and u 2 C.B� . PW /IK/ is used to denote the cochain induced from that
in C.B� .W /IK/. With W1 ' S1�B3 and W 01 'D

2�S2 endowed with the metrics
prescribed above, the values �mŒu0 �.S1�B3/ and �mŒ1�.D2�S2/ are also well known
(and follow from simple computations): in the notation of (6-59),

�mŒu0 �.S1 �B3/D O1Z 2 yC.S1 �S2/;�mŒ1�.S1 �B3/D y O1Z 2 yC.S1 �S2/;�mŒ1�.D2 �S2/D O1Z 2 yC.S1 �S2/:
Inserting these into (6-60) and (6-61), we have:

(6-62) �mŒu�# �.W#/D �mŒ1�.W 0# /C ŒyKŒ1�.W 0# /� yKŒu�# �.W#/; @#�:

As observed before, W 0# 'R�M# . When the latter is endowed with cylindrical metric
and perturbation, �mŒ1�.R�M#/D Id. Thus, since ı.1/D 0, by (6-57) again,

�mŒ1�.W 0# /D Id#� ŒyZŒ1�.W
0

# /; @#�;

where yZŒ1�.W 0# / is defined using a path of metrics/perturbations from the original
version to the cylindrical one. Combining this with (6-62), we arrive at (6-54).

(v) (verifying (6-55): preparations) Consider Figure 1, top right, and write �mŒu�.W1/
as a map from yC.M1/ to yC.M1/˝ yC.S

3/; �mŒu�.W2/ as a map from yC.S3/˝ yC.M2/
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to yC.M2/. To simplify notation, we denote �tC; �t� �Wt respectively as � and x�
below. Recall that the point x D �\Y0 (which is in Wt ) separates � into �1[�2 ,
with �i �Wi for each i D 1; 2. We denote the point of intersection of x� with Y0 as xx ,
and x�D x�1[x�2 . Recall also the arcs 1 �Bc and 2 �Bc from Step 3. (In Step 3,
Bc and Bc were respectively denoted by B1 and B2 .) In the surgered manifold
W 0t D

�W1 t �W2 , for each i D 1; 2, i join with �i [x�i at fx; xxg � S3 to form paths
in �Wi 'R�Mi . We denote the path in �W1 by � yp1 and that in �W2 by yp2 , as they are
diffeomorphic respectively to the paths R�f�p1g �R�M1 and R�fp2g �R�M2

under suitable diffeomorphisms taking �Wi to R�Mi . See Figure 1, bottom right.

We begin with some computations of �mŒu�.W1/. Express �mŒu�.W1/ in block form as
in (2-44). First, note the following facts: C.M1/DCo.M1/ and Co.S3/D∅; Sm#

[
.W1/

vanishes for all # and [ while m#
[
.W1/ vanishes except when #D o and [D os . This

means that, when �mŒu�.W1/ is given by the simpler formula (2-20) (for example when
u D 1), only one term, �.@oo.M1/˝ x@

s
u.S

3//moosŒu�.W1/ on the lower left, can be
nonvanishing. However, x@su.S

3/D 0. Thus, �mŒu�.W1/D 0 for such u .

More generally, the lower row of (2-44) contains additional terms as explained in
Remark 2.2. These correspond to the last terms in both lines of (2-45). According to
the discussion following (2-45), in the cases of �mŒ��1 �.W1/ and �mŒ�x�1 �.W1/, these
terms are of the same form as those in (2-45), but with the map xnsuŒdh yp2 � therein
replaced respectively by

1˝xnsuŒdhyx�.S
3/� xnsuŒdh yp1 �.M1/˝ 1D xn

s
uŒdhyx�.S

3/ for �mŒ��1 �.W1/;
1˝xnsuŒdhyxx�.S

3/ for �mŒ�x�1 �.W1/:
In the present context, the additional term in the lower right corner of (2-44), being a
product of one of the expressions above with muosŒ1�.W1/, vanishes because the latter
does. Thus, for both �mŒ��1 �.W1/ and �mŒ�x�1 �.W1/, all entries in (2-45) vanish except
possibly for the lower left entry, which is respectively

�moouŒ��1 �.W1/D xnsuŒdhyx�.S
3/moosŒ1�.W1/;�moouŒ�x�1 �.W1/D xnsuŒdhyxx�.S
3/moosŒ1�.W1/:

Now, for any p 2 S3 ,

hc0; xnsuŒdh yp�.S
3/ci D hc0; .Up/

s
u.S

3/ci D

�
1 if cD L12Cs.S3/ and c0D O12Cu.S3/,
0 otherwise:
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Thus, hcC;1 ˝ c; �mŒ��1 �.W1/; c�;1i D hcC;1 ˝ c; �mŒ�x�1 �.W1/; c�;1i vanishes for all
c 2 C.S3/ and c˙;1 2 C.M1/D Co.M1/ except when cD O1, in which case

hcC;1˝ O1; �mŒ��1 �.W1/; c�;1i D hcC;1˝ O1; �mŒ�x�1 �.W1/; c�;1i
D hcC;1˝ L1; LmŒ1�.W1/; c�;1i:

Note that xnŒu�.S3/ vanishes for all u of odd degrees, since all pairs of c; c0 2 C.S3/,
the difference gr.c0/ � gr.c/ is even. Together with the preceding arguments, this
implies that in the block form (2-44), all entries of �mŒ�x�1 ^ ��1 �.W1/ also vanish
except possibly for the lower left entry, which is

�moouŒ�x�1 ^ ��1 �.W1/D xnsuŒdhyxx�.S
3/moosŒ��1 �.W1/Cxn

s
uŒdhyx�.S

3/moosŒ�x�1
�.W1/

DmoosŒ��1 �.W1/Cm
o
osŒ�x�1

�.W1/;

and hcC;1˝ c; �mŒ�x�1 ^ ��1 �.W1/; c�;1i vanish for all c 2 C.S3/ and c˙;1 2 C.M1/D

Co.M1/ except when cD O1, in which case

hcC;1˝ O1; �mŒ�x�1 ^ ��1 �.W1/c�;1i D hcC;1˝ L1; LmŒ��1 C �x�1 �.W1/c�;1i:
Imitating physicists’ notation, we use �mŒu�.W1/jci for c 2 Cu.S3/ to denote the map
from yC.M1/D LC.M1/ to itself defined by˝

cC;1; �mŒu�.W1/jci.c�;1/˛D hcC;1˝ c; �mŒu�.W1/.c�;1/i:
Similarly, LmŒu�.W1/jci for c 2 Cs.S3/ will denote the map from yC.M1/D LC.M1/ to
itself defined by˝

cC;1; LmŒu�.W1/jci.c�;1/
˛
D hcC;1˝ c; LmŒu�.W1/.c�;1/i:

Also, hcj�mŒu�.W2/ will denote a map from yC.M2/ to itself given by˝
cC;2; hcj�mŒu�.W2/.c�;2/˛D hcC;2; �mŒu�.W2/.c˝ c�;2/i:

(vi) (verifying (6-55)(2)) In this case, the cochain u D 1 2 C.B�loc.Wt/IK/ can be
written as an inner product, 1D c.1˝ 1/, and (6-21) applies. Noting that ı.1/D 0, in
this context (6-21) gives, with respect to the factorization yC.Mt/D yC.M1/˝ yC.M2/,X

c2Cu.S3/

��mŒ1�.W1/jci�˝ �hcj�mŒ1�.W2/�D �mŒ1�.Wt/C ŒyKŒ1�.Wt/; y@t�:
The left-hand side of the preceding formula vanishes, since we saw that �mŒ1�.W1/D 0.
This directly leads to (6-55)(2), with B set to be

BD�yKŒ1�.Wt/:

Geometry & Topology, Volume 24 (2020)
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(vii) (verifying (6-55)(1), (4)) As with in the proof of (6-20), in cases (1), (4) and (3),
the relevant cochains do not take the simple form as an inner product under the
decomposition, and instead of (6-21), the more delicate formula (6-38) is required.
To begin, We again reexpress the formulas (6-55)(1), (3), (4) of in terms of the more
concrete �� and �x� , making use of the identities (6-18) as well as the previously
established (6-55)(2):

Idt� ŒyZt; y@t�odd D �mŒ�x��.Wt/C Œ PA; y@t�evenC BynŒdht�;(6-63)(10)

Œy@t; X�even� ŒynŒdht�; Zt�even(6-63)(30)

D �mŒ�x� ^ ���.Wt/C Œ PC; y@t�odd� ynŒdht� PAC PDynŒdht�;

Idt� ŒyZt; y@t�odd D �mŒ���.Wt/C Œy@t; PD�even� ynŒdht�B;(6-63)(40)

where

ynŒdht�.Mt/ WD 1˝ ynŒdh yp2 �.M2/� ynŒdh yp1 �.M1/˝ 1;

and PA , PC and PD are related to A , B , C and D via formulas parallel to those in (6-42)
relating PA, PC and PD to A, B, C and D.

We omit the proof of .10/ above as its proof is entirely parallel to that for .40/. To
proceed with the proof of the latter, we first express �� as a sum of inner products in
parallel to (6-46). Namely, we claim that, in this context,

(6-64) �� D c.��1 ˝ 1/C c.1˝ ��2/:

Once this is established, applying (6-38) in this case would yield

(6-65)
X

c2Cu.S3/

��mŒ��1 �.W1/jci˝ hcj�mŒ1�.W2/C �mŒ1�.W1/jci˝ hcj�mŒ��2 �.W2/�
D �mŒ���.Wt/C ŒyKŒ���.Wt/; y@t�evenC ynŒdht�yKŒ1�.Wt/

D �mŒ���.Wt/C ŒyKŒ���.Wt/; y@t�even� ByKŒ1�.Wt/:

According to the computation of �mŒu�.W1/ in part (v) above, the second term on the
left-hand side of the above vanishes, while the first term is given by

�mŒ��1 �.W1/jO1i˝ hO1j�mŒ1�.W2/D LmŒ1�.W1/jL1i˝ hO1j�mŒ1�.�W2/:
Filling 3–balls at the S3–end of W1 and W2 to get �W1 and �W2 as shown in Figure 1,
bottom right, we see that:
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(6-66)

LmŒ1�.W1/jL1i D LmŒ1�.�W1/C Œ LKŒ1�.�W1/; L@.M1/�odd

D �mŒ1�.�W1/C ŒyKŒ1�.�W1/; y@.M1/�odd;

hO1j�mŒ1�.W2/D �mŒ1�.�W2/C ŒyKŒ1�.�W2/; y@.M2/�odd:

Combining these with (6-65), we have

(6-67) �mŒ1�.W 0t/
D �mŒ1�.�W1/˝ �mŒ1�.�W2/
D �mŒ���.Wt/C ŒyKŒ���.Wt/; y@t�even� ByKŒ1�.Wt/� ŒyKŒ1�.W

0
t/;
y@t�odd:

Since for both i D 1; 2 �Wi 'R�Mi , and when equipped with cylindrical metric and
perturbation, �mŒ1�.R�Mi /D Id, by (6-57) we then have that

�mŒ1�.W 0t/D Idt� ŒyZŒ1�.W 0t/; y@t�odd;

where yZŒ1�.W 0t/ is defined via a path of metrics/perturbations from the original version
on W 0t 'R�Mt to the cylindrical version. Combining this with (6-67), modulo the
proof of (6-64), we have verified (6-63).40/, with PD and Zt therein set respectively to be

(6-68) PDD�yKŒ���.Wt/; Zt D yZŒ1�.W
0
t/� yKŒ1�.W

0
t/:

Item (6-63).10/ is derived using the same arguments, with PA set to be

PAD yKŒ�x��.Wt/:

We now return to the task of verifying (6-64). This is again done following the strategy
outlined in the end of Step 3 above. Recall the definitions of the bundles

z��W
zzB��.W /! B� .W / and ��W zB��.W /! B� .W /

from the diagram (2-41). Let z��1 W
zzB�
�1
.W1/!B� .W1/ and z��1 W

zzB�
�2
.W2/!B� .W2/

be U.1/�U.1/–bundles defined in a similar manner, namely by the commutative
diagrams

zzB�
�1
.W1.S//

zz…@
�1 //

z��1

��

zB��p1.M1/�zB�x .S3/

�p1��x

��

B� .W1.S//
…@
�1 // B� .M1/�B� .S3/

zzB�
�2
.W2.S//

zz…@
�2 //

z��2

��

zB��x.S3/�zB�p2.M2/

�x��p2
��

B� .W2.S//
…@
�2 //B� .S3/�B� .M2/

where …@
�i

for i D 1; 2 are defined similarly to their cousins in Section 2: …@
�1
D

…
CM1
W1
�…S

3

Wi
and …@

�2
D…S

3

W2
�…

CM2
W2

, with …S
3

Wi
now as defined in (6-31). In the
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above, the sign ˙ in …˙MiWi
was introduced to distinguish between the two Mi –ends

of Wi , that is, …˙MiWi
respectively denote the maps of taking limits to the Mi –end

at s ! ˙1. Factor zz…@
�1

and zz…@
�2

respectively as zz…@
�1
D
zz…
CM1
W1

�
zz…S

3

W1
and

zz…@
�2
D
zz…S

3

W2
�
zz…
CM2
W2

.

Let
zzzB�
x;�
.Wt.S// be the U.1/�3–bundle over B� .Wt.S// defined by the commutative

diagram
zzzB�
x;�
.Wt.S//

zz��
//

zz�x
��

zzz�x;�

((

zB�x .Wt.S//

z�x

��
zzB�
�
.Wt.S//

z��
//

z�
��

B� .Wt.S//

zB�
�
.Wt.S//

��

66

We have the following variant of (6-33) in the present context:

(6-69)

zzzB�
x;�
.Wt.S//

zzz�x;�

��

QQs1�QQs2
// zzB�
�1
.W1.S//�zBx.S3/

zzB�
�2
.W2.S//

z��1�z��2

��

// zzB�
�1
.W1.S//�

zzB�
�2
.W2.S//

z��1�z��2

��

B� .Wt.S//
s1�s2

//B� .W1.S//�B� .S3/B� .W2.S// //B� .W1.S//�B� .W2.S//

Fix now # 0p1 , # 0p2 and # 0x , together with compatible trivializations �# 0p1 , �# 0p2 and �# 0x ,
and use them to define R=Z–valued functions h� , h�1 and h�2 respectively on
zB�
�
.Wt.S//, zB��1.W1.S// and zB�

�2
.W2.S//. Let zzh� , zh�1 and zh�2 respectively denote

their pullbacks to
zzzB�x;�.Wt.S//;

zzB��1.W1.S// and zzB��2.W2.S//:

Then, arguing as in the paragraph following (6-48), we see that zzh� agrees with the
pullback of the function .zh�1 � 1C 1 � zh�2/W

zzB�
�1
.W1.S// �

zzB�
�2
.W2.S// ! R=Z

via QQs1 � QQs2 , and we have

zz��x z�
�#� D d

zzh� D .QQs1 � QQs2/�.dzh�1 � 1C 1� dzh�2/

D .QQs1 � QQs2/�.z��W1#�1 � 1C 1� z�
�
W2
#�2/:

Note that both sides of the preceding equation depends only on the choices of # 0p1
and # 0p2 , independent of all other choices made to (simultaneously) define h� , h�1
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and h�2 . Meanwhile, note that

zzz��x;��� D
zz��x z�

�#��
zz��x .
z…
CM2
Wt

/�# 0p2 C
zz��x .
z…
CM1
Wt

/�# 0p1 ;

z���1��1 D z�
�
W1
#�1 � .

zz…S
3

W1
/�# 0xC .

zz…
CM1
W1

/�# 0p1 ;

z���2��2 D z�
�
W2
#�2 C .

zz…S
3

W2
/�# 0x � .

zz…
CM2
W2

/�# 0p2 ;

and, over zzB�
�1
.W1.S//�zBx.S3/

zzB�
�2
.W2.S// ,!

zzB�
�1
.W1.S//�

zzB�
�2
.W2.S//,

.�.
zz…S

3

W1
/�# 0xC .

zz…
CM1
W1

/�# 0p1/� 1C 1� ..
zz…S

3

W2
/�# 0x � .

zz…
CM2
W2

/�# 0p2/

D .
zz…
CM1
W1

/�# 0p1 � 1� 1� .
zz…
CM2
W2

/�# 0p2 :

Thus,
zzz��x;��� D .

QQs1 � QQs2/�.z���1��1 � 1C 1� z�
�
�2
��2/;

and hence, through (6-69),

�� D .s1 � s2/�.��1 � 1C 1� ��2/;

which means (6-64).

(viii) (verifying (6-55)(3)) The composition formula (6-38) in this case gives

(6-70) �mŒ�x� ^ ���.Wt.1//D �mŒ�x� ^ ���.Wt/C ŒyKŒ�x� ^���.Wt/; y@t�odd

�yKŒ���.Wt/ynŒdht�.Mt/�ynŒdht�.Mt/yKŒ�x��.Wt/

D �mŒ�x� ^ ���.Wt/C ŒyKŒ�x� ^���.Wt/; y@t�odd

� PAynŒdht�.Mt/C ynŒdht�.Mt/ PD:

To compute the left-hand side of the preceding formula, first use (6-64) and its sister
version for �x� to write

�x� ^ �� D s�1 .�x�1 ^ ��1/C s�1 ��1 ^ s�2 �x�2 C s�1 �x�1 ^ s�2 ��2 C s�2 .�x�2 ^ ��2/:

Combining this with the computation of �mŒu�.W1/ in part (v), we get

(6-71) �mŒ�x� ^ ���.Wt.1//
D �mŒ�x�1 ^ ��1 �.W1/jO1i˝ hO1j�mŒ1�.W2/

C�mŒ�x�1 �.W1/jO1i˝hO1j�mŒ��2 �.W2/C�mŒ��1 �.W1/jO1i˝hO1j�mŒ�x�2 �.W2/
C �mŒ1�.W1/jO1i˝ hO1j�mŒ�x�2 ^ ��2 �.W2/

D LmŒ�x�1
C��1 �.W1/j

L1i˝hO1j�mŒ1�.W2/C LmŒ1�.�W1/jL1i˝hO1j�mŒ�x�2C��2 �.W2/:
Geometry & Topology, Volume 24 (2020)
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In comparison to the identities from decomposing Wt , we have the following identity,
obtained by applying (6-38) (and its check version) to the decomposition of W 0t
described in Figure 1, bottom right. Recall that for the underlying decomposition
of W 0t , the paths .�1/i ypi split as .�1/i ypi D .x�i [ �i / [x;xx .i /. The arguments
leading to (6-46) imply that in the present setting,

�.�1/i ypi D c.��i ˝ 1/C c.�x�i
˝ 1/C c.1˝ �i /:

Then�mŒ��yp1 �.�W1.1//D LmŒ��yp1 �.�W1.1//
D LmŒ��1 C �x�1

�.W1/jL1iC
X

c2Cs.S3/

LmŒ�1 �.B/.c/ LmŒ1�.W1/jci;

�mŒ� yp2 �.�W2.1//D hO1j�mŒ��2 C �x�2 �.W2/Ch�mŒ�2 �.B/j�mŒ1�.W2/:
Remember that LmŒu�.B/ is a map from LC.S3/ to K, while �mŒu�.B/ 2 yC.S3/.
However, when deg.u/ is odd, both LmŒu�.B/ and �mŒu�.B/ must vanish, because all
generators of LC.S3/ (resp. yC.S3/) are of even (resp. odd) degree. Thus, the last terms
of both lines in the preceding expression vanish. Combining these with (6-71), we have

(6-72) �mŒ� ypt �.W 0t.1//
D �mŒ��yp1 �.�W1.1//˝ �mŒ1�.�W2.1//C �mŒ1�.�W1.1//˝ �mŒ� yp2 �.�W2.1//
D LmŒ��1C�x�1

�.W1/jL1i˝hO1j�mŒ1�.W2/C LmŒ1�.W1/jL1i˝hO1j�mŒ��2C�x�2 �.W2/
D �mŒ��t �.Wt.1//;

where ypt denotes the 1–chain yp2 � yp1 in W 0t D �W1 t �W2 , and � ypt WD � yp2 � � yp1 .
Now appy (6-38) and (6-57) to W 0t with u therein set to be � ypt ; we get

�mŒ� ypt �.W 0t.1//
D �mŒ� ypt �.W 0t/C ŒyKŒ� ypt �.W 0t/; y@t�evenC ŒyKŒ1�.W

0
t/; ynŒdht��even

D �mŒ� ypt �.R�Mt/C ŒyKŒ� ypt �.W 0t/�yZŒ� ypt �.W 0t/; y@t�even

C ŒyKŒ1�.W 0t/� yKŒ1�.W
0
t/; ynŒdht��even

D �mŒ� ypt �.R�Mt/C ŒyKŒ� ypt �.W 0t/�yZŒ� ypt �.W 0t/; y@t�even� ŒZt; ynŒdht��even;

where Zt is as in (6-68), and �mŒ� ypt �.R�Mt/D �mŒ� yp1 �.R�M1/˝�mŒ� yp2 �.R�M2/

denotes the version of the cobordism map when the metric and perturbation form
on R�Mt , as well as ypi � R�Mt , are invariant under the R–action. However,�mŒ� ypi �.R�Mi /D 0 by construction. (Recall (2-43) and (2-30).) Thus, the first term
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in the last line of the preceding formula vanishes. Putting all these together with (6-70)
and (6-72), we have

ŒyKŒ� ypt �.W
0
t/�yZŒ� ypt �.W

0
t/;
y@t�even� ŒZt; ynŒdht��even

D �mŒ�x� ^ ���.Wt/C ŒyKŒ�x� ^���.Wt/; y@t�odd� PAynŒdht�.Mt/C ynŒdht�.Mt/ PD:

This implies (6-63).30/, and hence also (6-55)(3), if we set

PCD yKŒ�x� ^���.Wt/; XD yZŒ� ypt �.W
0
t/� yKŒ� ypt �.W

0
t/

in these formulas. This finishes the proof of the lemma.

Remark 6.9 The preceding lemma has Yang–Mills analogs; see Theorem 7.16 and
Corollary 7.21 of [7]. A previous version of this article (arXiv:1204.0115v1) con-
tains sketches of an alternative proof, where the underlying geometric meanings of
computations done here are clearer.

We have now shown that V� defines a chain homotopy equivalence.

Step 6 We now verify the claim that V� and V �� intertwine with the A�.Mt/–action
on SUt. yC�.Mt; st; rŒw�tI�t// and the A�.M#/–action on CM�.M#; s#; rŒw�#I�#/

described in Parts 2 and 3 of the previous subsection. More precisely, for each QDUp
and t for  2 f Œ1�i gi [f

Œ2�
j gj , we shall show that there exist homomorphisms

ZQ�W CM�.M#; s#; rŒw#�I�#/! SUt.
yC�.Mt; st; rŒwt�I�t//;

Z
�
Q�W SUt.

yC�.Mt; st; rŒwt�I�t//! CM�.M#; s#; rŒw#�I�#/

satisfying
V�mQ �SUt.mQ/V� DZQ�@#C .�1/

degQDtZQ�;

V
�
� SUt.mQ/� .�1/

degQmQV
�
� D @#Z

�
Q�C .�1/

degQZ
�
Q�Dt:

We shall only verify the first line above, since the second line is basically the adjoint of
the first. Stated in terms of the decomposition (6-9), this amounts to verifying the set
of identities

V0Up � yUpV0 D y@tZU;0CZU;0@#;(6-73)(1)

V1Up � yUpV1� yKUpV0 D�
y@tZU;1CZU;1@#C yUtZU;0;(6-73)(2)

V0m �mV0 D�y@tZ;0CZ;0@#;(6-73)(3)

V1m CmV1� yKV0 D y@tZ;1CZ;1@#� yUtZ;0;(6-73)(4)
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where
ZU� D

�
ZU;0
ZU;1

�
; Z� D

�
Z;0
Z;1

�
;

and yKUp and yK are as defined in Part 3 of the last subsection. These are established
by arguments similar to those used to verify (6-3), (2-51) and (2-55).

To proceed, we define ZU� and Z� as follows. Let p � V be a path such that on
V � Vc ' .R� �M#/[ .RC �Mt/, p\ .V � Vc/ agrees with R˙ � fpg under the
diffeomorphisms in (2-8). Suppose also that the path p[ xp� V[Mt V DW# becomes
the line R� fpg � R�M# ' W

0
# after the surgery of W# along �# . (Equivalently,

xp[p � V [Mt V DWt also becomes R�fpg �R�Mt 'W 0t after the surgery of
Wt along St .) For each  2 f Œ1�i gi [f

Œ2�
j gj , define in a similar fashion an embedded

cylinder ‡ � V that ends at circles  � Y˙ on both ends of V. Now set

(6-74)

ZU;0 WD yKp.VI�V/D �mŒ�p�.VI�V/Cy‚tV0;
ZU;1 WD �mŒupu��.VI�V/D �mŒ�p���.VI�V/CŒ�mŒ���.VI�V/; y‚t�� y‚tZU;0;
Z;0 WD �mŒF‡ �.VI�V/;
Z;1 WD �mŒF‡u��.VI�V/D �mŒF‡���.VI�V/C‚tZ;0;

where yKp.VI�V/ is as defined in (2-50) for X D V and � D p with respect to the
X –morphism �V , and F‡ is as defined in (2-53).

With the preceding definitions, items (1) and (3) of (6-73) are direct consequences of
(2-51) and (2-56). To derive items (2) and (4), first rewrite them in terms of the more
concrete cochains, �p , �� and F‡ , using the now-established items (1) and (3) and
the identities (6-15):

.20/ Œ�mŒ���.V/; ynŒdh yp��even� ynŒdh yp ^ dht��mŒ1�.V/
D Œ�mŒ�p ^ ���.V/; y@�evenC ynŒdht�.V/�mŒ�p�.V/;

.40/ Œ�mŒ���.V/; ynŒu ��odd� ynŒu ^ dht��mŒ1�.V/
D Œ�mŒF‡���.V/; y@�odd� ynŒdht�.V/�mŒF‡ �.V/;

where u is the 0–cochain on B�loc.Y˙/ introduced in Part 2(b) of Section 2.5. Recall
that in our case  is used to denote both embedded circles in YC and Y� ; we use the
same notation u for the corresponding cochains on B�loc.YC/ and B�loc.Y�/. The same
convention will be applied to the YC and Y� versions of other cochains associated
to  that were constructed in Section 2.
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According to Proposition 25.3.4 of [17], verifying the identities .20/ and .40/ above is
equivalent to verifying that

(6-75)

�mŒd.�p ^ ��/�.V/D Œ�mŒ���.V/; ynŒdh yp��even� ynŒdh yp ^ dht��mŒ1�.V/
� ynŒdht�.V/�mŒ�p�.V/;�mŒd.F‡��/�.V/D Œ�mŒ���.V/; ynŒu ��odd� ynŒu ^ dht��mŒ1�.V/
C ynŒdht�.V/�mŒF‡ �.V/:

The rest of the this step is devoted to verifying the preceding identities.

(i) (verifying the first line in (6-75)) We argue similarly to (2-47). Let M denote a 3–
dimensional moduli space of the form M3;z.VI c�; cC/. Let & WM!B� .V/�B�loc.V/
denote the embedding. Let M and MC denote respectively the top-dimensional strata
of M and r�1M as in Section 2.5. The coefficients of the map on the left-hand
side are given by integrals of the form hd.�p ^ ��/;Mi. To compute them, let
zzB�
p[�

.V/! B� .V/ be the U.1/�U.1/–bundle defined by the commutative diagram

zzB�
p[�

.V/
� 0p

//

� 0
���

�p[�

))

zB�
�
.V/
��
��

zB�p.V/
�p

// B� .V/

Similarly to (2-34), we shall choose a map zz& WMC! zzB� .V/ so that the diagram below
commutes:

(6-76)

MC zz& //

z&�
$$

z&p

,,r

��

zzB�
p[�

.V/

�p[�

��

� 0p
yy

� 0
�

%%

zB�
�
.V/

��

&&

zB�p.V/

�pxx

M
&

// B� .V/

Consider the form ..� 0�/
�#p/ ^ ..�

0
p/
�#�/ on zzB�

p[�
.V/. Use the identities #p D

��p�pC .
z…1/�# 0p � .

z…�1/�# 0p and #� D �����C .…
@
�
/�# 0p2�p1 to rewrite it as

..� 0�/
�#p/^ ..�

0
p/
�#�/

D ��p[�.�p ^ ��/C ..�
0
�/
�. z…1/�# 0p � .�

0
�/
�. z…�1/�# 0p/^�

�
p[���

C .��
p[�

�p/^ .�
0
p/
�. z…@

�
/�# 0p2�p1

C ..� 0�/
�. z…1/�# 0p � .�

0
�/
�. z…�1/�# 0p/^ .�

0
p/
�. z…@�/

�# 0p2�p1 :
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Recall that the same notation p is used to denote corresponding points in both Y�
and YC . In the above, the same notation # 0p is used to denote either the Y� or the YC
version.

Now pull back the preceding identity by zz& and integrate over Œ.MC/2�D @ŒM�. (Here
we again used [17, Theorem 24.7.2 and Lemma 31.3.1].) The integral over the left-
hand side vanishes, because both #� and #p are exact. Meanwhile, by way of the
commutative diagram (6-76) and Stokes’ theorem, the integral over the first term on
the right-hand side is

hzz&���p[�.�p ^ ��/; @ŒM
C�i D hzz&���p[�d.�p ^ ��/; ŒM

C�i D hd.�p ^ ��/;Mi:

This is exactly the coefficients of the map �mŒı.�p ^ ��/�.V/ that we aim to compute.
With a bit of diagram chasing, the aforementioned integral identity then becomes

(6-77) hd.�p ^ ��/;Mi

D �
˝
z&�p
�
.. z…1/�# 0p � .

z…�1/�# 0p/^�
�
p��

�
; .MC/2

˛
� hz&�� ..�

�
��p/^ .

z…@�/
�# 0p2�p1/; .M

C/2i

�
˝
zz&�
�
..� 0�/

�. z…1/�# 0p � .�
0
�/
�. z…�1/�# 0p/

^ .� 0p/
�. z…@�/

�# 0p2�p1

�
; .MC/2

˛
:

According to [17], .MC/2 is a union of product spaces of the forms

NC0 .Y�c�; c/�M2.VI c;cC/; M2.VI c�; c/�NC0 .YCI c; cC/;

NC1 .Y�I c�; c/�M1.VI c;cC/; M1.VI c�; c/�NC1 .YCI c; cC/;(6-78)

NC2 .Y�I c�; c/�M0.VI c;cC/; M0.VI c�; c/�NC2 .YCI c; cC/:

The diagram requires that each NC factor of the preceding product spaces must map
to fibers of the bundles zB�p.V/, zB��.V/ or zzB�

p[�
.V/, respectively, under z&p , z&� and zz& .

Meanwhile, observe that on the right-hand side of (6-77), the first, second and third
term has respectively a factor of . z…˙1/�# 0p , . z…@

�
/�# 0p2�p1 and

.� 0�/
�. z…˙1/�# 0p ^ .�

0
p/
�. z…@�/

�# 0p2�p1 :

They restrict respectively to the volume forms on the fibers of, respectively, zB�p.V/,
zB�
�
.V/ and zzB�

p[�
.V/. This means that product spaces of the types in the first line

of (6-78) never contribute to the integrals on the right-hand side of (6-77); those of
the types in the second line of (6-78) contribute only to the integrals in the first and
second terms on the right-hand side of (6-77); those of the types in the third line
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of (6-78) contribute only to the integrals in the last term on the right-hand side of (6-77).
Consequently,

(6-79) hd.�p ^ ��/;Mi D �
X
c

h��;M1.VI c�; c/ihdhp;NC1 .YC; c; cC/i

C

X
c

hdhp;NC1 .Y�I c�; c/ih��;M1.VI c; cC/i

�

X
c

h�p;M1.VI c�; c/ihdht;NC1 .YC; c; cC/i

�

X
c

h1;M0.VI c�; c/ihdhp ^ dht;NC2 .YCI c; cC/i:

This identity leads directly to the identity in the first line of (6-75).

(ii) (verifying the second line in (6-75)) We proceed similarly, but now take MD
.M/2 to be a 2–dimensional moduli space of the form M2;z.VI c�; cC/. To com-
pute hı.F‡��/;Mi D hF‡��; .M/1i, consider the bundles � W yB� .V/ ! B� .V/,
yz� W
yzB� .V/! B� .V / defined by the commutative diagram

zzB�
[�

.V/
� 0 //

� 0
�

��

�[�

((

zB�
�
.V/

��

��

yB� .V/
� //

y…˙1

��

B� .V/

…˙1

��

yB�t .Y˙/
Pt // B� .Y˙/

where PtW yB�t .Y˙/!B� .Y˙/ was defined in Section 2.5’s Part 2(b). Note that yB� .V/D
.…C1/�yB�t .YC/' .…�1/�yB�t .Y�/. Choose liftings yz& , y& and z&� of the embedding
& WM! B� .V/ that fit into the commutative diagram

(6-80)

MC yz& //

z&�
!!

y&

++
r

��

zzB�
[�

.V/

�[�

��

� 0{{

� 0
�

##

zB�
�
.V/

��

$$

yB� .V/

�
zz

M &
// B� .V/

Geometry & Topology, Volume 24 (2020)
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Let zF WD .� 0
�
/�F‡ . Noting that #� is closed, we have by (2-56) that

d.zF#�/D ..��/
�.…1/�� /^#�� ..��/

�.…�1/�� /^#�:

Pull back by � 0 on both sides of the preceding identity. Using the fact that P�t �Ddx ,
a bit of diagram chasing then yields

d.yzFy#�/D d
�
..� 0�/

�. y…1/� x y#�/
�
� d

�
..� 0�/

�. y…�1/� x y#�/
�
;

where yzF WD .�[�/�F‡ and y#� WD .� 0 /
�#� . Pull back both sides by yz& and integrate

over MC . Then apply the Stokes’ theorem [17, Theorem 24.7.2 and Lemma 31.3.1]
to get

hyz&�.yzFy#�/; .MC/1i

D
˝
yz&�
�
..� 0�/

�. y…1/� x y#�/
�
; .MC/1

˛
�
˝
yz&�
�
..� 0�/

�. y…�1/� x y#�/
�
; .MC/1

˛
:

Recall that #�D�����C. z…
@
�
/�# 0p2�p1 . With a bit more diagram chasing, the preceding

formula can be rewritten as

(6-81) hyz&���[�.F‡��/; .M
C/1iC hyz&

�..��[�F‡ /.�
0
 /
�. z…@�/

�# 0p2�p1/; .M
C/1i

D
˝
yz&�
�
..� 0�/

�. y…1/� x /.��[���/
�
; .MC/1

˛
�
˝
yz&�
�
..� 0�/

�. y…�1/� x /.��[���/
�
; .MC/1

˛
C
˝
yz&�
�
..� 0�/

�. y…1/� x /.� 0 /
�. z…@�/

�# 0p2�p1

�
; .MC/1

˛
�
˝
yz&�
�
..� 0�/

�. y…�1/� x /.� 0 /
�. z…@�/

�# 0p2�p1

�
; .MC/1

˛
:

By the diagram (6-80), the leftmost term in the preceding formula is

hyz&���[�.F‡��/; .M
C/1i D h&

�.F‡��/; @ŒMC�i D hd.F‡��/;Mi;

namely, it is precisely the typical coefficient of �mŒı.F‡��/�.V/ that we seek to compute.
To compute the other terms in (6-81), recall that according to [17], .MC/1 is a union
of product spaces of the forms

(6-82)
NC0 .Y�c�; c/�M1.VI c;cC/; M1.VI c�; c/�NC0 .YCI c; cC/;

NC1 .Y�I c�; c/�M0.VI c;cC/; M0.VI c�; c/�NC1 .YCI c; cC/:
The map r is a diffeomorphism when restricted to spaces described by the first line of the
preceding expression while, according to (6-80), spaces described by the second line lie
in fibers of the U.1/–bundle �[�W

yzB� .V/! B� .V/. Note that .� 0 /
�. z…@

�
/�# 0p2�p1

restricts to Thom forms on fibers of yzB� .V/, and both p1 and p2 lie in the YC–end
of V. These imply that only spaces of the last type described in (6-82) contribute to the

Geometry & Topology, Volume 24 (2020)



HFD HM , V 3617

integrals in the second term on the left-hand side of (6-81), as well as to the integrals
in the last two terms on the right-hand side. Meanwhile, for the first two terms on the
right-hand side of (6-81), only spaces described in the first line of (6-82) contribute.
Make use of these observations to rewrite (6-81) as

hd.F‡��/;Mi D
X
c

h��;M1.VI c�; c/ihu ;NC0 .YC; c; cC/i

C

X
c

hu ;NC0 .Y�I c�; c/ih��;M1.VI c; cC/i

�

X
c

h1;M0.VI c�; c/ihu dht;NC1 .YCI c; cC/i

C

X
c

hF‡ ;M0.V/.c�; c/ihdht;N1.Mt/.c;cC/i:

Note that the last term in (6-81) is zero, because integrals of the form

hy&�. y…�1/� x ;M0.VI c�; c/i

vanish. Now, the preceding identity relates the coefficients in the identity of maps in
the second line of (6-75), directly establishing the latter identity.

(b) The proof for assertion (b) of Proposition 6.7 differs from part (a) only in the
mechanism to ensure that the right-hand side of (2-27) and its analog are well defined.
Instead of monotonicity, this is now justified by the completeness condition on the local
coefficients, and by working with the grading-completed version of monopole Floer
complexes C� . The relevant compactness theorem here is Theorem 24.5.2 of [17].

Remark 6.10 (a) Recall from Section 2.1 that when c1.s/ is torsion, the following
types of perturbations are all equivalent: positive monotone, negative monotone, bal-
anced, exact. Thus, the assumption in part (a) implies that c1.s#/ is nontorsion. On
the other hand, the assumption that Œw#� is monotone with respect to c# in part (a)
implies that both Œw1� and Œw2� are respectively monotone with respect to c1.s1/ and
c1.s2/ with the same monotonicity constant. Combined with the assumption that Œw#�

is nonbalanced with respect to c1.s/, this implies that Œwi � is nonbalanced with respect
to c1.si / for at least one of i D 1 or 2. Keep in mind that we always choose M1 to
be the one endowed with a nonbalanced perturbation.

(b) Our proof follows the “standard” cobordism argument that appeared in [9; 7,
Section 7.4] in the Yang–Mills setting. Bloom, Mrowka and Ozsváth [2] proved a
connected sum formula for the case of exact perturbations, using a different approach
that involves surgery exact sequences. The use of the latter necessitates the use of the
completed version of monopole Floer homologies HM� .
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6.3 Filtered monopole Floer homology and handle addition

Continue to work with the same settings and notation from earlier parts of the section,
but now specialize to the 3–manifolds and cobordisms described in Sections 3.5 and 3.7.
More specifically, the following two cases are considered; fix an r� � :

(6-83) (1) Let M1 D Yi for i D 0; : : : ; G� 1. Equip Yi with the nontorsion Spinc –
structure and a metric from the set Met in Proposition 3.9. Let w1 be the
corresponding harmonic 2–form w in Proposition 3.9. Let M2DS

1�S2 ,
s2 be the trivial Spinc –structure, and w2 � 0. Then M# ' YiC1 , and
Œw#�D c1.s#/ is nontorsion. Choose the metric on YiC1 to be from the
set Met from Proposition 3.9.

(2) Let M1 D S
1 � S2 , with the nontorsion Spinc –structure s1 , closed 2–

form w1 , and metric as described in Part 1 of Section 3.5. Let .M2; s2/D

.M; s/ be a connected Spinc 3–manifold, with $2 D rw2 for a closed
2–form w2 in the cohomology class c1.s2/. Choose a metric on M

with respect to which w2 is harmonic, and, in the case when c1.s/ is
nontorsion, having nondegenerate zeros. (When c1.s/ is torsion, w2 is
necessarily 0.) In other words, Mt is the YZ in Part 1 of Section 3.5.
Thus M# ' Y0 , and Œw#�D c1.s#/ is nontorsion. Choose the metric on
Y0 to be from the set Met from Proposition 3.9.

In both cases above, M1 is of the type YZ in Section 3.2, and hence contains a special
1–cycle  . We denote this by 1 . Consequently, assuming that p1 is disjoint from 1 ,
both Mt and M# inherit a 1–cycle from 1 �M1 . They are respectively denoted
by t and # . According to Section 3.8, the filtered monopole Floer homologies
HMı.M1; hw1iIƒ1/ and HMı.M#; hw#iIƒ#/ are well defined. In parallel to what
was done in Section 2.4, define CMı.Mt; hwtiIƒ#/ to be the product complex of
CMı.M1; hw1iIƒ1/ and yC.M2; rw2/. The map Ut D yUMt , as given in (2-57), acts
on CM1.Mt/ and maps

CM�.Mt/� CM1.Mt/

into itself. The same notation is used to denote its induced maps on CMC.Mt/
and CM�.Mt/. By construction, the four flavors of CMı.Mt/ are related by short
exact sequences of the form (3-18). Thus by Lemma 4.2, the H�.S1/–modules
SUt.CMı.Mt// are related by short exact sequences of the same form. The long exact
sequences induced are also called the fundamental exact sequences.
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The remainder of this subsection consists of three parts. The first part contains a filtered
analog of Proposition 6.7. The second part analyzes the filtered connected sum formula
from Part 1. The last part derives Theorem 1.1 from this computation.

Part 1 A filtered variant of Proposition 6.7 states:

Proposition 6.11 Let Mt and M# be as in either case of (6-83). Then there is
a system of isomorphisms from HMı.M#; hw#iIƒ#/ to H�

�
SUt.CMı.Mt//

�
for

ıD�;1;C;^ as graded A�.M#/'A�.Mt/–modules , which is natural with respect
to the fundamental exact sequences on both sides.

Proof Both cases in (6-83) satisfy the conditions of Proposition 6.7(a). Take �1Dƒ1
and �2DK (the constant local coefficients). Then �tDƒt and �#Dƒ# . Repeat the
proof of Proposition 6.7 using cobordisms .X;wX / constructed from Proposition 3.13
for case (1) of (6-83), and Proposition 3.11 for case (2). Like in the previous section,
we denote this by the shorthand V when Y� DM# , and by V when Y� DMt . By
construction, there is a cylinder C �X ending at t � Yt , and # � Y# satisfying the
constraints in Section 3.7. According to Section 3.8, this gives us chain maps

m1Œu�.X; hwX iIƒC /W CM1.Y�/! CM1.YC/;

m�Œu�.X; hwX iIƒC /W CM�.Y�/! CM�.YC/:

In parallel to (6-12), let

V ı0 Dm
ıŒ1�.VIƒC /; V ı1 Dm

ıŒu��.VIƒC /;

V
�;ı
1 DmıŒux��.VIƒC /; V

�;ı
0 DmıŒ1�.VIƒC /

for ı D �;1, and use them to define V ı� and V �;ı� as in (6-11). Keeping in mind the
nonnegativity of the integers n.d/ entering the definitions of @1 and m1 , the rest
of the proof of Proposition 6.7 may be repeated with only cosmetic changes to see
that V ı� and V �;ı� induce chain homotopy equivalences between CMı.M#; hw#iIƒ#/

and SUt.CMı.Mt// for ı D �;1. These fit into commutative diagrams with the
fundamental exact sequences (3-18) on both sides of V ı� and V �;ı� . This understood,
the rest of the proposition follows from the five lemma.

Part 2 We next analyze the homologies H�
�
SUt.CMı.Mt//

�
in the two cases

of (6-83).

Case 1 Choose a product metric with constant curvature on M2 D S
1 � S2 . The

moduli space of Seiberg–Witten solutions over it is a circle of flat connections. Choose
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a real Morse function on this circle with a pair of index 1 and index 0 critical points,
and two gradient flow lines between them. Perform a perturbation to the Seiberg–Witten
equations adapted to this Morse function, as described in Chapter 33 of [17]. In this
context, yC.M2/D C

u DKŒu2; y2� and @M2 D 0, where:

� The unit 1 2KŒu2; y2� has grading Œ�C� in the notation of [17, page 57].

� u2 has degree �2, and the U2–map acts by multiplication by u2 .

� y2 has degree 1 and represents a generator of H1.S1IZ/ cooriented with the
moduli spaces. In particular, y22 D 0.

Thus,
SUt.CMı.Mt//D CMı.M1/Œu2; y2�˝KŒy�;

Dt D @M1 ˝ | C .U1˝�1˝u2/˝y:
(6-84)

Write a generic element a 2 SUt.CMı.Mt// as

a0C a1y; where a0; a1 2 CMı.M1/Œu2; y2�:

Then

DtaD @M1a0� .@M1a1/yC .U1�u2/.a0/y:

Thus,

H�
�
SUt.CMı.Mt//

�
D fa0C a1y j @M1a0 D 0; .U1�u2/a0 D @M1a1g˝KŒy�

mod .@M1b1y � 0; u2b0y � U1b0y � @M1b0/˝KŒy2�

' HMı.M1/y˝KŒy2�:

Consequently,

H�.S
ı
Ut
.Mt//' HMı.M1/Œy2�:

(Alternatively, one may use a spectral sequence computation, filtrating (6-84) first by
degree in y , then by degree in u2 .)

Case 2 Now C.M1/D Co.M1/ consists of a single irreducible point, .A; .˛; ˇ//D�
0; ..2r/�1=2; 0/

�
. (See eg [6] for this well-known fact.) Thus, CMı.M1/ and the

fundamental short exact sequences relating them are simply the modules V ı and the
sequences in (4-7), (4-8) and (4-9). Write the variable u in (4-7) as u1 below. As
pointed out in Remark 3.16(a), u1 stands both for the deck transformation and U –map
on CMı.M1/.
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This said, we have, in this case,

SUt.CMı.Mt//D V ı.u1/˝CM.M; c�/˝KŒy�;

Dt D 1˝ @M ˝ | C .u1˝ 1� 1˝U2/˝y:
(6-85)

This can alternatively be written as

(6-86) Eı.CM.M; c�/˝KŒy�; @M ˝ | �U2˝y/DE
ı
�
SU2.CM.M; c�//

�
:

By Proposition 5.9 and Remark 5.10, the homology of the latter is VHM.M; cb/, and
the isomorphisms from H�

�
SUt.CMı.Mt//

�
to the latter preserves the KŒu�–module

structure and are natural with respect to the fundamental exact sequences. Since the
U –map commutes with the

V�
H1.M IZ/=Tors–actions on both sides, These are

isomorphisms as A�.M/–modules.

To conclude, combining the above computation with Proposition 6.11, we have:

Corollary 6.12 (1) There is a system of isomorphisms of A�.M/–modules

HMı.Yi ; hwiIƒ /' HMı.Yi�1; hwiIƒ /˝H�.S1/ for i D 1; : : : ; G

preserving the relative gradings and natural with respect to the fundamental exact
sequences.

(2) There is a system of isomorphisms of A�.M/–modules

HMı.Y0; hwiIƒ /' VHM.M; cb/

preserving the relative gradings and natural with respect to the fundamental
exact sequences, respectively for ı D �;1;C;^ on the left-hand side and
ı D ^;�;_;� on the right-hand side.

Proof of Theorem 1.1 (1) This follows from an iteration of Corollary 6.12(1) and
Lemma 6.13 below, in terms of the alternative notation (3-19).

(2) This is a restatement of Corollary 6.12(2) in alternative notation, according to the
second bullet of (3-19).

Lemma 6.13 There is a system of isomorphisms of A�.Y /–modules

HMı.Y; hwiIƒ /
'
�! HMı.YG; hwiIƒ /

preserving the relative gradings and natural with respect to the fundamental exact
sequences.
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Proof Y and YG stand for the same manifold with different metrics and associated
2–form w . As mentioned in Section 2.4, chain homotopies between the corresponding
monopole Floer complexes are provided by chain maps induced from cobordisms
X DR�Y equipped with metrics and self-dual 2–forms interpolating those associated
to Y� and YC . (See eg Section IV.7.3 for this type of argument.) In our setting,
choose X with the metrics and self-dual 2–forms over it to be those constructed in
Proposition 3.14. This construction also provides a cylinder C � X ending at the
Y and YG versions of  . which induces X –morphisms ƒC between the Y and YG

versions of � . The positivity result in Proposition 3.5 guarantees that these chain
maps are filtration-preserving, namely they map the Y� version of CM� � CM1 to
the YC version of CM� � CM1 . As in the end of the proof of Proposition 6.11, their
induced maps on homology together with the five lemma supply the isomorphisms
asserted in the lemma.

7 Properties of solutions to (2-5)

This section supplies proofs for Lemma 3.2 and Proposition 3.7. Even so, much of
what is done here is either used in Section 8 or has analogs in Section 8. Section 7.3
has the proof of Lemma 3.2 and Section 7.8 has the proof of Proposition 3.7.

By way of a convention, the manifold Z is assumed implicitly to be connected except
in Section 7.8’s proof of Proposition 3.7.

What follows is a brief outline of this section.

Section 7.1 Lemmas 7.1–7.3 in this section establish pointwise bounds on the norms
of  , rA and BA when .A; / is a solution to some .r; �/ version of (2-5) in the
case when r is large.

Section 7.2 Supposing that r is large and .A; / is a solution to an .r; �/ version
of (2-5), this section depicts length scales that are O.r�1=2/. This is the content of
Lemma 7.4.

Section 7.3 This section introduces the notion of holomorphic domain. The principal
examples are H0 and suitable neighborhoods of the special curve  that is described
in Section 3.2. Lemmas 7.4 and 7.5 establish some very strong a priori bounds for
solutions on holomorphic domains to .r; �/ versions of (2-5) when r is large. This
section has the proof of Lemma 3.2.
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Section 7.4 Lemma 7.7 in this section establishes very strong a priori bounds on the
1–form BA for a solution .A; / to an .r; �/ version of (2-5) where the w is harmonic.

Section 7.5 Supposing that .A; / is a solution to some .r; �/ version of (2-5), there
is a dichotomy between its behavior where j j � jwj and where j j � jwj. In the
former case, the  is nearly A–covariantly constant and A is nearly flat. This section
and Lemma 7.8 in particular describes .A; / where j j is significantly less than jwj.

Section 7.6 This section gives a precise definition of the spectral flow function fs
(see (7-37)) and summarizes some of its basic properties.

Section 7.7 Lemma 7.9 in this section gives a priori, r– and fs –dependent bounds for
the functions cs, W and a that appear in (2-6) and (2-7).

Section 7.8 This section has the proof of Proposition 3.7.

7.1 Pointwise bounds

Fix a Riemannian metric on YZ and a closed 2–form, denoted by w , whose de Rham
class is that of c1.det S/. The four parts of this subsection assume such data so as to
supply a priori pointwise bounds for the C1.YZ IS/ component of any given pair in
Conn.E/�C1.YZ IS/ that obeys (2-5).

Part 1 The first lemma asserts relatively crude bounds which are subsequently refined.

Lemma 7.1 There exists � > � with the following significance: Fix r � � and an
element � 2� with P–norm less than 1. Let .A; / denote a solution to the .r; �/
version of (2-5). Then j jC r�1=2jrA jC r�1jrArA j � �.supYZ jwj

1=2C r�1=2/.

Proof If w is identically zero, write  D r�1=2�. The pair .A; �/ obeys the rD 1
version of (2-5). In this case, the standard differential equation techniques give the
desired bounds. See for example what is said in Chapter 5 of [17].

Granted that w is not identically zero, assume for what follows that w ¤ 0 at points
on YZ . The bound on j j follows by first using the Weitzenböck formula for the
square of the Dirac operator to see that j j2 obeys a differential inequality that has the
schematic form

(7-1) d�d j j2C 2jrA j
2
C 2r.j j2� jwj � c0r�1/j j2 � 0:
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3624 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

The maximum principle is now used with (7-1) to see that j j2 � c0 supYZ jwj when
r� c�10 . To say more about this, note that (7-1) in turn implies that

(7-2) d�d j j2C 2r
�
j j2� sup

YZ

jwj � c0r�1
�
j j2 � 0:

Now suppose that p 2 YZ is a point where j j2 achieves its maximum. The term
d�d j j2 in (7-2) is nonnegative at p since it is �1 times the trace of the Hessian
of j j2 and the Hessian of j j2 at p is nonpositive because p is a point where j j2

is maximal. It follows as a consequence that the term j j2� supYZ jwj � c0r�1 must
be nonpositive at p , and this requires that j j2 at p be less than supYZ jwjC c0r�1 .
The asserted bound follows from this.

To see about the norm of jrA j, we digress for a moment and fix a point p 2 YZ and
a number � that is positive but less than c�10 . We use � to construct a function on YZ
that is equal to 1 on the ball of radius � centered at p and is equal to zero outside
the ball of radius 2� centered at p . This function can and should be constructed so
that the norm of its differential is nowhere larger than c0��1 and so that the norm of
the covariant derivative of its differential is nowhere larger than c0��2 . Denote this
function by �� . Now let B denote the ball of radius 2� centered at p . Multiply both
sides of (7-1) by �� and then integrate the resulting inequality over B. An integration
by parts and an appeal to the bounds for jd��j and jrd��j and the bounds for j j
leads to the bound

(7-3)
Z
B

��jrA j
2
� c0

�
sup
YZ

jwjC r�1
�
.�C �3r/:

To continue, let Gp denote the Dirichlet Green’s function for the operator d�d on B
with pole at p . This is a smooth, nonnegative function on B �p that vanishes on @B
and obeys the pointwise bound

(7-4) Gp. � /� c0 dist.p; � /�1 and jdGpj � c0 dist.p; � /�2

at any given point q 2B �p . Multiply both sides of (7-1) by ��Gp and then integrate
the resulting inequality over the ball B. Use an integration by parts, the bounds in (7-4),
the a priori bounds on d�� and rd�� , the a priori bound on j j and (7-3) (with �
replaced by 2�) to see that

(7-5)
Z
B

��GpjrA j
2
� c0

�
sup
YZ

jwjC r�1
�
.1C �2r/:
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One last step is needed to obtain the asserted pointwise bound for jrA j2 . To start this
step, differentiate the equation D2A D 0, commute covariant derivatives and then use
the Bochner–Weitzenböck formula again to obtain a differential inequality for jrA j2

that has the form

(7-6) d�d jrA j
2
C 2

Z
B

jrArA j
2
� c0r.jrA j2C 1/:

Multiply both sides of (7-6) by ��Gp and then integrate the resulting inequality over B.
An integration by parts (for the left-hand integral) leads to an inequality that reads

(7-7) jrA j2.p/C 2
Z
B

��GpjrArA j
2

� c0�
3

Z
B

jrA j
2
C c0r

Z
B

��Gp.jrA j
2
C 1/:

Granted (7-7), take �D c�10 r�1=2 and then the desired bound for jrA j2.p/ follows
from (7-7) with appeals to (7-3) and (7-5). Much the same sort of argument using Gp
and �� can be used to obtain the asserted bounds for jrArA j2 . Here is an outline of
the argument: Multiplying the inequality in (7-6) by �� , integrating the result over B,
then integrating by parts and using the now-derived bounds for j j2 and jrA j2 leads
to a c0.supYZ jwjCr�1/.1C�2r/ bound for the integral of ��jrArA j2 . Multiplying
(7-6) by ��Gp and integrating the result over B leads to a c0.supYZ jwjCr�1/.1C�2r/
bound for the integral of ��GpjrArA j2 . Meanwhile, differentiating the equation
D2A D 0 twice leads to an inequality much like (7-6) for d�d jrA j2 . Multiplying
the latter equation by ��Gp and integrating the result over B leads to the desired
bound on jrArA j2.p/ with the help of the previously derived bounds.

Part 2 This part of the subsection sets the notation for what is to come in Part 3 and
in the subsequent sections. To start, introduce K�1� to denote the 2–plane subbundle of
the tangent bundle over the jwj>0 part of YZ given by the kernel of �w . Orient K�1�
by the restriction of w and use the induced metric with this orientation to view K�1� as
a complex line bundle. Clifford multiplication by the 1–form �w on the jwj> 0 part
of YZ writes S as a direct sum of eigenbundles E�˚ .E�˝K�1� / with E� being the
Ci jwj–eigenbundle.

Use IC to denote the product complex line bundle and �0 to denote the product
connection on IC . Let 1C denote the �0–constant section of IC with value 1 at all
points. Fix a unitary identification between E�1� ˝C E� and IC and use the latter to
write E�1� ˝C S as IC˚K

�1
� . The bundle K�1� has a canonical connection, which
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we denote by AK� , such that the section .1C; 0/ of the bundle IC˚K
�1
� obeys the

Dirac equation as defined using the connection AK� C 2�0 on its determinant line
bundle. The norm of the curvature of AK� is bounded by c0jwj�2 and the norm of the
kth derivative of AK�’s curvature is bounded by ckjwj�2�k with ck being a constant.

A section  of S over U is written with respect to this splitting as jwj1=2.˛; ˇ/.
Meanwhile, the connection A on E defines a corresponding connection on E� , that
is, the connection A� D A� 1

2
.AK �AK�/. To keep the notation under control in

what follows, the A�–covariant derivative on E� is also denoted by rA , as is the
A�CAK� –covariant derivative on E�˝K�1� .

Part 3 The next lemma refines Lemma 7.1’s bound on the jwj> 0 part of YZ .

Lemma 7.2 There exists � > � with the following significance: Fix r � � and an
element � 2� with P–norm less than 1. Let .A; / denote a solution to the .r; �/
version of (2-5). Fix m 2 .�; �r1=3.ln r/��/ and let Um denote the jwj > m�1 part
of YZ . Write  on Um as jwj1=2.˛; ˇ/. Then the pair .˛; ˇ/ obeys the following
on Um :

� j˛j2 � 1C �m3r�1 .

� jˇj2 � �m3r�1.1� j˛j2/C �3m6r�2 .

� jrA˛j
2Cm�3rjrAˇj2 � �m�1r.1� j˛j2/C �2m2 .

� Denote by U� the 1� j˛j2 � ��1 part of Um . Thenˇ̌
1� j˛j2

ˇ̌
� .m2e�

p
r=m dist. � ;U�/=� C �m3r�1/:

Proof Write  D jwj1=2� on U2m . The section � on U2m obeys an equation having
the schematic form DA�CR � � D 0 with R being Clifford multiplication by the
1–form 1

2
d.ln jwj/. Note in particular that jRj � c0m and the absolute value of the

covariant derivative of R is bounded by c0m2 . Use the Weitzenböck formula for the
operator DACR to see that � obeys an equation that has the schematic form

(7-8) r
�
ArA�� cl.BA/ � �CR1 � rA�CR0 � �D 0;

where cl. � / denotes the Clifford multiplication endomorphism from T �M to End.S/
and where R1 and R0 are linear and obey jR1j � c0m and jR0j � c0m2 . Let q
denote the maximum of 0 and j�j2�1�c0m3r�1 . It follows from (7-8) that q on U2m
obeys

(7-9) d�dq C 2rm�1q � 0:
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As Lemma 7.1 bounds q by c0m on U2m , the comparison principle with the Green’s
function for the operator d�dCrm�1 to see that q � c0m3r�1 on U3m=2 . This implies
the claim in the first bullet. It also implies that jˇj2 is less than 1Cc0m3r�1 on U3m=2 .

To see about the second bullet, project (7-8) onto the E�˝K�1� –summand of S and
take the fiberwise inner product of the resulting equation with ˇ to obtain a differential
inequality that has the form

(7-10) d�d jˇj2C 2rm�1jˇj2 � �jrAˇj2C c0r�1m3jrA˛j2C c0r�1m5:

Fix for the moment " > 0. Project (7-8) next onto the E�–summand and take the
pointwise inner product with ˛ to obtain an equation for the function wD 1� j˛j2

that has the form

(7-11) d�dwC 2rm�1wD 2jrA˛j2C rm�1w2C e;

where jej � c0"jrAˇj2C c0.1C "�1/m2C c0mjrA˛j.

It follows from (7-10) and (7-11) that there exist constants z1 and z2 that are both
bounded by c0 and " > c�10 such that the function q D jˇj2� z1r�1m3w� z2r�2m6

obeys the equation

(7-12) d�dqC 2rm�1q � 0

on U3m=2 . Granted this inequality, use the Green’s function for d�d C rm�1 as before
to see that jˇj2 � z1m3r�1.1� j˛j2/C z2m6r�2 on Um .

The proofs of the third and fourth bullets start by differentiating (7-8) to obtain an
equation for the components of rA� and it then copies the manipulations done in
Step 2 of Section 4d in [30] to obtain a differential inequality on U3m=2 for the function
h WD jrA�j

2 that has the form

(7-13) d�dhC 2rm�1h� c0.rm�1whCm2hCm4C r2m�2w2/:

To prove the third bullet, use (7-10), (7-11) and (7-13) to find constants z1 , z2 > 0
and z3 , all with absolute value less than c0 , such that the function

q WD h� z1rm�1.1� j˛j2/� z2m2C z3rm�1jˇj2

obeys (7-12) on U2m when m < c�10 r1=3 . Meanwhile, Lemma 7.1 implies that h

is no larger than c0mr on U2m . Given this last bound, the comparison argument
that uses the Green’s function for d�d C c�10 rm�1 says that jrA�j2 is bounded by
c0m

�1r.1� j˛j2/C c20m
2 on Um when m� c�10 r1=3 . This gives Lemma 7.2’s bound
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for jrA˛j2 . The refinement that gives the asserted bound for jrAˇj2 is obtained by
the same sort of argument after first projecting (7-8) onto the E�˝K�1� –summand
of S before differentiating so as to get an elliptic equation for rAˇ . The details of this
part of the story are straightforward and omitted.

To prove the fourth bullet, use the first bullet of the lemma with (7-11) and (7-13) to
see that q WD hC c�10 rm�1w� c0m2 obeys an equation on the w� c�10 part of U2m
that has the form d�dqC c�10 rm�1q � 0 when m� c�10 r1=3 . Granted the latter and
granted the a priori bound q � c0rm from Lemma 7.1, then the comparison principle
using the Green’s function for d�d C c�10 rm�1 leads to the following: if c > c0 , then
q � c0rme�

p
r=m dist. � ;Uc/=c0 where Uc denotes the w � c�1 part of U2m . This last

inequality implies Lemma 7.2’s fourth bullet.

Part 4 The final lemma of this subsection refines what is said by Lemma 7.1 on the
part of YZ where jwj is positive but small.

Lemma 7.3 There exists � > 1 with the following property: Fix m in the interval
.�; ��1r1=3.ln r/��/. Fix r� � and fix � 2� with P –norm less than 1 and let .A; /
be a solution to the .r; �/ version of (2-5). Then j j��m�1=2 and jrA j��m�1r1=2

on the jwj<m part of YZ .

Proof The maximum principle applied to (7-1) implies that j j2 cannot have a local
maximum where j j2> jwjCc0r�1 . Indeed, if p 2 YZ is a point where this condition
holds, then the left-hand side of (7-1) at p is strictly greater than d�d j j2 at p . If p
is a local maximum of j j2 , then d�d j j2 � 0 at p and so the left-hand side of (7-1)
would be positive which violates (7-1).

Since j j2 cannot have a local maximum where j j2 > jwjC c0r�1 , it follows that
j j2 cannot have a local maximum where j j2 > m�1 C c0r�1 on the set where
jwj <m�1 . Meanwhile, Lemma 7.2 implies that j j2 � c0m�1 on the boundary of
the set where jwj<m�1 (which is the boundary of Um ). Therefore, j j2 cannot be
greater than the maximum of c0m�1 and m�1C c0r�1 on the set where jwj<m�1 .
If m 2 .c0; c�10 r1=3.ln r/�c0/, then this maximum is c0m�1 .

To see about jrA j, let p 2 YZ denote a given point where w � 2m�1 . Fix Gaussian
coordinates for a ball of radius c�10 centered at p and then rescale the coordinates so
that the ball of radius m�1=2r1=2 about the origin in R3 and the ball of radius 1 are
identified. Let ' denote the corresponding map from the ball of radius 1 about the origin

Geometry & Topology, Volume 24 (2020)



HFD HM , V 3629

in R3 to the original ball in YZ . With this understood, the pullback .'�A;m1=2'� /
satisfies a version of (2-5) on the unit ball in R3 that is defined by the rescaled metric. It
follows from the bound on j j that jBAj � c0m�1r, and this implies that j'�BAj � c0 .
This understood, standard elliptic regularity techniques can be employed to see that the
rescaled version of m1=2j'�.rA /j has norm bounded by c0 and so jrA j has norm
bounded by c0m�1r1=2 .

7.2 The microlocal structure of .A; /

Part 3 of this section states and then proves Lemma 7.4, this being a lemma that
describes solutions to (2-5) on the jwj> 0 part of YZ when viewed with microscope
that magnifies by a factor of the order of r1=2 . Parts 1–2 of the subsection set the
notation that is used in particular for Lemma 7.4 but elsewhere as well.

Part 1 This part of the subsection introduces the vortex equations on C . This is a
system of equations that asks that a pair .A0; ˛0/ of connection on a complex line
bundle over C and section of this bundle obey

(7-14)

8<:
�FA0 D�i.1� j˛0j

2/;
x@A0 x̨0 D 0;

j˛0j � 1:

The notation here is such that � denotes the Euclidean Hodge dual on C , while FA0
and x@A0 denote the respective curvature 2–form of A0 and the d-bar operator defined
by A0 on the space of sections of the given complex line bundle. Note that if .A0; ˛0/
is a solution to (7-14), then so is .A0�u�1 du; u˛0/ with u being any smooth map
from C to S1 .

Solutions with 1� j˛0j2 integrable are discussed at length in Sections 1 and 2 of [36],
Section IV.2.2 and Section IV.3.1. As noted in these references, if 1�j˛0j2 is integrable
then its integral is 2� times a nonnegative integer. Fix m 2 f0; 1; : : : g. The space of
C1.CIS1/ equivalence classes of solutions to (7-14) with the integral of 1� j˛0j2

equal to 2�m has the structure of a smooth, 2m–dimensional manifold. This manifold
is denoted in what follows by Cm . By way of a parenthetical remark, the space Cm

has a natural complex structure that identifies it with Cm . A solution with 1� j˛0j2

integrable is said here to be a finite-energy solution to the vortex equation.

Part 2 Lemma 7.4 and some of the later subsections refer to the notion of a transverse
disk with a given radius through a given jwj > 0 point in YZ . A transverse disk is
the image via the metric’s exponential map of the centered disk of the given radius in
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the 2–plane bundle Ker.�w/ at the given point. There exists c0 > 100 such that any
transverse disk with radius c�10 is embedded with a priori bounds on the derivatives
to any given order of its extrinsic curvature. If D � YZ is a transverse disk centered
at a point p , and if c � c0 , then jwj will be greater than 1

2
jwj.p/ on the subdisk

in D centered at p with radius c�1jwj.p/. The constant c can be chosen so that the
following is also true: Let v denote the vector field on the jwj > 0 part of YZ that
generates the kernel of w and has pairing 1 with �w . Then v is orthogonal to D at p
and the length of the projection to TD of v on the concentric disk in D of radius
c�1jwj.p/ is no greater than c0c�1 . Choose c � c0 with this property and use Dp to
denote the transverse disk through p of radius c�1jwj.p/.

Reintroduce from Part 2 of Section 7.1 the complex line bundle K�1� defined over
the jwj> 0 part of YZ . Recall that the underlying real bundle is the 2–plane bundle
in T YZ annihilated by �w . Let p again denote a point in the jwj > 0 part of YZ .
Fix an isometric isomorphism from K�1� jp to C . Use ' in what follows to denote
the map from C to YZ that is obtained by composing first the isomorphism with
K�jp D Ker.�w/jp and then the metric’s exponential map. With r� 1 given, use 'r

to denote the composition of first multiplication by r�1=2jw.p/j�1=2 on C and then
applying ' .

To finish the notational preliminaries, let .A; / be a pair in Conn.E/�C1.YZ IS/.
Write  where jwj > 0 as jwj1=2.˛; ˇ/ to conform with Part 2 of Section 7.1’s
splitting of S as E�˚ .E�˝K�1� /. Likewise reintroduce from Part 2 of Section 7.1
the connection A� on the bundle E� . Given p 2 YZ with jw.p/j > 0, introduce
.Ar; ˛r/ to denote the 'r –pullback of the pair .A�; ˛/ to the radius c�1r1=2jw.p/j1=2

disk in C .

Part 3 Lemma 7.4 below characterizes the pair .Ar;  r/.

Lemma 7.4 There exists � > 10 and given R > �2 , there exists �R > 1 with the
following property: Fix r � �R and � 2 � with P–norm bounded by 1. Suppose
that .A; / is a solution to the .r; �/ version of (2-5). Fix a point in YZ where
jwj> r�1=3.ln r/� and use the corresponding version of 'r to obtain the pair .Ar; ˛r/

of connection and section of a complex line bundle over C . There exists a solution
to the vortex equation on C whose restriction to the radius R disk about the origin
in C has C 1–distance less than R�4 from .Ar; ˛r/ on this same disk. Moreover, if
1�j˛rj

2 < 1
2

at distances between RC�.ln R/2 and R��.ln R/2 from the origin , then
.Ar; ˛r/ has C 1–distance less than R�4 in the radius R disk about the origin in C from
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a finite-energy solution to the vortex equations that defines a point in some m� �R2

version of Cm .

Proof It follows from (2-5) and what is said by the first three bullets of Lemma 7.2
that the curvature of Ar and ˛r are such that

(7-15) �FAr D�i.1� j˛rj
2/C e0 and x@Ar˛r D e1;

where je0jCje1j � c0.ln r/�c0 on the disk in C of radius less than c�1r1=2m�1=2 . The
third bullet in Lemma 7.2 also finds jrAr˛rj � c0 . Granted (7-15), then the argument
used to prove Lemma 6.1 in [33] can be used with only minor modifications to prove the
assertion with C 1–distance replaced by the distance as measured by any � < 1� R�1

Hölder norm. The convergence in the C 1–topology follows using the arguments from
Section 6 in [33] given also the second derivative bound from Lemma 7.1.

7.3 Holomorphic domains

What follows directly sets the notation for what is to come in this subsection. An open
set U � YZ is said to be a holomorphic domain when the following criteria are met:

� The metric has nonnegative Ricci curvature on U.

� The 2–form w is nonzero on U and covariantly constant.

� The curvature of AK on U is a multiple of w .

� The 1–form � on U and its derivatives to order 10 have norm less than e�r2=2 .

The following lemma strengthens the conclusions of Lemma 7.2 on a holomorphic
domain:

Lemma 7.5 Let U � YZ denote a holomorphic domain and let U1 � U denote an
open set with compact closure in U. Use D to denote the function on U that measures
the distance to YZ �U. There exists � > � with the following significance: Fix r� �
and a 1–form � 2� with P –norm less than 1 whose norm on U and those of its first
10 derivatives is bounded by e�r2=2 . Suppose that .A; / is a solution to the .r; �/
version of (2-5). Write  on U as jwj1=2.˛; ˇ/. Then ˇ on U1 obeys:

� jˇj � �e�
p

rD=� .

� Given q � 1, there exists �q � 1 such that j.rA/qˇj � �qe�
p

rD=� with �q
depending only on the metric , AK , U and U1 .

Proof The proof that follows assumes that �D 0 on U. The proof in the general case
differs little from what is said below and is left to the reader.
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Keep in mind that the norm of jwj is constant on U because w is covariantly constant.
Project the Weitzenböck formula for D2A onto the E�˝K�1� –summand of S to obtain
an equation for ˇ on U that has the schematic form

(7-16) r
�
ArAˇC rjwj.1Cj˛j2Cjˇj2/ˇCRˇ D 0;

with R determined solely by the metric and AK . Granted this, then by the conditions
on the metric and AK over U, jˇj obeys an equation of the form d�d jˇjCrjwjjˇj � 0
on U when r is larger than a constant that depends only on U and U1 . The bound
in the first bullet of the lemma follows from the latter equation using the comparison
principle and the Green’s function for the operator d�dC rjwj. Given the bounds from
Lemma 7.2, very much the same strategy leads to the bounds in the subsequent bullets
after differentiating (7-1) to obtain an equation for .rA/qˇ .

Lemma 7.5 leads directly to the next lemma, which describes  on U and H0 .

Lemma 7.6 Given ">0, there exists ��� with the following significance: Introduce
U to denote U [H0 and let D denote the function on U that measures the distance to
YZ �U. Introduce U" � U to denote the subset with D > ". Fix r� � and a 1–form
� 2� with P –norm less than 1 whose norm on U and those of its first ten derivatives
is bounded by e�r2=2 . Let .A; / denote a solution to the .r; �/ version of (2-5). The
following is true on U" :

� The conclusions of Lemma 7.5 hold with U1 therein set to U" .

� ��e�
p

rD=� � 1� j˛j2 � �e�
p

rD=� .

� Given q � 1, there exists �q � 1 such that j.rA/q˛j � �qe�
p

rD=� with �q
depending only on the metric , AK , U and ".

Proof The first bullet follows by virtue of the fact that U [H0 is a holomorphic
domain where the constraints in (3-5) and (3-6) are obeyed. To see about the other
bullets of the lemma, suppose for the moment that ı > 0, that p 2H0\U" and that
1� j˛j > ı at p . As is proved in what follows, this assumption leads to nonsense
unless ı is very small. So, supposing that 1 � j˛j > ı at p , it follows from the
second bullet of Lemma 7.2 and from Lemma 7.5 that the integral of �BA on the
radius c�10 r�1=2ı disk in the constant u slice of H0 through p is greater than c�10 ı3 .
Lemma 7.5 implies that the pullback of �BA to the constant u sphere through p can be
written as i

4�
F sin � d� ^ d� and that F � �c0e

�
p

r=c0 . This implies that the integral
of �BA on this transverse sphere in H0 will be positive if ı > c0e�

p
r=c0 . But the
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integral of �BA on this transverse sphere is zero because E ’s first Chern class has zero
pairing with the H2.H0IZ/–summand in (3-4). Therefore, it must be the case that
1�j˛j< c0e

�
p

r=c0 on H0\U" . Now suppose that p 2U \U" . The Dirac equation
writes the @

@t
–covariant derivative of ˛ as a linear combination of covariant derivatives

of ˇ . This understood, Lemma 7.5 implies that the absolute value of the @
@t

–covariant
derivative of ˛ in U is bounded by c0e�

p
r=c0 . It follows as a consequence that if

1�j˛j> ı at a point in U \U" , then j˛j> 1
2
ı at points in H0\U" if ı > c0e�

p
r=c0 ,

and as explained previously, this is not allowed if r � c0 . Therefore, the conclusion
is that 1� j˛j< c0e�

p
r=c0 on the whole of .U [H0/[U" . Much the same sort of

argument proves that 1� j˛j> �c0e�
p

r=c0 on this same domain.

The assertion in the third bullet is proved by writing  D jwj1=2� on U. Keeping in
mind that jwj is constant on U, project the Weitzenböck formula for D2A onto the
E–summand of S and differentiating to obtain an equation for .rA/q˛ . Given the first
bullet of Lemma 7.6 and given Lemma 7.5, the latter implies a differential inequality
for the function � WD j.rA/q˛j of the form d�d� C rjwj� � cqe�

p
r=c0 when q D 1,

and it implies an equality of this same sort for q > 1 if the second bullet holds for all
q0 < q . Here, cq depends only on q . Use the Green’s function for d�d C rjwj with
this differential inequality for � to prove the third bullet’s assertion.

Lemma 7.6 in turn leads to the:

Proof of Lemma 3.2 If r� c0 , then Lemma 7.6 asserts that j˛j is very close to 1 on
a neighborhood of  and so what is denoted in (3-8) by }.j˛j/ is equal to 1 on this
neighborhood. With this in mind, note that ˛j˛j�1 is yA–covariantly constant where
} D 1. This implies that yA has holonomy 1 along  . Since AE has holonomy 1
on  , it follows that yA�AE on  can be written as i yu.t/ dt with yu being a function
on R=.`Z/ whose integral is an integer multiple of 2� .

7.4 The L1–norm of BA when w is harmonic

This section supplies a crucial bound for the integral of jBAj over YZ given an extra
assumption about w .

Lemma 7.7 Suppose that w is a harmonic 2–form and that the zeros of w are
nondegenerate. There exists � � � with the following significance: Fix r � � and
a 1–form � 2� with P–norm less than 1. Suppose that .A; / is a solution to the
.r; �/ version of (2-5). Then

R
YZ
jwjjBAj � � and

R
YZ
jBAj � �r1=5 .
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By way of a look ahead, the lemma’s bound of �r1=5 for the L1–norm of BA is
replaced in Lemma 7.9 by the bound .ln r/c0 .

Proof The proof has three steps. By way of an overview, the plan is to compare the
integrals of jBAj and jwjjBAj with the integral of w^ iBA . The point being that the
absolute value of the latter integral enjoys an .A; /–, r– and �–independent bound
by virtue of the fact that w is harmonic; it computes the cup product pairing between
the de Rham class of �w and 2� times the first Chern class of the bundle E .

Step 1 Fix m 2 .c0; c0r1=3.ln r/�c0/ so as to invoke Lemmas 7.2 and 7.3. Use Um
to again denote the part of YZ where jwj>m�1 . Since w has nondegenerate zeros,
the volume of YZ �Um is less than c0m�3 . Since jBAj � c0r.j j2C jwj/C c0 , it
follows from Lemma 7.3 that

(7-17)
Z
YZ�Um

jBAj � c0rm�4 and
Z
YZ�Um

jw^BAj � c0rm�5:

Save these bounds for the moment.

Step 2 Fix m 2 .c0; c0r1=3/. Use the equations in (2-5) and Lemma 7.2 to see that
jBAj on Um obeys jBAj � rjwj

�ˇ̌
1� j˛j2

ˇ̌
Cjˇj

�
C c0 . This understood, the first and

second bullets in Lemma 7.2 imply that

(7-18) jBAj � c0rjwj.1� j˛j2/C c0jwjm3

at all points in Um . Meanwhile, use the equations in (2-5) to see that

(7-19) w^ iBA � rjwj2.1� j˛j2/� c0jwj

on Um . This lower bound and the upper bound in (7-18) imply that if q 2 f0; 1g, then

(7-20) jwjqjBAj � c0m
1�q.w^ iBA/C c0m

2�q

at all points in Um .

Step 3 Fix for the moment m0 � c0 and a positive integer N with an upper bound
such that 2Nm0 < c�10 r1=3 . For k 2 f1; 2; : : : ; N g, set mk WD 2km0 . Noting that the
volume of Umk �Umk�1 is bounded by c02�3k , it follows from (7-20) that

(7-21)
Z
Umk�Umk�1

jwjqjBAj � c0m
1�q
N

Z
Umk�Umk�1

w^ iBAC c02
�k :

Sum the various k 2 f1; : : : ; N g versions of (7-21) to see that

(7-22)
Z
UmN

jwjqjBAj � c0m
1�q
N

Z
UmN

w^ iBAC c0:
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This last inequality and the mDmN version of (7-17) imply that

(7-23)
Z
YZ

jBAj � c0m
1�q
N

Z
YZ

w^ iBAC c0.rm
�4�q
N C 1/:

The integral on the right-hand side of (7-23) is in any event bounded by c0 and so what
is written in (7-23) leads to the bound

(7-24)
Z
YZ

jwjqjBAj � c0.m
1�q
N C rm�4�qN /:

This understood, take N so that r1=5 �mN � c0r1=5 to obtain Lemma 7.7’s assertion.

7.5 Where 1� j˛j2 is not small

Suppose that .A; / is a solution to a given .r; �/ version of (2-5). Write  where
jwj> 0 as jwj1=2.˛; ˇ/ and denote the version of � that appears in Lemma 7.4 by �˘ .

The lemma that follows in a moment characterizes the jwj> r�1=3.ln r/�˘ part of YZ
where 1� j˛j2 is not very small. To set the notation for the lemma, introduce v to
denote the unit-length vector field on the part of YZ where jwj> 0 that generates the
kernel of w and has positive pairing with �w . A final bit of notation concerns the
version of � that appears in Lemma 7.2. The latter is denoted in what follows by �˘ .

Lemma 7.8 Assume that w is a harmonic 2–form with nondegenerate zeros. There
exists � > �˘ and �1� � with the following significance: Fix r� �1 and � 2� with
P –norm bounded by 1 and let .A; / denote a solution to the .r; �/ version of (2-5).
Fix a positive integer k and set mk WD .1C ��1/k�2 . If mk < r1=3.ln r/�� , then there
exists a set ‚k , of at most � segments of integral curves of v with the following
properties:

� Each segment from ‚1 is properly embedded in the jwj � m�12 part of YZ
and has length at most � . Moreover, the union of the radius �r�1=2 tubular
neighborhoods of the segments in ‚1 contain all points in the jwj> ��2 part of
YZ where 1� j˛j2 > 1

4
��1˘ .

� If k > 1, then each segment from ‚k is properly embedded in the jwj 2
Œm�1
kC1

; m�1
k�1

� part of YZ and the union of the radius �m1=2
k

r�1=2 tubular
neighborhoods of the segments in ‚k contain all 1� j˛j2 > 1

4
��1˘ points in the

jwj 2 Œm�1
kC1

; m�1
k�1

� part of YZ .
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Proof The proof has eight steps. By way of a parenthetical remark, the proof follows
a strategy like that used in Section IV.2.3 to prove Proposition IV.2.4.

Step 1 This step states a fact about the finite-energy solutions to the vortex equations
that plays a central role in the subsequent arguments. Keep in mind that a solution
.A0; ˛0/ is a finite-energy solution when 1� j˛0j2 is an L1–function. As noted in
Part 1 of Section 7.2, if .A0; ˛0/ is a finite-energy solution then the integral of 1�j˛0j2

is 2� times a nonnegative integer. Use m to denote this integer. The function ˛0
vanishes at precisely m points in C (with repetitions allowed). This set of zeros of ˛0
is denoted by # . As noted in Part 4 from Section 2a in [36],

(7-25) 1� j˛0j
2
� c0

X
z2#

e� dist. � ;z/;

with the number c0 in (7-25) being independent of .A0; ˛0/ and m. The bound in
(7-25) with Lemma 7.4 has a number of consequences with regards to the proof.

To say more, return to the context of Lemma 7.4. Let �˘ denote the version of the
constant � that appears in this lemma. Take R > �˘ so as to apply Lemma 7.4 when r
is greater than the corresponding �R . With r� �R and � 2� with P –norm bounded
by 1, let .A; / denote a solution to the .r; �/ version of (2-5). Fix p 2 YZ with
|w.p/j � r�1=3.ln r/�˘ and use p to define the pair .Ar; ˛r/ as instructed in Part 2
of Section 7.2. Assume for what follows that 1 � j˛rj

2 < 1
2

at distances between
RC �˘.ln R/2 and R� �˘.ln R/2 from the origin in C .

Lemma 7.4 asserts that .Ar; ˛r/ has C 1–distance at most R�4 in the radius R disk
about the origin in C from a finite-energy vortex that defines a point in some m� �R2

version of Cm . Let .A0; ˛0/ denote this solution. It follows from Lemma 7.4 that
1� j˛0j

2 can be no greater than 1
2
C 2R�4 at all points in C with distance between

R� �˘.ln R/2 and R from the origin in C (since otherwise .A0; ˛0/ would have C 0–
distance greater than R�4 in the radius R disk about the origin in C ). This implies
that each zero of ˛0 (which are the points in the set # ) that appears in (7-25) has
distance either less than R� �˘.ln R/2 from the origin in C or it has distance greater
than R from the origin in C . This understood, then it follows as a consequence of
(7-25) that 1� j˛0j2 � R�4 on the annulus about the origin in C with inner radius
R� �˘.ln R/2C c0 ln R and outer radius R� c0 ln R . Indeed, at distance � from the
set # , the sum on the right-hand side of (7-25) is at most c0me�� . Since m<�R2 , this
is at most c0R2e�� . Thus, if � > c0 ln R , then the sum on the right-hand side of (7-25)
will be at most R�4 . Granted that 1�j˛0j2 � R�4 on the annulus in C centered at the
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origin with inner radius equal to R� �˘.ln R/2C c0 ln R and outer radius R� c0 ln R ,
it then follows from Lemma 7.4 that 1� j˛rj

2 � 2R�4 on this same annulus.

If R > c0 , then the preceding conclusion implies that 1� j˛j2 is bounded by 2R�4 on
the annulus in transverse disk centered at p with respective outer and inner radii given
by .R�c0 ln R/.rjwj.p//�1=2 and inner radius .R��˘.ln R/2Cc0 ln R/.rjwj.p//�1=2 .
Since ˛ is nowhere-vanishing on this annulus, the connection yA� is defined on this
annulus by the same formula (3-8), and the last observation implies in particular that
the connection yA� is flat and ˛j˛j�1 is yA�–covariantly constant at points on this same
annulus.

In the applications to come, the integer m will be bounded by c0 . If this is the case,
then (7-25) with Lemma 7.4 implies that yA� is flat and ˛j˛j�1 is yA�–covariantly
constant at all point on the radius .R�c0.ln R/2/.rjwj.p//�1=2 transverse disk centered
at p except at distance less than c0.rjwj.p//�1=2 from a set of at most c0 points.

Step 2 Fix m0>c0 so that the jwj�m�10 part of YZ is a disjoint union of components
with each component lying in the radius c0m�10 ball about a zero of w . Require in
addition that each such component lie in a Gaussian coordinate chart centered on the
nearby zero of w as the embedded image of a closed ball in R3 .

Fix z > m0 and let �0 denote the sum of the versions of � that appear in Lemmas
7.1, 7.2 and 7.7; and let �z0 denote the sum of �0 and the R D z10 version of the
constant �R that appears in Lemma 7.4. But for cosmetic changes, the arguments in
Section 6.4 of [33] can be used with Lemmas 7.2, 7.4 and 7.6 plus what is said in
Step 1 to find a z–independent �1 � 100�0 and a z–dependent �z > �z0 such that the
following is true:

Fix r� �z and � 2� with P –norm bounded by 1. Suppose that .A; / is a solution
to the .r; �/ version of (2-5). There exists a positive integer n0 < �1 and a set ‚0 , of
at most n0 pairs of the form .;m/ with  being a properly embedded segment of an
integral curve of v in the jwj � z�6 part of YZ with length less than �1 . Meanwhile,
m is a positive integer. The set ‚0 has the following additional properties:

(7-26) �
P
.;m/2‚0 m� �1 .

� Distinct curves from ‚0 are separated by distance at least �1z4r�1=2 .

� If p 2 YZ is such that jw.p/j � z�6 and 1 � j˛j2 > ��1˘ , then p has
distance less than z4r�1=2 from a curve in ‚0 .
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� If .;m/ 2‚0 , then the integral of i
2�
F yA�

over the radius z4r�1=2 trans-
verse disk centered at each point in  is equal to m.

What follows is a parenthetical remark concerning the fourth bullet. The condition
in the third bullet of (7-26) implies that ˛j˛j�1 is yA�–covariantly constant near the
boundary of the radius z4r�1=2 transverse disk about each point in  . It follows as
a consequence that the integral of i

2�
F yA�

over this disk is an integer; and it follows
from Lemma 7.2 that this integer is nonnegative. This being the case, the fourth bullet
adds only that the integer is at least 1 and it is bounded a priori by a z–, .A; /–, �–
and r–independent number.

Step 3 Fix a ball B � YZ centered on a zero of w that contains a component of the
jwj �m�10 part of YZ . Suppose that " 2 .0; 1/ and that z > m0 have been specified.
With �z as in Step 2, fix r� �z , an element � 2� with P –norm bounded by 1 and a
solution, .A; /, to the .r; �/ version of (2-5). Let k denote the largest integer with
the properties listed below in (7-27). By way of notation, set mj WD .1C "/j z6 .

For each j 2 f1; : : : ; kg, there exists cj 2 .100; .100/2
�1 / and a set, ‚j , that consists

of data sets which have the form .;m; D/ with  being a properly embedded segment
of an integral curve of v in the jwj 2 Œm�1jC1; m

�1
j�1� part of B, with m being a positive

integer and with D 2 .1; cj /. The set ‚j has the following additional properties:

(7-27) �
P
.;m;D/2‚j m� �1 .

� Curves from distinct data sets in ‚j are separated by distance at least
1
2

c2j zm
1=2
j r�1=2 .

� If p 2 YZ is such that jw.p/j 2 Œm�1jC1; m
�1
j�1/ and 1� j˛j2 > 1

4
��10 , then

p has distance at most Dzm
1=2
j r�1=2 from a point on a curve from a dataset

in ‚j .

� If .;m; D/2‚j , then the integral of i
2�
F yA�

over the radius Dzm
1=2
j r�1=2

transverse disk centered at each point in  is equal to m.

The next steps find .A; /–, �– and r–independent choices for " and then z , and
an .A; /–, �– and r–independent �� � �z such that mk � r1=3.ln r/��� when r is
greater than �� . Lemma 7.8 follows if such ", z and �� exist.

The upcoming steps find the desired conditions on " and z and the lower bound for r
such that the conditions of the integer kC 1 version of (7-27) are met if they are met
for an integer k with mk < r1=3.ln r/�2�0 . This being the strategy, assume in what
follows that k is such that mk < r1=3.ln r/�2�0 and (7-27) holds.
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Step 4 The A�–directional covariant derivative along the vector field v is used in a
moment to analyze the behavior of ˛ at points along v ’s integral curves. This directional
derivative is denoted in what follows by .rA˛/v . The equations in (2-5) identify the
latter with a linear combination of A�–covariant derivatives of ˇ . This being the case,
Lemma 7.2 finds j.rA˛/vj � c0mŒ.1�j˛j2/Cc0r�1m3�1=2 on the jwj> .2m/�1 part
of YZ if m� r1=3.ln r/��0 . By way of a comparison, Lemma 7.2 bounds the norm of
the remaining components of rA˛ by c0m�1=2r�1=2Œ.1� j˛j2/C c0r�1m3�1=2 .

What was said in the preceding paragraph about the norm of j.rA˛/vj has the following
consequences for a point p 2 YZ where jwj 2 Œm�1

kC2
; m�1

k
�; let p denote the integral

curve of v through p and let p0 denote a point on the segment of p where the distance
to p is less than c�10 ��1˘ m�1

k
:

(7-28) � If 1� j˛j2 > 1
4
��1˘ at p , then 1� j˛j2 > 1

8
��1˘ at p0.

� If 1� j˛j2 � 1
4
��1˘ at p , then 1� j˛j2 < 1

2
��1˘ at p0.

This segment of p is said in what follows to be the short segment of p .

Note that if "� c�10 ��2˘ , then p ’s short segment has points with jwj>m�1
k�1

. Assume
in what follows that " � c�10 ��2˘ is satisfied so as to invoke this fact about the short
segment.

Step 5 This step constitutes a digression to supply a coordinate chart for any given
jwj> 0 point in YZ that is used to exploit what is said in Step 4. To this end, suppose
that m > 1 has been specified. Use Im to denote the interval Œ�c�10 m�1; c�10 m�1�

and use Dm to denote the centered disk in C with radius c�10 m�1 . Use t to denote
the coordinate for the interval Im and use z for the complex coordinate on Dm . As
will be explained in a moment, there is a coordinate chart embedding from Im �Dm

to YZ with the following properties:

(7-29) � The point .0; 0/ is mapped to p and Im � f0g is mapped to a segment of
the integral curve of v through p .

� The image of any disk ftg �Dm is a transverse disk centered at the image
of .t; 0/.

� The function z 7! jzj on ftg�Dm is the pullback of the distance along the
image of ftg �Dm to the image of ft; 0g.

� The vector field v appears in these coordinates as @
@t
Ce, with jej � c0mjzj.

To construct such a coordinate chart, fix an isometric isomorphism between K�1� jp
and C . By way of a reminder, K�1� is used to denote the complex line bundle over
the jw.p/j> 0 part of YZ whose underlying real bundle is the kernel of �w with the

Geometry & Topology, Volume 24 (2020)
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complex structure defined using the metric and the restriction of the form w . Let p
again denote the integral curve of v through p . Parallel transport the resulting frame
for K�1� along p to identify K�1� along p with p �C . Fix a unit-length affine
parameter, t , for the segment of p consisting of points with distance c�10 m�1 or less
from p with t D 0 corresponding to p . This identifies this segment with Im . Granted
this identification, compose the metric’s exponential map from the Im part of p with
the identification between K�1� on this segment and the product C–bundle to define a
map from Im �C into YZ . The restriction of this map to Im �Dm gives the desired
coordinate embedding.

Step 6 Fix p 2 YZ such that jw.p/j 2 Œm�1
kC2

; m�1
k
� and 1� j˛j2 > 1

4
��1˘ . Let p0

denote a chosen point on Step 4’s short segment of p with jw.p0/j D m�1
kC1

. It
follows from (7-28) that 1� j˛j2 > 1

8
��1˘ at p0. This being the case, it follows from

Lemma 7.4 and Lemma IV.2.8 that if z > c0 and if r> c0 , then there is a point, with
distance at most c0m

1=2

kC1
r�1=2 from p0 where 1� j˛j2 > 1

4
��1˘ . It then follows from

the third bullet of (7-27) that there exists .;m; D/ 2‚k such that p0 has distance at
most .DzC c0/m

1=2

kC1
r�1=2 from a point in  . Let p� denote the latter point. Use the

coordinate chart in (7-29) to see that short segment of p intersects the transverse disk
through p� at a point with distance at most .1C c0"/.DzC c0/m

1=2

kC1
r�1=2 from p� .

Extend the curves from ‚k into the jwj �m�1
kC2

part of YZ by integrating the vector
field v . Use �kC1 to denote this set of extended curves. Given  2 �kC1 , fix a
point p 2  where jwj D m�1

kC1
. The point p has its corresponding version of

the coordinate chart in (7-29) with  appearing as an interval in the zD 0 locus that
contains .0; 0/. Let I denote this interval.

It follows from what was said in the preceding paragraph that the each point in B where
1�j˛j2> 1

4
��1˘ and jwj 2 Œm�1

kC2
; m�1

k
� lies in the jzj� .1Cc0"/.DzCc0/m

1=2

kC1
r�1=2

part of some  2 �kC1 version of I �DmkC1 . In particular, if " < c�10 and z > c0 ,
then this subset is contained in the subset where jzj< 3

2
Dzm

1=2

kC1
r�1=2 . Assume that "

and z are such that this is the case.

Note in this regard that if .;m; D/ and . 0;m0; D0/ are distinct elements in ‚k , then
the respective subsets of B that are parametrized via (7-29) by the jzj�2Dzm

1=2

kC1
r�1=2

part of I �DmkC1 and the jzj � 2D0zm
1=2

kC1
r�1=2 part of I 0 �DmkC1 are disjoint.

This is a consequence of the second bullet in (7-27).

Step 7 Fix .;m; D/ 2 ‚k . It follows from what was said in Step 6 that ˛j˛j�1

is yA�–covariantly constant in the solid annulus in I �DmkC1 that intersects any
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constant t slice as the annulus with inner radius 3
2

Dzm
1=2

kC1
r�1=2 and outer radius

2Dzm
1=2

kC1
r�1=2 . Granted this, it then follows from the third bullet of (7-27) that

the integral of i
2�
F yA�

over the jzj < 2Dzm
1=2

kC1
r�1=2 part of any constant t disk in

I �DmkC1 is the integer m.

To exploit the preceding observation, fix t 2 I and let p 2 YZ denote the point that
corresponds to .t; 0/ 2 I �DmkC1 . Associate to p the pair .Ar; ˛r/ as described
in Part 2 of Section 7.2. Use cz in what follows to denote a constant that is greater
than 1 and depends only on z . It follows from Lemma 7.4 that if z > c0 and if r> cz ,
then .Ar; ˛r/ have C 1–distance less than z�10 on the radius 2Dz disk in C from a
finite-energy solution to the vortex equations. Moreover, what is said by Lemma 7.4
implies that such a finite-energy solution must define a point in the space Cm . Granted
this, then (7-25) and Lemma 7.4 imply the following when z > c0 and r> cz :

If z > c0 and r� cz , then there is a set of at most n0 points in the jzj< 3
2

Dm
1=2

kC1
r�1=2

part of ftg �DmkC1 such that

(7-30) � each point is a zero of ˛ ;

� if 1� j˛j2 � 1
8
��1˘ at .t; z/ and jzj � 2DmkC1r�1=2 , then z has distance

at most c0m1=2kC1r�1=2 from some point in this set.

Use #;t to denote this set of points and let U;t denote the set of connected components
of the union of the disks of radius c0m

1=2

kC1
r�1=2 about the points in #;t . The next

assertion is a z > c0 and r> cz consequence of (7-30) plus Lemma 7.4 and (7-25):

(7-31) � The connection yA� is flat and ˛j˛j�1 is yA�–covariantly constant on the
complement of

S
U2U;t

U in the radius 2Dm
1=2

kC1
r�1=2 disk about the

origin in ftg �DmkC1 .

� The integral of i
2�
F yA�

over any set U 2 U:t is a positive integer; and the
sum of these integers is equal to m.

The next step constructs ‚kC1 with the help of the various .;m; D/ 2‚k versions
of #;0 .

Step 8 To construct ‚kC1 , it is necessary to cluster the points from the various
.;m; D/ 2‚k versions of #;0 so that points in the same cluster are pairwise much
closer to each other than they are to any point in another cluster. This is necessary
so as to find the desired constant ckC1 for the integer kC 1 version of (7-27). An
appropriate clustering can be found by invoking Lemma 2.12 in [38]. In particular,
an appeal to this lemma finds ckC1 2 .100; .100/2

�1 / and a set of at most �1 pairs of
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the form .p; D/, where p 2 B is such that jw.p/j Dm�1
kC1

and where D 2 .1; ckC1/.
This set is denoted by # and it has the properties in the list that follows:

(7-32) � If .p; D/ and .p0; D0/ are distinct elements in # , then

dist.p; p0/ > c2kC1zm
1=2

kC1
r�1=2:

� If p corresponds via (7-29) to a point in some .;m; D/ 2 ‚k version
of #k;0 , then p has distance at most 1

4
Dzm

1=2

kC1
r�1=2 from a point of some

pair from # .

Note for future reference that the bound in the first bullet of (7-32) has the following
implication when z > c0 and r> cz :

(7-33) If .p; D/ and .p0; D0/ are distinct elements in # , then the distance between
any two points on the respective short segments p and p0 is greater than
1
2

c2
kC1

zm
1=2

kC1
r�1=2.

It follows from (7-31) and (7-32) that if .;m; D/ 2 ‚k and if U 2 U;0 , then U is
in the transverse disk of radius 1

2
Dzm

1=2

kC1
r�1=2 centered at a point of some pair in # .

Granted this last conclusion, then the next assertion is a direct consequence of what is
said in Step 4 if z > c0 and r> cz .

(7-34) If .;m; D/ 2 ‚k and t 2 I , then each U 2 U;t is contained in the radius
Dzm

1=2

kC1
r�1=2 tubular neighborhood of the integral curve of v through a point

of some pair from # .

Let .p; D/ 2 # . What is said in (7-33) and (7-34) has the following consequence:

(7-35) The integral of i
2�
F yA�

on the radius Dzm
1=2

kC1
r�1=2 transverse disk about any

point in the jwj 2 Œm�1
kC2

; m�1
k
� part of p is a positive integer.

Let m denote now this integer.

Define ‚kC1 to be the set f.p;m; D/ j .p; D/ 2 #g. It follows from (7-31) and (7-33)–
(7-35) that the requirements for the integer kC 1 version of (7-27) are met using ckC1
and the set ‚kC1 if " < c0 , z > c0 and r> cz .

7.6 The spectral flow function

This subsection constitutes a digression to say more about the definition of fs . Each
pair c D .A; / in Conn.E/ � C1.YZ IS/ and a given real number z determine
an associated, unbounded, self-adjoint operator on L2.YZ I iT �YZ ˚S˚ iR/. This
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operator is denoted by Lc;z and it is defined as follows: a given smooth section
h D .b; �; �/ of iT �YZ ˚ S˚ iR is sent by Lc;z to the section whose respective
iT �YZ –, S– and iR–summands are

(7-36)

8<:
�db� d� � 2�1=2z1=2. ���C ��� /;

DA�C 2
1=2z1=2.cl.b/ C� /;

�d � b� 2�1=2z1=2.�� � ��/:

The spectrum of this operator is discrete with no accumulation points and has finite
multiplicity. The spectrum is also unbounded from above and unbounded from below.

The section  E of S is chosen so that the .AE ;  E / and z D 1 version of (7-36) has
trivial kernel. If the z D r and c D .A; / version of (7-36) has trivial kernel, then
the value of the spectral flow function fs.c/ is a certain algebraic count of the number
of zero eigenvalues that appear along a continuous path d of operators that start at
the z D 1 and .AE ;  E / version of (7-36) and end at the z D r and .A; / version
and such that each member of the path differs from Lc;r by a bounded operator on
L2.YZ I iT

�YZ˚S˚iR/. For the purposes of the definition, it is sufficient to consider
paths that are parametrized by Œ0; 1� such that the following conditions are met: Let
# � Œ0; 1� denote the parameters that label an operator with zero as an eigenvalue.
Then # is finite and in each case, the zero eigenvalue has multiplicity 1 and the zero
eigenvalue crossing is transversal as the parameter varies in a small neighborhood of
the given point in Œ0; 1�. Having chosen such a path, a given point in the corresponding
version of # contributes either C1 or �1 to fs.c/. The contribution is C1 when the
eigenvalue crosses zero from negative value to positive value as the parameter in Œ0; 1�
varies near the given point in # ; and it contributes �1 to fs.c/ if the eigenvalue crosses
zero from a positive value to negative value near the given point.

If Lc;r has nontrivial kernel, then fs.c/ is defined in the upcoming (7-37). The definition
uses the following terminology: Given " > 0, and c 2 Conn.E/�C1.YZ IC/, the
definition uses N".c/ to denote the subset of pairs in Conn.E/�C1.YZ IC/ with the
following two properties: a pair c0 is in N".c/ if it has C 1–distance less than " from c,
and if Lc0;r has trivial kernel. Standard perturbation theory for elliptic operators proves
that N".c/ is nonempty for any " > 0. With the notation set, define fs.c/ by the rule

(7-37) fs.c/D lim sup
"!0

ffs.c
0/ j c0 2N".c/g:

Note by the way that the lim sup in (7-37) differs from the corresponding lim inf by
the dimension of the kernel of Lc;r .
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7.7 The L1–norm of BA , the spectral flow and the functions csf , Wf , af

The functions

(7-38) csf D cs� 4�2fs; Wf
D W� 2�fs and af D aC 2�.r��/fs

are invariant under the C1.YZ IS1/–action on Conn.E/�C1.YZ IS/ that has yu 2
C1.YZ IS

1/ sending .A; / to .A�yu�1d yu; yu /. The upcoming Lemma 7.9 supplies
a priori bounds on the values of these functions when evaluated on solutions to a given
.r; �/ version of (2-5). It also gives a better bound for the L1–norm of the curvature
of the connection component of a solution than the bound in Lemma 7.6.

Lemma 7.9 Suppose that w is a harmonic 2–form with nondegenerate zeros. There
exists � > � and �1� � with the following significance: Fix r � �1 and a 1–form
�2� with P –norm less than 1. Suppose that .A; / is a solution to the .r; �/ version
of (2-5). Then:

� The L1–norm of BA is no greater than �.ln r/4 .

� jcsfj< r6=7 .

� jWfj< r6=7 .

� jafj< r13=14 .

As a parenthetical remark, the precise powers of r that appear in the last three bullets
are significant with regards to the applications to come only to the extent that the power
is less than 1 in the second and third bullets and so less than 2 in the final bullet.

Proof By way of a look ahead, what is said in Lemma 7.8 plays a vital role in the
proof of all four bullets. The proof of Lemma 7.9 has 10 parts.

Part 1 The proof of Lemma 7.9’s first bullet has four steps. To set the notation for the
proof, introduce �� to denote the version of the constant � that appears in Lemma 7.8.
As in Lemma 7.8, set mk D .1C��1� /k�2� for k 2 f1; 2; : : : g. Assume in what follows
that k is such that mk < r1=3.ln r/��� .

Step 1 Use the first bullet of Lemma 7.8 and the fourth bullet of Lemma 7.2 to see that
jBAj < c0 at points in the jwj >m�11 part of YZ where the distance to all segments
in ‚1 is greater than c0.ln r/2r�1=2 . This understood, this part of YZ contributes at
most c0 to the L1–norm of BA . Meanwhile, the jwj>m�11 part of YZ of the union
of the radius c0.ln r/2r�1=2 tubular neighborhoods of the segments in YZ contributes
at most c0.ln r/4 to the L1–norm of BA .
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Step 2 Fix k > 1. Use the integer k version of the second bullet of Lemma 7.8 with
the fourth bullet of Lemma 7.2 to see that jBAj is bounded by c0.1Cm2k/ at points
in the jwj 2 Œm�1

k
; m�1

k�1
� part of YZ where the distance to all segments in ‚k is

greater than c0m
1=2

k
.ln r/2r�1=2 . Since this subset of YZ has volume at most c0m�3k ,

so this portion of the jwj 2 Œm�1
k
; m�1

k�1
� subset in YZ contributes at most c0m�1k to

the L1–norm of BA . The volume of the remaining part of the jwj 2 Œm�1
k
; m�1

k�1
�

subset in YZ is at most c0r�1.ln r/4 . Indeed, this can be seen from (7-29) using the
fact that each segment in ‚k has length at most c0m�1k . As jBAj is no greater than
c0m

�1
k

r on this part of YZ , so this part of YZ contributes at most c0m�1k .ln r/4 to the
L1–norm of BA .

Step 3 Lemma 7.3 implies that jBAj is bounded by c0r2=3.ln r/�� on the subset of YZ
where jwj � c0r�1=3.ln r/�� . The volume of this subset is at most r�1.ln r/3�� and so
the contribution from this part of YZ to the L1–norm of BA is no greater than c0r�1=4 .

Step 4 Sum the bounds in Steps 1–3 to see that the L1–norm of BA is no greater
than c0.ln r/4

P
kD0;1;:::.1C 1=��/

�k . This sum is bounded by c0��.ln r/4 .

Part 2 The proof of the last three bullets of the lemma starts with the following
observation: There is a smooth map, yuW YZ ! S1 , such that the connection A0 D
A� yu�1d yu can be written as A0 D AE C yaA0 where yaA0 is a coclosed, iR–valued
1–form whose L2–orthogonal projection to the space of harmonic 1–forms on YZ
is bounded by c0 . The upcoming Lemma 7.10 asserts the pointwise bound jyaA0 j �
c0r1=3.ln r/c0 . Assume this bound for the time being.

Introduce c0 to denote .A� yu�1d yu; yu /. The supremum bound for jyaA0 j and the L1–
bound for BA from Lemma 7.9’s first bullet imply directly that jcs.c0/j � c0r1=2.ln r/c0 .
The L1–bound for BA also implies that jW.c0/j� c0.ln r/c0 . Thus, ja.c0/j� c0r.ln r/c0 .
Granted these bounds, then the last three bullets of Lemma 7.9 follow if

(7-39) jfs.c
0/j � r6=7:

The fact that (7-39) holds given the assumptions of the lemma is proved in the remaining
parts of this subsection.

Part 3 The proof of the last three bullets of Lemma 7.9 invoked a pointwise bound
for jyaA0 j. The lemma that follows supplies the asserted bound:

Lemma 7.10 There exists � > � and �1� � with the following significance: Fix
r� �1 and an element � 2� with P –norm less than 1. Let .A; / denote a solution
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to the .r; �/ version of (2-5). Write A as AE C yaA and assume that yaA is a coclosed
1–form. Use c to denote the L2–norm of the L2–orthogonal projection of yaA to the
space of harmonic 1–forms. Then jyaAj � r1=2.ln r/� C �c .

Proof The proof that follows has three steps.

Step 1 Write yaA as ya?C p, where ya? is L2–orthogonal to the space of harmonic
1–forms and where p is a harmonic 1–form. The norm of p is bounded by c0c . To
bound ya? , let C?�C1.YZ IT �YZ/ denote the subspace of coclosed 1–forms that are
L2–orthogonal to the space of harmonic 1–forms. The operator �d maps C? to itself
and Hodge theory gives a Green’s function inverse. Given p 2M, the corresponding
Green’s function with pole at p is denoted by G?p . � /. This function is smooth on the
complement of p and it obeys the pointwise bound jG?p . � /j � c0 dist. � ; p/�2 .

Step 2 Introduce �� to denote Lemma 7.8’s version of � . Reintroduce from Lemma 7.8
the sequence fmk D .1 C ��1� /k�2�gkD1;2:::;N with N being the greatest integer
such that mN < r1=3.ln r/��� . Let U1 denote the jwj > m�12 part of YZ . For
k 2 f1; : : : ; N �1g, use Uk to denote the jwj 2 Œm�1

kC1
; m�1

k�1
� part of YZ , and use UN

to denote the part of YZ where jwj �m�1N�1 . Given k 2 f1; : : : ; N �1g, let �k denote
the set of curves from ‚k ’s data sets. By way of a reminder, there are at most ��
curves in �k and each is a properly embedded segment of an integral curve of v in Uk .

Lemmas 7.2 and 7.8 supply c� 2 .1; c0/ with the following property: If p 2 Uk has
distance greater than c�mkr�1=2.ln r/2 to any curve from �k , then 1�j˛j2� c0m3kr�1 .
Denote by Tk1 the union of the radius c�mkr�1=2.ln r/2 tubular neighborhoods of
the curves from �k . Since �d ya? D BA , it follows from Lemmas 7.1 and 7.2 that
jBAj � c0m

2
k

on Uk�Tk1 , and it follows from Lemmas 7.2 and 7.3 that jBAj � c0m�1k r
on Tk1 . Note also that the volume of Uk is at most c0m�3k and that of Tk1 at most
c0m

�1
k

r�1.ln r/4 .

Step 3 Suppose that k 2 f1; : : : ; N � 1g and that p 2 Uk . Keeping in mind that the
volume of Uk is bounded by c0m�3k , it follows from what is said about G?p in Step 1
and what is said about jBAj in Step 2 that

(7-40) jya?j.p/� c0

Z
Tk

dist. � ; p/�2jBAjC c0.mkC .ln r/c0/:

Use the various  2 �k versions of (7-29) to see that the integral on the right-hand side
of (7-40) is no greater than c0m

�1=2

k
r1=2.ln r/c0 .

Suppose that p 2 UN . In this case, what is said about G?p in Step 1 and what is said
in Step 2 about jBAj imply that jya?j.p/� c0r1=3.ln r/c0 .
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Part 4 Fix c > 1 and suppose that cD .A; / solves (2-5) and is such that the iR–
valued 1–form yaA D A�AE is coclosed and that the L2–norm of its L2–orthogonal
projection to the space of harmonic 1–forms on YZ is less than c . The value of fs
will be computed by choosing a convenient, piecewise continuous path of self-adjoint
operator from the .AE ;  E / and z D 1 version of (7-36) to Lc;r . This path is the
concatenation of the three real analytic segments that are described below. The absolute
value of fs.c/ is no greater than the absolute value of the sum of the absolute values of
the spectral flow along the three segments.

By way of notation, each segment is parametrized by Œ0; 1� and the operator labeled by
a given s 2 Œ0; 1� in the kth segment is denoted by Lk;s . The first segment’s operator
L1;s for s 2 Œ0; 1� is the .AE ;  E / and z D 1� s version of (7-36). This path has no
dependence on .A; / or r, and so the absolute value of the spectral flow along this
path is no greater than c0 . The remaining two segments are:

(7-41) � The second segment’s operator L2;s for s 2 Œ0; 1� is the .AE C s yaA; 0/
version of (7-36).

� The third segment’s operator L3;s for s 2 Œ0; 1� is the .A; / and z D s2r
version of (7-36).

The strategy for bounding the absolute value of the spectral flow along (7-41)’s two
segments borrows heavily from Section 3 of [34]. To say more about this, suppose
that L is an unbounded, self-adjoint operator on a given separable Hilbert space with
discrete spectrum with no accumulation points and finite multiplicities. Let fesgs2Œ0;1�
denote a real analytic family of bounded, self-adjoint operators on this same Hilbert
space. Of interest is the spectral flow between the s D 0 and s D 1 members of the
family fLs D LC esgs2Œ0;1� . To obtain a bound, fix for the moment T > 0 and let
nT;s denote the number of linearly independent eigenvectors of Ls whose eigenvalue
has absolute value no greater than T . Set nT D supfnT;sgs2Œ0;1� . As explained in [32],
the spectral flow for the family fLsgs2Œ0;1� has absolute value no greater than

(7-42) 1

2T
nT sup

n d
ds
es


op

o
s2Œ0;1�

;

where the norm k � kop here denotes the operator norm.

The supremum in (7-42) for the family fL2;sgs2Œ0;1� is bounded by c0jyaA0 j, and thus
by c0r1=2.ln r/c0 . It follows from Lemma 7.3 that the supremum that appears in (7-42)
for the family fL3;sgs2Œ0;1� is c0r1=2 . This understood, then (7-42) in either case leads
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to:

(7-43) The absolute value of the spectral flow along the families fL2;sgs2Œ0;1� and
fL3;sgs2Œ0;1� is no greater than c0r1=2.ln r/c0 1

T
nT .

The next part of the subsection describes the strategy that is used to bound nT for a
suitable choice of T .

Part 5 A bound for nT is obtained with the help of the Weitzenböck formula in
(IV.A-12) for a given z � 0 version of L2c;z . This formula writes L2c;z as r�ArACQ,
where Q denotes an endomorphism of iT �YZ ˚ S˚ iR and rA denotes here the
connection on the bundle iT �YZ ˚S˚ iR given by the Levi-Civita connection on
the iT �YZ –summand, the Levi-Civita connection and A on the S–summand, and the
product connection on the iR–summand. This rewriting of L2c;z is used to write the
square of the L2–norm of Lc;zq as

(7-44)
Z
YZ

jLc;zqj
2
D

Z
YZ

.jrAqj
2
Chq;Qqi/;

with h � ; � i denoting here the Hermitian inner product on iT �YZ ˚S˚ iR. If q is a
linear combination of eigenvectors of Lc;z with the norm of the eigenvalue bounded
by T , then what is written in (7-44) is no greater than T 2 times the square of the
L2–norm of q.

The formula in (7-44) is exploited to bound nT using the following observation:
Suppose that U is an open cover of YZ such that no point is contained in more than c0
sets from U. Let h denote for the moment a given function on YZ . Then

(7-45)
Z
YZ

h2 �
X
U2U

Z
U

h2 � c0

Z
YZ

h2:

Hold onto this last observation for the moment. Use c˘ to denote the version of c0
that appears in this last inequality.

The endomorphism Q is self-adjoint, so it can be written at any given point as a sum
QCCQ� with QC being positive semidefinite and Q� being negative definite. With
this fact in mind, suppose now that each set U 2 U has an assigned, finite-dimensional
vector subspace VU 2 C1.U I iT �M ˚S˚ iR/ with the following property:

(7-46) If q 2 C1.U I iT �M ˚S˚ iR/ is L2–orthogonal to VU , thenZ
U

.jrAqj
2
Chq;QCqi/ > 2c˘

�
T 2C sup

U

jQ�j
� Z
U

jqj2:
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Given VU , define ˆU W C1.YZ I iT �M˚S˚iR/!VU to be the composition of first
restriction to U and then the L2–orthogonal projection. Set VD

L
U2U VU and denote

by ˆ the linear map from C1.YZ I iT
�M ˚S˚ iR/ to V given by

L
U2UˆU .

The inequalities in (7-45) and (7-46) have the following immediate consequence: If
q 2 Ker.ˆ/, then the L2–norm of Lc;z is greater than T . Given that such is the case,
it then follows directly that nT �

P
U2U dim.VU /.

The subsequent parts of the proof define a version of U for suitable T with associated
vector spaces fVU gU2U such that (7-46) holds. The resulting bound for nT leads via
(7-43) to the bound in (7-39) for jfsj.

Part 6 Part 5 alludes to a certain open cover of YZ . This part of the subsection defines
this cover. To this end, reintroduce from Step 2 of the proof of Lemma 7.10 the sets
fUkg1�k�N . The cover in question is given as UD

S
kD1;2;:::N Uk where all U 2 Uk

are subsets of Uk�1 [ Uk [ UkC1 . The definition requires the choice of a constant
c > 1. Part 10 of the proof gives a lower bound for c by c0 . Any choice above this
bound suffices.

To define a given k 2 f1; : : : ; N � 1g version of Uk , reintroduce from Step 2 of the
proof of Lemma 7.10 the set �k , this being the set of curves from ‚k ’s data sets.
By way of a reminder, there are at most �� curves in �k and each is a properly
embedded segment of an integral curve of v in Uk . This same step in the proof of
Lemma 7.10 introduced a constant c� such that 1� j˛j2 < c0m3kr�1 at points with
distance c�m

1=2

k
r�1=2.ln r/2 or more to all curves from �k . The discussion that follows

uses Rk to denote c�m
1=2

k
r�1=2.ln r/2 and �k to denote c�1 min.T;m�1

k
/.

The collection Uk for k 2 f1; : : : ; N � 1g is written as Uk� [Uk0 [UkC . The sets
from Uk� are balls of radius �k whose centers have distance at least �k to all curves
from �k . These balls cover the complement in Uk of the union of the radius 2�k
tubular neighborhoods of the curves from �k . A cover as just described can be found
with less than c0��3k m�3

k
balls, and such is the case with the cover Uk� .

The sets from Uk0 are balls with distance between 2�k and Rk to at least one curve
from �k . Let U denote a give ball from Uk0 and let D denote its distance to the union
of the curves from �k . The radius of U is equal to 1

8
D . The various  2 �k versions

of (7-29) can be used to see that a collection of c0 ln.�k=Rk/.Rkmk/
�1 balls of this

sort can be found whose union contains every point in Uk with distance between �k
and 2Rk to at least one curve from �k . The set Uk0 is such a collection of balls.
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The set UkC consists of balls of radius c�1m1=2
k

r�1=2 whose centers have distance
at most Rk to some curve from �k . The balls from UkC cover the set of points
with distance Rk or less to some curve from �k . The collection UkC has at most
c0c3.ln r/4m�3=2

k
r1=2 balls.

The sets that form UN are balls of radius r�1=3.ln r/�c with centers in UN . These sets
define an open cover of UN . A cover of this sort can be found with less than c0.ln r/c0c

elements, and such is the case for UN .

Part 7 This part of the subsection defines the vector spaces fVU gU2U . The next
lemma is needed for the definition.

Lemma 7.11 There exists � � 1 with the following significance: Let U � YZ denote
a ball of radius � 2 .0; ��1/. Fix an isometric isomorphism between EjU and U �C.
Use the latter to view the product connection on U �C as a connection on EjU . Use
r0 to denote the corresponding covariant derivative on C1.U I iT �M ˚ S˚ iR/.
There exists a �–dimensional vector space WU 2 C1.U I iT �M ˚S˚ iR/ such that
if q is a section over U of iT �M ˚ S˚ iR which is L2–orthogonal to WU , thenR
U jr0qj

2 � ��1��2
R
U jqj

2 .

This lemma will be proved in a moment; assume it to be true for now.

Fix U � U. If c � c0 then the radius of each ball from U will be smaller than
Lemma 7.12’s version of ��1 and each ball from U will sit in the Gaussian coordinate
chart about its center point. With this understood, fix U 2 U and let p denote U ’s
center point. Fix an isometric isomorphism between Ejp and C and use A’s parallel
transport along the radial geodesics from p to extend this identification to one between
EjU and the product bundle U �C . Define VU to be Lemma 7.11’s vector space WU :

Proof of Lemma 7.11 If � < c�10 , then U has a Gaussian coordinate chart centered
at its center point. Fix an isometric identification between K�1 at the center point
of U with C and use the AK parallel transport along the radial geodesics through the
center point to extend this isomorphism to one between K�1jU and U �C . Use the
coordinate basis with the identification K�1jU D U �C and the chosen identification
EjU D U �C to give a product structure to T �M and S over U. Having done so,
rescale the coordinates so the ball of radius � becomes the ball of radius 1; then invoke
the next lemma.
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Lemma 7.12 Let U � R3 denote the ball of radius 1 centered on the origin. If
h 2 C1.U IC/ is such that

R
U hD 0, then

R
U jdhj

2 �
1
4

R
U h2 .

Proof It is sufficient to prove the bound for functions that depend only on z through
its absolute value. This understood, use � to denote jzj and let h denote a function
that depends only on � and has integral zero over the unit ball. Let h�D h�h.1/. Use
integration by parts to see that

(7-47)
Z 1

0

h2��
2 d� � 2

Z 1

0

ˇ̌̌
@

@�
h
ˇ̌̌
jh�j� d�:

What is written in (7-47) implies that

(7-48)
Z 1

0

h2� d� � 4

Z 1

0

jdhj2�2 d�:

Meanwhile,
R 1
0 h2� d� �

R 1
0 h2��

2 d� , the latter being the integral of h2� over the unit
ball. This last integral is 1

3
h.1/2 plus the integral of h2 because the integral of h is

zero.

Part 8 This step sets the stage for the specification of c and f�kg1�k�N�1 so as to
guarantee (7-46). To start, let U � U denote a given ball and let p denote the center
point of U. Fix an isometric isomorphism between Ejp and C and then use A’s
parallel transport along the radial geodesics from p to extend this isomorphism to give
an isomorphism between EjU and U �C . Let �0 denote the product connection on
U �C . Use the isomorphism just defined to view �0 as a connection on EjU . Having
done so, write A on U as �0C yaA;U with yaA;U being an iR–valued 1–form on U.
Let DU denote the radius of U. The norm of yaA;U is bounded by c0DU supU jBAj.

Fix k 2 f1; : : : ; N � 1g; let U denote a ball from either Uk� or Uk0 . It follows
from what Lemma 7.2 that jBAj � c0m2k on U and so jyaA;U j � c0c�1�km2k . If
U 2 UkC , then it follows from Lemma 7.2 that jBAj � c0m�1k r on U and so jyaA;U j �
c0c�1m�1=2

k
r1=2 on U. If U is from UN , then Lemma 7.3 finds jBAj � c0r2=3.ln r/c0

on U and so jyaA;U j � c0c�1r1=3.ln r/c0 .

Given U � U, use the isomorphism defined above between EjU and U �C to again
view �0 as a connection on EjU . Use r0 to denote the corresponding covariant
derivative on C1.U I iT �M ˚S˚V /. Since jyaA;U j2 � c0 supU jBAj in all cases, so

(7-49) jrAqj
2
�
1
2
jr0qj

2
� c0

�
sup
U

jBAj
�
jqj2

for all q 2 C1.U I iT �M ˚S˚V /.
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Consider next the endomorphism Q that appears in (7-46). A look at the formula in
(IV.A-12) finds

(7-50) jQ�j � c0.1CjBAjC z1=2jrA j/ and jQCj � c�10 zj j2:

To say more about the bounds in (7-50) on the sets from U, fix first k 2 f1; : : : ; N �1g
and let U denote a ball from Uk� or Uk0 . Lemma 7.2 finds jrA j � c0m

1=2

k
and

j j2 � c0m
�1
k

on U. Since jBAj on U is bounded by c0m2k , the inequalities in (7-49)
and (7-50) imply that

(7-51) jrAqj
2
Chq;QCqi � jr0qj2C 2c˘ sup

U

jQ�jjqj2� c0m2kjqj
2

for all q 2 C1.U I iT �M ˚ S ˚ V /. Meanwhile, if U is a ball from UkC , then
Lemma 7.3 finds jrA j � c0m�1k r1=2 and jBAj � c0m�1k r. This being the case, then
(7-49) and (7-50) find

(7-52) jrAqj
2
Chq;QCqi � 1

2
jr0qj

2
C 2c˘ sup

U

jQ�jjqj2� c0m�1k rjqj2

for all q 2 C1.U I iT �M ˚S˚V /.

Suppose next that U is a ball from UN . What is said in Lemma 7.3 implies that
jBAj � c0r2=3.ln r/c0 and jrA j � c0r1=6 on U, so (7-49) and (7-50) lead to the
inequality

(7-53) jrAqj
2
Chq;QCqi � 1

2
jr0qj

2
C 2c˘ sup

U

jQ�jjqj2� c0r2=3.ln r/c0 jqj2

for all q 2 C1.U I iT �M ˚S˚V /.

Part 9 This part of the subsection specifies c and f�kg1�k�N�1 so as to satisfy (7-46).
To this end, suppose that k 2 f1; : : : ; N � 1g. Suppose that U is from Uk� or Uk0 . If
q 2C1.U I iT �M ˚S˚V / is L2–orthogonal to the subspace VU , then Lemma 7.11
and (7-51) find

(7-54)
Z
U

.jrAqj
2
Chq;QCqi/�

�
c�10 ��2k � c0m

2
kC 2c˘ sup

U

jQ�j
� Z
U

jqj2:

It follows as a consequence that (7-46) holds if ��2
k
� c0.T

2Cm2
k
/ and this is so if

c > c0 . Suppose next that U is from UkC and that q 2 C1.U I iT �M ˚S˚ V / is
L2–orthogonal to VU . Lemma 7.11 and (7-52) imply that

(7-55)
Z
U

.jrAqj
2
Chq;QCqi/�

�
.c�10 c2� c0/m�1k rC 2c˘ sup

U

jQ�j
� Z
U

jqj2
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if q is L2–orthogonal to VU . Thus (7-46) holds if c � c0.1Cmkr�1T 2/; and in
particular, (7-46) holds for c > c0 if the eigenvalue bound T is less than r1=6.ln r/�c0 .

The last case to consider is that where U comes from UN . Lemma 7.11 and (7-53)
imply for such U that

(7-56)
Z
U

.jrAqj
2
Chq;QCqi/�

�
c�10 .ln r/2c

� .ln r/c0r2=3C2c˘ sup
U

jQ�j
� Z
U

jqj2

if q is L2–orthogonal to V . It follows as a consequence that (7-46) holds for such U
if both c > c0 and the eigenvalue bound T is less than r1=3 .

Granted all of the above, and given that T < r1=6.ln r/�c , then (7-46) holds for all sets
from U if c > c0 . This understood, choose c to be twice this lower bound.

Part 10 The dimension of each U 2 U version of VU is bounded by c0 , and so it
follows from what is said at the end of Part 5 that nT is no greater than c0 times the
number of sets in the collection U.

An upper bound for size of U is obtained by summing upper bounds for the sizes of
the various k 2 f1; : : : ; N g versions of Uk . Let NT denote the largest value of k such
that T > mk and suppose first that k 2 f1; : : : ; NT g. It follows from what is said in
Part 6 that Uk� contains no more than c0T 3m�3k sets. Meanwhile, Uk0 and UkC to-
gether contain at most c0m

�3=2

k
r1=2.ln r/c0 balls. Thus

S
1�k�NT

Uk contains at most
c0.T

3C r1=2.ln r/c0/ balls. Suppose next that k 2 fNT C 1; : : : ; N � 1g. In this case,
Uk� has at most c0 balls while Uk0 and UkC again have at most c0m

�3=2

k
r1=2.ln r/c0

balls. Thus,
S
NT<k�N�1

Uk contains at most c0T �3=2r1=2.ln r/c0 balls. As noted in
Part 6, the set UN has at most c0.ln r/c0 balls.

Given that T � c0r1=6.ln r/c0 , the bounds just stated imply that nT � c0r1=2.ln r/c0 .
Thus, (7-43) bounds the spectral flow along the families fL2;sgs2Œ0;1� and fL3;sgs2Œ0;1�
by c0T �1r.ln r/c0 . This understood, take T D r1=7.ln r/c0 to obtain the bound in (7-39).

7.8 The proof of Proposition 3.7

If YZ has a single component, then the function fs is defined in Section 7.6. Proposition
3.7’s assertion in this case is implied directly by Lemma 7.9’s fourth bullet.

Suppose now that YZ has more than 1 component. To define fs in this case, introduce
Y to denote the set of components of YZ . The space Conn.E/�C1.YZ IS/ can be
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written as
Q
Y 02Y.Conn.EjY 0/�C1.Y 0ISjY 0//. Section 7.6 defines any given Y 0 2Y

version of fs on Conn.EjY 0/�C1.Y 0ISjY 0/. Denote the latter by fsIY 0 . Set

fs D
X
Y 02Y

fsIY 0 :

Each Y 0 2 Y has its version of the function a on Conn.EjY 0/�C1.Y 0ISjY 0/. Use
aY 0 to denote the latter. Then af D

P
Y 0.aY 0 C 2�.r��/fsIY 0/. This understood, it

is enough to bound jaY 0 C 2�.r� �/fsIY 0 j for each Y 0 2 Y . Lemma 7.9 supplies a
suitable bound when c1.det.SjY 0// is not torsion. This understood, suppose Y 0 2 Y
and c1.det.S/jY 0/ is torsion. Thus, w D 0 on Y 0.

Write  on Y 0 as r�1=2� to see that the set of solutions to (2-5) on Y 0 is r–independent.
It follows as a consequence of what is said in Chapter 5 of [17] that the space of
C1.Y 0IS1/–orbits of solutions to (2-5) on Y 0 is compact. Hold on to this fact for the
moment. Write  in the Y 0 version of (7-36) as r1=2� and write the sections b and �
as .rz/1=2b0 and .rz/1=2�0 to see that the spectrum of the operator in (7-36) depends
neither on r nor z . What was just said about compactness and what was just said about
the spectrum implies directly that jaY 0 C 2�.r��/fsIY 0 j � c0 .

8 Cobordisms and the Seiberg–Witten equations

This section proves Propositions 3.5 and 3.8. Here is an outline of what is to come.

Section 8.1 This section states three key lemmas (Lemmas 8.1–8.3) that are used in
Section 8.2 to prove Proposition 3.5. These are used subsequently also. These lemmas
establish a priori estimates on the norms of  and rA and the curvature FA when
.A; / is an instanton solution to (2-10) and r is large. Lemmas 8.1–8.3 are proved in
subsequent subsections of Section 8.

Section 8.2 This section uses the lemmas in Section 8.1 to prove Proposition 3.5.

Section 8.3 This section ties up a loose end by giving the proof of Lemma 8.1 from
Section 8.1.

Section 8.4 This section ties up a loose end by giving the proof of Lemma 8.2 from
Section 8.1.

Section 8.5 This section gives the proof of Lemma 8.3 from Section 8.1 modulo
Lemma 8.5, which is an assertion about the behavior of  on certain domains in a
cobordism.
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Section 8.6 This section proves Lemma 8.5.

Section 8.7 This section uses the results in the previous sections of Section 8 and the
results from Section 7 to prove Proposition 3.8.

8.1 The three key lemmas

The three parts of this subsection supply three lemmas that assert pointwise bounds
for  , the curvature of A and for the covariant derivative of  . These bounds are used
in the next subsection to prove Proposition 3.5. All three lemmas assume implicitly
that the conditions in Section 3.3 are satisfied. Additional assumptions are stated when
needed.

Part 1 The first lemma starts the story with a pointwise bound for j j and L2–bounds
on FA and the covariant derivatives of  . With regards to notation, this lemma uses
.rA /s to denote the section of SC over the jsj> 1 part of X that gives the pairing
between rA and the vector field @

@s
.

Lemma 8.1 There exists � > 1 such that given any c � � , there exists �c with the
following significance: Fix r � �c . If X is not the product cobordism, assume that
the metric obeys (2-9) with L� c , that the norm of the Riemann curvature is bounded
by r1=c and that the norm of wX is bounded by c . Fix �� and �C from the Y�
and YC versions of � with P–norm bounded by 1 and use this data to define the
equations in (2-10). Suppose that dD .A;  / is an instanton solution to these equations.
Then j j � �c . If X is not the product cobordism , assume in addition that the volume
of the s–inverse image of any length 1 interval is bounded by c and that the metric’s
injectivity radius is greater than r�1=c . Also assume in this case that Ltor � cr and that
wX obeys (2-12) plus item (c) of the fourth bullet of (3-15). Let c� and cC denote
the respective s!�1 and s!1 limits of d and suppose that a.c�/�a.cC/� cr2 .
Then:

� The L2–norms of
ˇ̌
FA
�
@
@s
; �
�ˇ̌

and r1=2j.rA /sj on the jsj � L part of X are
less than �cr.

� The L2–norms of FA and r1=2rA on the s–inverse image of any length 1
interval in R are no greater than �cr.

This lemma is proved in Section 8.3.

Part 2 The next lemma supplies a refined set of bounds for j˛j and its covariant
derivatives on UC and U0 . This lemma and the subsequent lemma implicitly write SC
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on UC and U0 as E˚ .E˝K�1/. Having done so, they then write  with respect
to this splitting as .˛; ˇ/; and they write the connection A as AD AK C 2A with A
being a connection on E .

The notation in these upcoming lemmas refers to the complex structure on UC and U0
that is defined using the metric and the compatible symplectic form ds^�wCw . The
.1; 0/–part of the complexified cotangent space for this complex structure is the direct
sum of the span of dsC i �w and dz on UC and it is the direct sum of the span of
dsC i �w and the .1; 0/–part of the tangent space to the constant-.s; u/ spheres in U0
with the complex structure on S2 being the standard one. These lemmas write rA˛
with respect to the .1; 0/– and .0; 1/–splitting of the complexified cotangent bundle
as @A˛Cx@A˛ with @A˛ denoting the .1; 0/–part of rA˛ and with x@A˛ denoting the
.0; 1/–part. The next two lemmas also introduce �D to denote the diameter of the
cross-sectional disk D that is used to define UC .

Lemma 8.2 There exists � > 100.1C ��1D / such that given any c � � , there exists
�c � � with the following significance: Fix r � �c and assume that the metric obeys
(2-9), (3-14) and the .c; r D r/ versions of the conditions in the first two bullets of
(3-15). Assume that jwX j � c and that wX obeys (3-13). Fix elements �� and
�C from the Y� and YC versions of � with P–norm bounded by 1. Assume in
addition that their norms and those of their derivatives to order 10 on U and H0 are
bounded by e�r2. Use this data to define the equations in (2-10). Let c� and cC denote
respective solutions to the .r; ��/ version of (2-5) on Y� and the .r; �C/ version of
(2-5) with a.c�/� a.cC/� cr2 , and suppose that dD .A;  / is an instanton solution
to (2-10) with s ! �1 limit equal to c� and s !1 limit equal to cC . If p is a
point in one of the domains UC or U0 with distance greater than �2r�1=2.ln r/2 from
the domain’s boundary, then the following holds at p :

� jˇj2 � e�
p

r=�2 and j˛j2 � 1C e�
p

r=�2 .

� jrAˇjC jrArAˇj � e
�
p

r=�2 .

� jx@A˛j � e
�
p

r=�2 .

� If j˛j2 2 .��1; 1� ��1/ at p , then either jrA˛j2 � ��3r at p or the Hessian
rd j˛j2 at p has an eigenvalue with absolute value greater than ��3r.

� jrA˛jCr�1=2jrA.rA˛/j��r1=2 if jFAj� cr on the radius �r�1=2–ball centered
at p .

This lemma is proved in Section 8.4.
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Part 3 The final lemma here writes FA on UC and U0 as FA D ds^EAC�BA with
EA and BA denoting s–dependent, iR valued 1–forms on either R=.`Z/�D or H0
as the case may be. These 1–forms are written as

(8-1)
�
EA D�i.1� �/.r.1� j˛j2/C zA/ dt C rCX;

BA D�i�.r.1� j˛j2/C zB/ dt C r�X;

where � , zA and zB are functions, and where both r and X annihilate the vector
field @

@t
. Note that EACBA D�i

�
r.1� j˛j2/C zAC zB

�
dsC 2r, which means that

r and the combination zAC zB contain the terms with ˇ that appear in the leftmost
equation of (2-10).

Lemma 8.3 There exists � > � such that given any c � � , there exists �c >

200.1C ��1D / with the following significance: Fix r� �c and assume that the metric
and wX are .c; r D r/–compatible. Fix elements �� and �C from the Y� and YC

versions of � with P–norm bounded by 1. Assume in addition that their norms and
those of their derivatives up to order 10 on U and H0 are bounded by e�r2 . Use all
of these data to define the equations in (2-10). Let c� and cC denote the respective
solutions to the .r; ��/ version of (2-5) on Y� and the .r; �C/ version of (2-5) on YC
with a.c�/�a.cC/� r2�1=c . Suppose that dD .A;  / is an instanton solution to (2-10)
with s!�1 limit equal to c� and s!1 limit equal to cC . Let p denote a point
in either one of the domains UC or U0 with distance ��1 or more from the domain’s
boundary. Then the following are true at p :

� �r�100 < 1� � < 1C r�100 .

� jzAjC jzB j � r�100 .

� jrj � �r�100 .

� jXj2 � 2r2�.1� �/.1� j˛j2/C �r�100 .

� jrEAjC jrBAj � �r3=2 .

Lemma 8.3 is proved in Section 8.5 modulo a key lemma which is proved in Section 8.6.

8.2 Proof of Proposition 3.5

This part of the subsection uses what is said in Lemmas 8.1–8.3 to prove Proposition 3.5.
The argument assumes that the integral of iF yA over C is negative so as to derive
nonsense. This is done in the eight parts that follow. Before starting, note that the
assumptions in this proposition allow Lemmas 8.1 and 8.3 to be invoked, and the
conclusions of Lemma 8.3 imply in particular that Lemma 8.2 can be invoked as well.
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Part 1 This first part of the proof sets the stage for what is to come by supplying two
observations about the pullback of iF yA to C. What follows is the first observation:

(8-2) The integral of i
2�
F yA over C is an integer.

This follows from Lemma 7.6 since the latter implies that yA is flat and ˛=j˛j is
yA–covariantly constant where jsj � 1 on C.

The second observation concerns the function F on C that is defined by writing the
pullback to C of iF yA as F ds ^ dt :

(8-3) The function F is nearly nonnegative in the sense that F � �c0r�100.

This follows directly from the formula given below for F using the second bullet of
Lemma 8.2 and the first and second bullets of Lemma 8.3. The upcoming formula for F

uses .@A˛/0 to denote the dsC i �w component of @A˛ and use .x@A˛/0 to denote
the ds� i �w component of x@A˛ . Here is the promised formula for F :

(8-4) FD .1�}/.1� �/
�
r.1� j˛j2/C zA

�
C}0

�
j.@A˛/0j

2
� j.x@A˛/0j

2
�
:

This formula follows directly from (3-9) and (8-1).

Part 2 Let I � R denote the set characterized as follows: a point s is in I if the
integral of F over the slice fsg� in C is negative. The following assertion is a direct
consequence of (8-2) and (8-3):

(8-5) If
R
C iF yA < 0 then the measure of the set I is greater than c�10 r100.

Granted (8-5), there are at least c�10 r100 disjoint open intervals of length 1 in R with
center point in I . This understood, use the first bullet of Lemma 8.1 to find an interval
I �R of length 1 with center point in I , with jsj>LC 2 and such that

(8-6)
Z
I�Y

�ˇ̌̌
FA

�
@

@s
; �
�ˇ̌̌2
C rj.rA /sj2

�
< r�97:

This inequality enters the story in Parts 3 and 7.

Part 3 Supposing that I � R is given by Part 2, let s denote its center point, this
being a point for which the integral of F over fsg�  is negative. This part proves that
j˛j2 � 5

8
on fsg �  . To see why this is true, suppose for the sake of argument that

this condition is violated at p 2 fsg�  . Since the integral of F on fsg�  is negative,
there must be some point where the function } is less than 1 and thus j˛j2 � 9

16
.

As a consequence, the variation of j˛j on fsg �  must be greater than c�10 . As
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explained next, this variation is in fact no greater than c0r�15 if r � c0 . To start the
explanation, suppose that "> 0 and that there are points on fsg� with their respective
values of j˛j differing by more than ". Let @

@t
denote the unit-length tangent vector

to fsg �  and let .rA˛/t denote the directional covariant derivative of ˛ along @
@t

.
It follows as a consequence of the fundamental theorem of calculus that there is a
point q 2 fsg� where j.rA˛/t j> c�10 ". Let .rA˛/s denote the directional covariant
derivative of ˛ along the vector field @

@s
. Granted this lower bound for j.rA˛/t j at q ,

then the inequality in the third bullet of Lemma 8.2 requires that j.rA˛/sj � c�10 " at q
also if " is greater than c0e�

p
r=c0 . Assuming r� c0 , then this will be the case when

" > r�15 . The c�10 " lower bound for j.rA˛/sj at q , what is said by the fifth bullet of
Lemma 8.2 and what is said by Lemma 8.3 imply that j.rA˛/sj � c�10 " in the ball in
UC of radius c�10 "r�1 centered at q . The latter bound implies in turn that the integral
of j.rA˛/sj2 on this same ball is greater than c�10 "6r�4 , which is nonsense if " > r�15

because it runs afoul of what is said in (8-6).

Part 4 Let I and s 2 I be as in Part 3. Keep in mind that the integral of F over
fsg �  is negative. As will be explained in a moment, the lower bound in (8-3) for F

leads to the following observation:

(8-7) The variation of } over fsg �  is no greater than c0r�50.

To prove this, first use the fundamental theorem of calculus to see that

(8-8) sup
fsg�

} � inf
fsg�

} � c0

�Z
fsg�

}0j.rA˛/t j
2

�1=2
:

The bound in (8-7) follows from (8-8) using the lower bound for F and the third bullet
of Lemma 8.2.

Part 5 This part uses the conclusions of Part 3 to deduce the following:

(8-9) The function � on the juj< 1 part of fsg � . \H0/ obeys � < c0r�33.

To see why this is the case, let .s; p/ denote a given point in the juj < 1 part of
fsg � . \H0/ where � > 0. Let S denote the cross-sectional sphere in H0 that
contains p . Use (3-9) to write the pullback of FA to S as 1

2
Bdz ^ dxz with B D

�
�
r.1� j˛j2/C zB

�
. Use " to denote the value of � at .s; p/. Invoke the first and

second bullets of Lemma 8.3 to conclude
�
using what is said in Part 3 to the effect

that j˛j2 � 5
8

�
that value of B at .s; p/ is greater than 3

8
r"� c0r�100 . The fifth bullet

Geometry & Topology, Volume 24 (2020)
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of Lemma 8.3 finds that B > c�10 r" on the radius c�10 r1=2" disk in the cross-sectional
sphere fsg �S with center at .s; p/. Meanwhile, the first bullets of Lemma 8.3 and
Lemma 8.2 imply that B > �c0r�99 on the whole of fsg �S, and so the integral of B

over fsg �S is no less than c�10 "3� c0r�99 . This integral must be zero because the
first Chern class of E has zero pairing with the cross-sectional spheres in H0 . Thus
"� c0r�33 .

Part 6 What is said in Part 5 implies that .1�}/ < c0r�50 on fsg �  . Indeed, if
this bound is violated, then it follows from (8-7) and the formula for F in (8-4) that the
integral of F over the juj< 1 part of fsg �  is greater than c0r�49 . Given the lower
bound in (8-3), this last lower bound runs afoul of the assumption that F’s integral
over fsg �  is negative. The small size of 1�} implies in particular that j˛j2 > 3

8

on fsg �  .

Part 7 Granted the conclusions of Parts 5 and 6, then the fourth bullet of Lemma 8.2
asserts that one or the other of the following are true at each point in the juj < 1

part of fsg � . \H0/: either jrA˛j2 � c�10 r or the Hessian matrix rd j˛j2 has an
eigenvalue with absolute value greater than c�10 r. As explained next, this has the
following consequence:

(8-10) Let .@A˛/1 denote the component of @A˛ that annihilates both @
@s

and the
kernel of w. Then j.@A˛/1j2 is greater than c�10 r1=2 at all points in a radius
c�10 r�1=2 ball with center at distance less than c0r�1=2 from each point in the
juj< 1 part of fsg � . \H0/.

To prove this, suppose first that jrA˛j2 � c�10 r at a given point. Use the third bullet of
Lemma 8.2 to see that one or both of j.@A˛/1j2 and j.@A˛/0j2 are greater than c�10 r.
In the latter case, the third bullet of Lemma 8.2 implies that j.rA˛/sj2 is greater than
c�10 r at the point, and the second derivative bound from the fifth bullet of Lemma 8.2
implies that j.rA˛/sj2 � c�10 r at all points in a radius c�10 r�1=2 ball centered on this
point. This being the case, the integral of j.rA˛/sj2 over this ball is greater than
c�10 r�1 and this violates (8-6). Granted that j.rA˛/1j2 � c�10 r at the given point, then
the second derivative bound from the fifth bullet of Lemma 8.2 implies what is asserted
by (8-10).

Now suppose that the Hessian matrix rd j˛j2 at the given point has an eigenvalue
that is greater than c�10 r. Let v denote a unit-length eigenvector at the point with
such an eigenvalue. As will be explained directly, this vector must be such that
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jds.v/j C jdt.v/j < 1
100

. To see why this is the case, suppose to the contrary that
the latter bound is violated at a given point. It then follows from the first and fifth
bullets of Lemma 8.2 that j.rA˛/sj � c�10 r1=2 at all points in some ball of radius
c�10 r�1=2 whose center has distance at most c0r1=2 from the given point. This implies
in particular that the integral of j.rA˛/sj2 over this same ball is no less than c0r�1 .
But this is nonsense as it runs afoul of (8-6).

The fact that v is a unit-length vector implies that jdz.v/j> 1
2

. Use this lower bound
for jdz.v/j with the third bullet of Lemma 8.2 and the second derivative bounds from
the fifth bullet of Lemma 8.2 to see that j.@A˛/1j2 � c�10 r1=2 at all points in a ball of
radius c�10 r�1=2 whose center point has distance at most c0r�1=2 from the given point.

Part 8 Introduce the connection yA1 on E ’s restriction to I �H0 that is obtained from
.A; ˛/ by the formula yA1 D A� 1

2
.x̨rA˛�˛rA x̨/. The curvature 2–form of yA1 is

(8-11) F yA1
D .1� j˛j2/FACrA˛^rA x̨:

Let .s0; p0/ denote the center point of a ball that is described by (8-10). Introduce
S �H0 to denote the cross-sectional sphere that contains the point p0. Use (3-9) to
write the pullback of the curvature of yA1 to fsg �S as B1 dz ^ dxz with B1 given by

(8-12) B1 D �.1� j˛j
2/
�
r.1� j˛j2/C zA

�
Cj.@A˛/1j

2
� j.x@A˛/1j

2;

with .x@A˛/1 denoting here the dxz component of x@A˛ . The function B1 is also very
nearly nonnegative in the sense that B1 � �c0r�100 , this being a consequence of what
is said in the first and third bullets of Lemma 8.2 and the first and second bullets of
Lemma 8.3. This understood, then it follows from (8-10) and this lower bound for B1

that the integral of B1 over fs0g �S is positive. But this is nonsense because the latter
integral computes 2� times the pairing of the first Chern class of E with the homology
class defined by S, and this pairing is equal to zero.

8.3 Proof of Lemma 8.1

The bounds in the lemma constitute a particular case of bounds that are used in
Chapter 24 of [17]. As most of the machinery behind what is done in [17] is not needed
for the proofs, the argument for Lemma 8.1 is presented in a moment. What follows
directly lays a convention that is invoked implicitly in the arguments for Lemma 8.1
and in some of the subsequent lemmas.
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If X is the product R � YZ , the bundles E and K�1 over YZ pull back via the
projection to define bundles over X ; their connections AE and AK likewise pull back
to define connections on these bundles. The bundle det SC is isomorphic to E2˝K�1

and thus to the pullback of det S . Fix once and for all an isometric isomorphism.

Suppose now that X is not a product. Use the embedding in the second bullet of (2-8)
to identify the s � �1 part of X with .�1;�1�� Y� , and then use the projection
to Y� to view the Y� version of the bundle S as a bundle over the s � �1 part of X.
The bundles SC and S� are isometrically isomorphic to S via an isomorphism that
covers the isomorphisms between both ƒC and ƒ� and T �Y given by the interior
product with @

@s
. Fix such an isomorphism once and for all. This induces a Hermitian

isomorphism between the bundle det SC over the s <�1 part of X and the Y� version
det S . Fix once and for all an isometric isomorphism between these bundles. Use this
isomorphism with the pullback via the composition of the embedding from (2-8)’s
second bullet and the projection to Y� to view AK C 2AE as a Hermitian connection
on the s � �1 part of det SC . The analogous constructions can be made on the s > 1
part of X using the YC version of S and so define an incarnation of the YC version
of AK C 2AE as a Hermitian connection on det SC .

Suppose for the moment that A is a given Hermitian connection on det SC!X. If X
is the product R�YZ , then A can be written as AK C 2A with A now a connection
on the bundle E!X. There is a map yu WX ! S1 such that A� yu�1d yuDAE CyaA ,
where yaA annihilates the vector field @

@s
. If X is not the product, then A can be written

as AK C 2A on the s � �1 and s � 1 parts of X with A being a connection on the
incarnation of E over the relevant part of X In this case, there exists a map yu as just
described but with domain the s � �1 part of X, and likewise there exists such a map
with domain the s � 1 part of X.

The map yu in the case when X D R� YZ is unique up to multiplication by an s–
independent map from YZ to S1 , and in the other cases, it is unique up to a map
from the either the s � �1 or s � 1 part of X whose differential annihilates @

@s
. The

convention in each case is to take a map yu whose restrictions to the constant s slices of
its domain are homotopic to the constant map to S1 .

The connection A� D A� yu�1d yu can be viewed as a map from R or .�1;�1� or
Œ1;1/ to Conn.EjY�/ with Y� either YZ or Y� or YC as the case may be. If  is a
given section over X of S , then  � D yu can likewise be viewed as a map from R

or .�1;�1� or Œ1;1/ to C1.Y�ISjY�/. When viewed in this light, the equations

Geometry & Topology, Volume 24 (2020)



HFD HM , V 3663

in (2-10) can be written as equations for .A�;  �/ on the whole of X when X is the
product cobordism, and on the s � �L and s � L parts of X when X is not the
product cobordism. These equations are

(8-13)

(
@
@s
A�CBA� � r. ��� �� i �wX�/�

1
2
BAK � i d�� D 0;

@
@s
 �CDA� � D 0:

The notation here uses wX� to denote the 2–form w when X is the product cobordism.
When X is not the product cobordism, wX� denotes the s–dependent 2–form that is
defined on the relevant constant s slices of X by the pullback of wX . In particular,
wX� Dw on the components of the s ��L and s > L parts of X where c1.det S/ is
not torsion. What is denoted in (8-13) by �� is either �, �� or �C as the case may be.

Proof The proof has four steps.

Step 1 The assertion that j j � � is proved by using the Weitzenböck formula to
write D�ADCA as r�ArA C cl.FCA / C

1
4

R , where R denotes the scalar curvature
of the Riemannian metric. Granted this rewriting, it then follows from (2-10) and from
the assumed bound on the norm of Riemann curvature that the function j j obeys
the differential inequality d�d j j C r.j j2 � jwX j � cc/j j � 0. Use the maximum
principle with this last inequality and the large jsj bounds on j j that follow from
Lemma 7.1 to see that j j � cC c0 .

Step 2 Let L� denote either L or Ltor . Then use I�R to denote either R, .�1;�L�
or ŒL;1/. Define Y� to be YZ in the case when I D R. When I D .�1; L�� or
ŒL�;1/ and L� D L, define Y� to be the union of the components of the constant
s 2 I slices of X where c1.det S/ is not torsion. In the case when L� D Ltor , define
Y� to be the union of the components of the constant s 2 I slices of X where c1.det S/

is torsion. Write A on I � Y� as AK C 2A and introduce by way of notation djs to
denote the pullback to fsg �Y� of .A; /. Also introduce B.A; / to denote

(8-14) B.A; / D BA� r. �� � i �w/C i �d��C 1
2
BAK ;

with �� denoting either �� or �C as the case may be. Use DA in what follows
to denote the Dirac operator on Y� as defined using the connection AK C 2A for
the Spinc –structure with spinor bundle SD SC . Suppose that s0 > s are two points
in I . Take the L2–norm of the left-hand expressions in both equations of (8-13) over
Œs; s0�� Y� . The square of these norms are zero. This being the case, integration by
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parts in the square of these L2–norms results in an identity of the form

(8-15) 1

2

Z
Œs;s0��Y�

�ˇ̌̌
@

@s
A�

ˇ̌̌2
CjB.A; /j

2
C2r

�ˇ̌̌
@

@s
 �

ˇ̌̌2
CjDA j

2
��
Da.djs/�a.djs0/:

Taking limits in (8-15) as s ! �1 or as s0 !1 as the case may be leads to the
identities

(8-16)

1

2

Z
I�Y�

�ˇ̌̌
@

@s
A�

ˇ̌̌2
CjB.A; /j

2
C2r

�ˇ̌̌
@

@s
 �

ˇ̌̌2
CjDA j

2
��
Da.c�/�a.djsD�L�/;

1

2

Z
I�Y�

�ˇ̌̌
@

@s
A�

ˇ̌̌2
CjB.A; /j

2
C2r

�ˇ̌̌
@

@s
 �

ˇ̌̌2
CjDA j

2
��
Da.djsDL�/�a.cC/:

Note that the identities in (8-15) and (8-16) hold with d D .AK C 2A; / on the
right-hand side. By way of an explanation, the integration by parts proves the analogs
that have d�D .AKC2A�;  �/ used on the right-hand side, and if they hold using d� ,
then they hold using d because the restriction of the map yu to any slice fsg � Y� in
I�Y� is homotopic to the constant map to S1 .

Step 3 The assertion made by the first bullet of Lemma 8.1 follows directly from
(8-16) when the data is such that X is the product cobordism. The proof in the general
case and the proof of the second bullet of Lemma 8.1 use an integral version of the
Weitzenböck formula for the operator D�ADCA . The details follow directly.

Integrate
ˇ̌
FCA � r

�
 �� � i

2
wX

�
C iwC�

ˇ̌2
C 2rjDCA j

2 over s�1.Œ�L� 3;LC 3�/
and denote the result by I . Integrate this same expression over the respective jsj 2
ŒL;L��4� and ŒL��5;L�C1� parts of Xtor . Denote these integrals as Itor0 and Itor1 .
In each case, let X� denote the region of integration and let @�X� and @CX� denote
the two boundaries of the relevant region of integration with @�X� at the smaller value
of s and @CX� at the larger value. Use the Weitzenböck formula for D�ADCA from
Step 1 with Stokes’ theorem to rewrite the identities I D 0, Itor0 D 0 and Itor1 D 0,
respectively, as

(8-17) 1

2

Z
X�

.jFAj
2
Cr2j �� �iwX j2C2rjrA j

2/Ci�D a.djp�X�/�a.djpCX�/;

with i� in the case of I and Itor1 denoting a term with absolute value no greater than
c0cr

�R
s�1.Œ�L�3;LC3�/.jFAj

2/
�1=2
Cc0r 1Cc0=c . In the case of Itor0 , the absolute value

of i� is no greater than c0cL�r. This bound on ji�j in the case of I and Itor0 is a
direct consequence of the bounds on the norms of the Riemannian curvature tensor
and wX , the size of L, the volume of the s–inverse image of intervals, and the bound
j j2 � 2c from Step 1. In the case of Itor0 , the bound for ji�j is a consequence of
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the fact that dwX D 0 on the integration domain, this being the assumption made by
item (c) of the fourth bullet of (3-15). By way of an explanation, i� in this case can be
written as sum of three terms, these denoted by ig , i� and iK . The term that is denoted
by ig gives the contribution of the scalar curvature term in the Weitzenböck formula for
D�ADCA . As such, it is bounded by the integral of c0rj j2 over the jsj 2 ŒL;L� � 4�
part of Xtor . The bound j j2 � c0c leads to a bound on jigj by c0crL� .

The term that is denoted by i� comes by writing
ˇ̌
FCA � r

�
 �� � i

2
wX

�
C iwC�

ˇ̌2 as
the sum of

ˇ̌
FCA � r

�
 �� � i

2
wX

�ˇ̌2 with terms that involve wC� . One of these terms
has the inner product between FCA and wC� . Stokes’ theorem identifies the integral of
the latter with the contributions to the boundary terms on the right-hand side of (8-17)
from the e� part of the functional a. The other wC� –terms are bounded by the integral
over X� of c0

�
r
ˇ̌
j j2�

ˇ̌
i
2
wX

ˇ̌ˇ̌
jwC� jC jw

C
� j
2
�
. This understood, the bounds on j j2

and jwX j lead to a bound on ji�j by c0crL� .

What follows explains how the term iK in i� arises. The dwX D 0 assumption is
used to derive a suitable bound on jiK j. As noted above, the derivation starts by
writing

ˇ̌
FCA � r

�
 �� � i

2
wX

�
C iwC�

ˇ̌2 as
ˇ̌
FCA � r

�
 �� � i

2
wX

�ˇ̌2 plus terms that
involve wC� . The norm jFCA � r. �� �wX /j2 is then written as a sum of jFCA j

2 ,
r2
ˇ̌
 �� � i

2
wX

ˇ̌2 and twice the inner product between FCA and r
�
 �� � i

2
wX

�
.

The integral over X� of the term with the inner product between FCA and r �� 
is canceled by the contribution from the FCA –term in the Weitzenböck formula for
D�ADCA . The inner product between FCA and � i

2
rwX is equal to that of FA with

�
i
2

rwX and thus its integral is that of rFA ^wX . Stokes’ theorem identifies most
of the latter with the contributions to the boundary terms on the right-hand side of
(8-17) from the rW–term in a. The term designated by iK is what remains after
the application of Stokes’ theorem. To say more about iK , note that the application
here of Stokes’ theorem requires writing A as AK C 2AE C yaA with yaA being an
iR–valued 1–form on X� . Stokes’ theorem involves only yaA . The iK –term is the
integral of i

2
rFAKC2AE ^wX . This understood, the bound jiK j � c0crL� follows from

the jwX j � c assumption.

There is one other subtle point with regards to the derivation of (8-17) in the case when
X� is the jsj � LC 3 part of X, this being that the application of Stokes’ theorem
requires a Hermitian connection on the bundle det SC whose curvature has norm
bounded by rc1=c with c1 being a constant that is independent of d, r, c , the metric
and wX . The pullback of this connection from the s��L and s�L part of X via the
embeddings from the second and third bullets should also be the respective Y� and YC
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versions of AK C 2AE . Such a connection can be constructed using the isomorphism
between de Rham cohomology and the Čech cohomology that is defined by a cover
of the jsj � LC 1 part of X by Gaussian coordinate charts with the property that the
any given number of charts have either empty or convex intersection (see Chapter 8
in [3]). The r1=c –bound on the norm of Riemannian curvature and the r�1=c lower
bound on the injectivity radius can be used to obtain such a cover by sets of radius
greater than r�c0=c . As the connection is constructed from the de Rham isomorphism
using a subordinate partition of unity, this lower bound on the minimum chart radius
can be used to construct a connection on det SC with an rc0=c bound on the norm of
its curvature.

Section 8.6 says more about i� when the .c; r D r/ version of (3-15) is assumed.

Step 4 Define X� , @�X� and @CX� as in Step 3. Granted Step 3’s bound for the
norm of the i�–term in (8-17), then (8-15) and (8-17) imply that

(8-18) a.dj@CX�/� a.dj@�X�/C c0c2r2:

This inequality with the top identity in (8-16) imply that a.cC/�a.djs/�a.c�/Cc0c2r2

when s � L; and the identity in the bottom bullet of (8-16) and (8-18) imply the
inequalities a.c�/� a.djs/� a.cC/� c0c2r2 when s � �L. Given these inequalities,
then (8-17) implies that

(8-19) 1

2

Z
X�

.jFAj
2
C r2j �� � iwX j2C 2rjrA j

2/� a.c�/� a.cC/C c0c2r2:

This last inequality with the identities in (8-15) and (8-16) imply directly the assertion
made by the first bullet of Lemma 8.1 and it implies the second bullet when the length 1
interval is part of Œ�L� 3;LC 3� or Œ�L�� 1;�L�C 5� or ŒL�� 5;L�C 1�.

Granted what was just said, the second bullet of Lemma 8.1 holds if its assertion
is true when the length 1 interval is disjoint from Œ�L;L�, Œ�L�;�L� C 4� and
ŒL�� 4;L��. To prove the assertion for these cases, use (8-18) with (8-15) and (8-16)
to see that a.djs/� a.djs0/ < c0c2r2 if s > s0 and if both are in the same component
of the complement in R of any of these three intervals. This fact is exploited for the
case s0 D s C 1 using an integration by parts argument to rewrite the integrand on
the left-hand side of the s0 D sC 1 version of (8-15) so as to have the same form as
the integrand on the left-hand side of (8-17). The resulting inequality with the bound
a.djs/� a.djsC1/ < c0c2r2 leads directly to what is asserted by Lemma 8.1’s second
bullet.
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8.4 Proof of Lemma 8.2

The proof of Lemma 8.2 has five steps. By way of a look ahead, the arguments depend
crucially on the fact that the metric with the 2–form ds ^ �wCw define a Kähler
structure on UC and on U0 . The proof that follows considers only the special case
where both �� and �C vanish on the respective Y� and YC versions of U and H0 .
The argument in the general case is little different and so not given.

Step 1 Let V� denote either UC or U0 . The fact that the metric with ds ^�wCw
defines an integrable complex structure on V� has following consequence: View ˇ as
a section of the .0; 2/–part of

V2
T �V�˝C . Then the rightmost equation in (2-10)

can be written on either UC or U0 as

(8-20) x@A˛Cx@
�
Aˇ D 0:

This last equation implies that ˇ obeys

(8-21) r
�
ArAˇC r.1Cj˛j2Cjˇj2/ˇC rˇ D 0;

where r is determined solely by the metric. In particular, the absolute value of r and
its derivatives to any specified order are also bounded by c0 . The equation just written
implies that jˇj2 obeys the differential inequality

(8-22) d�d jˇj2C rjˇj2CjrAˇj2 � 0:

This last inequality is exploited in a moment with the help of the Green’s function for
the operator d�d C r.

Let x 2V� denote a given point and let Gx. � / denote the Dirichlet Green’s function for
d�dC r with pole at x . Keep in mind for what follows the following fact about Gx. � /:
it is nonnegative and it obeys

(8-23) Gx. � /� c0
1

dist.x; � /2
e�
p

r dist.x; � /:

Introduce DW V� ! Œ0; c0/ to denote the function that measure the distance to the
boundary of V� . Fix x in the interior of D� , multiply both sides of (8-22) by Gx. � /
and integrate the resulting inequality over V� . An integration by parts in the left-hand
integral using the bound jˇj2 � c0c from Lemma 8.1 leads directly to the inequalities

(8-24)
�
jˇj2 � c0ce�

p
r D;R

B GxjrAˇj
2 � c0c.1=D2/e�

p
r D:

The second inequality is used in Step 3 to derive bounds on the higher-order derivatives
of ˇ .
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Step 2 This step constitutes a digression to state some very crude bounds for the
norms of FA and rA and their covariant derivatives. The following lemma states
these bounds:

Lemma 8.4 There exists � > � such that given any c > � , there exists �c with
the following significance: Fix r � �c and assume the .c; r D r/ version of the first
two bullets of (3-15). Assume in addition that jwX j � c and that the norms of its
derivatives to order 10 are bounded by r1=c . Fix respective elements �� and �C from
the Y� and YC versions of � with P –norm bounded by 1. Use this data to define the
equations in (2-10). Let dD .A;  / denote an instanton solution to (2-10) with FA

and r1=2jrA j having L2–norm less than cr on the s–inverse image of any length 1
interval in R. Then the norm of FA and jrA j, and those of their derivatives up
through order 4 are bounded everywhere by �cr�c .

Proof This follows using a standard elliptic boot-strapping argument since the equa-
tions in (2-10) can be viewed as elliptic equations on any given ball in X for a suitable
pair on the C1.X IS1/–orbit of .A;  /. Except for one remark, the details of this
bootstrapping are completely straightforward and so they will not be presented. The
remark concerns the fact that the assumed lower bound for the injectivity radius is
needed for the proof so as to invoke various Sobolev embedding theorems using
embedding constants that are bounded by powers of r.

The bounds supplied by Lemma 8.4 are used in the next step.

Step 3 To obtain the asserted bound for the covariant derivative of ˇ , differentiate
(8-21) and commute covariant derivatives to obtain an equation for rAˇ that has the
schematic form

(8-25) r�ArA.rAˇ/C r.1Cj˛j2Cjˇj2/rAˇ

CR0.FA/rAˇCR1.rFA/ˇC rR2.rA /rAˇC r1rAˇ D 0;

where R0 , R1 and R2 are endomorphisms that are linear functions of their entries
and are such that jR�.b/j � c0jbj. Meanwhile, r1 is such that jr1j � c0 also. Take the
inner product of both sides of (8-25) with rAˇ and invoke Lemma 8.4 to see that

(8-26) d�d.jrAˇj
2/C rjrAˇj2CjrArAˇj2 � ccrcc .jrAˇj

2
Cjˇj2/;

where cc here and in what follows denotes a constant that is greater than 1 and depends
only on c . The value of cc can be assumed to increase between consecutive appearances.
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Fix a point x 2 V� with distance greater than c0r�1=2.ln r/2 from the boundary of V� .
Having done so, multiply both sides of (8-26) by Gx and integrate both sides over V� .
Use the second bullet in (8-24) to bound integral on the right-hand side of the resulting
inequality by c0e�

p
r=c0 when r � cc . An integration by parts on the left-hand side

using Lemma 8.4 to bound jrAˇj on the boundary of V� and the bound just stated
implies that

(8-27) jrˇAj
2.x/C

Z
B

GxjrArAˇj
2
� c0e

�
p

r=c0

when r� cc . This gives the desired bound for jrAˇj.

To obtain the bound for jrArAˇj, differentiate (8-25) twice and take the inner product
of both sides with rArAˇ after commuting covariant derivatives. The result is an
equation that looks much like (8-26) with rAˇ replaced by rArAˇ on the left-hand
side and with the addition of the term rcc jrArAˇj

2 on the right-hand side. Granted
that this is the case, then the same Green’s function argument that led to (8-27) leads
to an analogous bound for jrArAˇj2 .

Step 4 This step and Step 5 addresses the assertions of Lemma 8.2 that concern ˛ .
To start, act by x@�A on both sides of (8-20), commute covariant derivatives and use the
bounds from Lemma 8.2 for jˇj to see that ˛ obeys an equation that has the form

(8-28) r
�
ArA˛� r.1� j˛j2/˛ D e;

where jej � e�
p

r=c0 when r � cc . This equation implies that w D 1� j˛j2 obeys a
differential inequality of the form

(8-29) d�dwC rw� jrA˛j2C rw2� e�
p

r=c0 :

Use of the Green’s function Gx with the fact that jwj � c0c on the boundary of V�
along the same lines as in Steps 1 and 3 finds w� e�

p
r=c0 at distances greater than

c0r�1=2.ln r/2 from the boundary of V� when r� cc . This is the j˛j2 assertion in the
first bullet of Lemma 8.2.

The assertion in the third bullet follows directly from (8-20) given Lemma 8.2’s bounds
for jˇj and jrAˇj. The assertion in the fourth bullet follows directly from (8-29) given
that w.1�w/D j˛j2.1� j˛j2/ and that this is greater than 1

2
ı2 at points where j˛j2

is between ı and 1� ı . The assertions in the fifth bullet about the covariant derivatives
of ˛ are proved in Step 5.

Step 5 This step derives the asserted bounds in the fifth bullet for the norms of the
covariant derivatives of ˛ . To do this, suppose that x 2 V� is such that jFAj � cr on the
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ball of radius c0r�1=2 centered at x . Use rr in what follows to denote the rescaling map
from C2 to C2 that is given by the rule x 7! rr.x/D r�1=2x . The pullback of .A; /
by this map is denoted by .Ar;  r/. The bound jFAj � cr implies that the absolute value
of the curvature of Ar is bounded in the radius 1 ball about the origin in C2 is bounded
by c . Meanwhile, the pullback of the equations in (2-10) by this map constitutes a
uniformly elliptic system of equations (modulo the action of C1.C2IS1/) in the
radius 1 ball about the origin in C2 with coefficients that have r–independent bounds
for their absolute values and for those of their derivatives to any a priori chosen order.
This understood, the fact that j rj � 2 in this ball and the aforementioned bound by c
for the norm of the curvature of Ar imply via standard elliptic bootstrapping arguments
that the Ar –covariant derivatives of  r through order 2 are bounded by c0c in the
radius c�10 ball about the origin in C2 . Granted these bounds, use the chain rule of
calculus to obtain the bounds asserted by the fifth bullet of Lemma 8.2 for the covariant
derivative of ˛ .

8.5 Proof of Lemma 8.3

Use V� again to denote either UC or U0 . The functions zA and zB are both equal to
rjˇj2 on V� and so what is asserted by the second bullet of Lemma 8.3 follows from the
first bullet of Lemma 8.2. The absolute value of r is bounded by c0rj˛jjˇj on V� and
so the third bullet of Lemma 8.3 also follows from the first bullet of Lemma 8.2. The
bounds in the first bullet of Lemma 8.3 follow from the bound in the fourth bullet and
that for j˛j2 in the first bullet of Lemma 8.2. If the bounds in first through fourth bullets
of Lemma 8.3 hold, then jFAj is bounded by c0r at the points in V� with distance
1
200
�D from the boundary of V� . Granted that this is the case, then the rescaling

argument in Step 5 of the proof of Lemma 8.2 can be used to derive the bound given in
the fifth bullet of Lemma 8.3.

The upcoming Lemma 8.5 is the critical ingredient for the proof of the fourth bullet of
Lemma 8.3. The a.c�/� a.cC/� r2�1=c assumption in Lemma 8.3 and the final three
bullets of (3-15) are needed only to invoke Lemma 8.5.

Lemma 8.5 There exists � > 100.1C ��1D / such that given any c � � , there exists
�c > � with the following significance: Fix r� �c and assume that the metric and wX
are .c; r D r/–compatible. Fix elements �� and �C from the Y� and YC versions of
� with P –norm bounded by 1 and use this data to define the equations in (2-10). Let c�
and cC denote solutions to the .r; ��/ version of (2-5) on Y� and the .r; �C/ version
of (2-5) on YC with a.c�/� a.cC/ � r2�1=c . Let d D .A;  / denote an instanton
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solution to (2-10) with s!�1 limit equal to c� and s!1 limit equal to cC . Use
B to denote a ball of radius ��2 in the domain UC or in the domain U0 with center at
distance ��1 or more from the domain’s boundary. Then r

R
B

ˇ̌
1� j j2

ˇ̌
� �cr1�1=�c .

Lemma 8.5 is proved in Section 8.6. Granted Lemma 8.5, then the six steps that follow
prove the fourth bullet of Lemma 8.3 in the case when �� and �C are zero on the
Y� and YC versions of U and H0 . The proof when they are not zero but bounded
by e�r2 is little different and so not given.

Step 1 Let V� denote either UC or U0 . Keep in mind that metric on V� has nonneg-
ative Ricci curvature tensor, that the 2–form wX D w is covariantly constant on V� ,
that both w� D 0 and that BAK is covariantly constant on V� . These facts with the
bounds from Lemma 8.2 for jˇj and jrAˇj have the following implication: Let s
denote jEA�BAj. Granted that r� cc , then the equations in (2-10) imply that s obeys
the differential inequality

(8-30) d�ds C rj˛j2s � rjrA˛j2C e�
p

r=c0

at the points in V� with distance greater than c0r�1=2.ln r/2 from the boundary of V� .
Let w again denote 1� j˛j2 and let q0 denote s � rw. It follows from (8-29) and
(8-30) that

(8-31) d�dq0C rj˛j2q0 � e�
p

r=c0

at the points in V� with distance c0r�1=2.ln r/2 or more from V� ’s boundary if r� cc .

Step 2 Fix �� > 0 such that �� < 10�8�D . Fix s0 2 R. Let V 0 � V� denote the
set of points in the .s0 � 1� ��; s0C 1C ��/ part of V� with distance �� or more
from the boundary of V� , and let V � V 0 denote the set of points in V� with distance
greater than 2�� from the boundary of V� . Thus, each point in V has distance �� or
more from the boundary of V 0.

Fix a sequence f&ngnD1;::: of smooth, nonnegative functions on V 0 with the following
properties: Each function in this series is bounded by 1 and is equal to 1 on V . Second,
&1 has compact support and for each n� 1, the function &nC1 has compact support
where &n D 1. Finally, the absolute values of the first and second derivatives of the
functions in this series enjoy s0–independent upper bounds.

Step 3 For each integer n � 1, set qn D max.&nqn�1; 0/. Use q0 to denote the
maximum of q0 ; and for n � 1, use qn to denote the maximum of qn . Note that
qn � qn�1 . It follows from (8-31) that if r � cc , then any given n � 1 version of qn
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3672 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

obeys

(8-32) d�dqnC rj˛j2qn � .dd�&n/qn�1C 2hd&n; dqn�1iC c0e�
p

r=c0 ;

where h � ; � i denotes the metric inner product. Fix a constant zn � 1 to be determined
shortly, and let qn� denote the maximum of 0 and qn� r�1znqn�1 . The function qn�
obeys

(8-33) d�dqn�C rj˛j2qn�

� znqn�1wC .�znqn�1C .dd�&n/qn�1C 2hd&n; dqn�1i/C c0e�
p

r=c0 :

Note also that qn� has compact support in V 0 since qn� r�1znqn�1 D�r�1znqn�1
on the complement of the support of &n .

Step 4 Fix x in the interior of V 0 and let Gx now denote the Dirichlet Green’s
function for the operator d�d on V 0 with pole at x . The function Gx is nonnegative,
jGx. � /j�c0 dist.x; � /�2 and jdGx. � /j�c0 dist.x; � /�3 . Multiply both sides of (8-33)
by Gx and integrate the two sides of the resulting inequality over V 0. Integrate by
parts on both sides to remove derivatives from qn� and qn�1 to obtain the inequality

(8-34) qn�.x/� znqn�1
Z
V 0

�
1

dist.x; � /2
w
�
C .�c�10 znC en/qn�1C e�

p
r=c0 ;

where en � c0 supx2V 0.jd
�d&njC jd&nj/. Granted this bound, a purely n–dependent

choice for zn leads from (8-34) to the inequality

(8-35) qn�.x/� znqn�1
Z
V 0

�
1

dist.x; � /2
w
�
C e�

p
r=c0 I

Lemma 8.5 is used to exploit this inequality.

Step 5 Fix � > 0 and break up the integral in (8-35) into the part where dist.x; � / is
greater than � and the part where dist.x; � / is less than � . Having done so, appeal to
Lemma 8.5 and the first bullet of Lemma 8.2 to see that

(8-36) qn�.x/� zn.�
�2r�1=c0 C �2/qn�1C e�

p
r=c0

when r� cc . Let c� denote the value of c0 that appears in (8-36). Take �D r�1=4c�

in (8-36). The resulting right-hand side is independent of x , and this leads directly to
the inequality

(8-37) qn � znr�1=2c�qn�1C e�
p

r=c0

when r� cc . As Lemma 8.4 finds q0 < rcc , what is written in (8-37) implies that an
nD cc version of qn is bounded by r�200 .
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Step 6 Since &n D 1 on V , the conclusion from Step 5 implies that

(8-38) jEA�BAj< r.1� j˛j2/C r�200

at all points in V . Square both sides of (8-38). What with the bounds for jzAj and jzB j
from Lemma 8.3’s second bullet, the resulting inequality implies that

(8-39) .1� 2�/2r2.1� j˛j2/CjXj2 � r2.1� j˛j2/C c0r�198;

and rearranging terms writes this as

(8-40) jXj2 � 2r2�.1� �/.1� j˛j2/C c0r�198:

This gives the bound stated in the fourth bullet of Lemma 8.3.

8.6 Proof of Lemma 8.5

The proof has six parts. Parts 1 and 2 revisit the formula in (8-15) and Part 3 revisits
the formula in (8-17). These steps present the proof in the case when c1.det S/ is
nontorsion on all components of the jsj > 1 part of X. But for the two remarks that
follow, the proof when Xtor ¤∅ differs only cosmetically.

The first remark concerns the formula in (8-17) in the case when X� is the respective
jsj 2 ŒL;L� � 4� part of Xtor , the remark being that the absolute value of i� in this
case is bounded by c0c2r ln r. The reason is as follows: As noted subsequent to (8-17),
the absolute value of the relevant version of i� is bounded in any event by c0crL� .
Meanwhile, the first bullet of (3-15) bounds L� by c ln r.

The second remark concerns (8-17) in the case when X� is the jsj 2 ŒL� � 4;L��
part of Xtor , this being that the absolute value of the corresponding version of i� is at
most c0 when r is larger than a purely c –dependent constant. Given item (d) of the
fourth bullet of (3-15), the proof that this is so differs only in notation from what is
said below in Part 2 to prove the analogous bound for the version of i� that appears in
(8-17) when X� is the jsj 2 ŒL� 4;L� part of X.

Part 1 Write d D .A;  /. When X, the metric and wX are as described by the
first bullet of (3-16), use this pair as instructed in the proof of Lemma 8.1 to define
the map .A�;  �/ from R to Conn.E/ � C1.YZ IS/. When the second bullet of
(3-16) is relevant, then .A�;  �/ as defined in the proof of Lemma 8.1 denotes a
map from .�1;�1� to Conn.EjY�/�C

1.Y�ISjY�/ and also a map from Œ1;1/ to
Conn.EjYC/�C

1.YCISjYC/.
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3674 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

Set IL D Œ�L;L� when X, the metric and wX are as described by the first bullet
of (3-16), and set IL to be either Œ�L;�LC 4� or ŒL� 4;L� otherwise. Use Y� to
denote the constant s 2 IL slice of X, this being either YZ , Y� or YC . Write the
metric on IL �Y� as ds2C g with g denoting an s–dependent metric on Y� . Define
the s–dependent 1–form w� on Y� by writing wX as ds^�w�Cw� with the Hodge
dual defined here by g. The two equations in (2-10) on the s 2 IL part of X are
equivalent to equations for .A�;  �/ that can be written as

(8-41)
� @
@s
A�CBd D 0;

@
@s
 �CDA� � D 0;

with Bd denoting the s 2 IL dependent 1–form on Y�

(8-42) Bd D BA� r. �� � iw�/C iwC�
�
@

@s
; �
�
C
1
2
BAK :

By way of notation, DA� in (8-41) denotes the Dirac operator defined by the metric g,
its Levi-Civita connection and the connection AK C 2A� on the fsg � Y� version
of det S .

Part 2 If X, the metric and wX are as described by the first bullet of (3-16), then the
integration and use of Stokes’ theorem that leads to (8-15) can be repeated with the
domain of integration being s�1.Œ�L;L�/ to find that

(8-43) 1

2

Z
R�YZ

�ˇ̌̌
@

@s
A�

ˇ̌̌2
CjB.A; /j

2
C 2r

�ˇ̌̌
@

@s
 �

ˇ̌̌2
CjDA j

2
��
C i�

D a.djsD�L/� a.djsDL/;

where i� D 0 when w� is such that X, the metric, wX and w� define the product
metric, and where ji�j � c0

�R
s�1.Œ�L;L�/

ˇ̌
@
@s
A�
ˇ̌2�1=2 in any event. This being the

case, the second bullet of Lemma 8.1 implies that ji�j � c0r.

Assume now that X, the metric and wX are as described by the second bullet in (3-16).
The derivation of (8-15) and (8-43) can be repeated with the domain of integration
being s�1.Œ�L;�LC 4�/ and also s�1.ŒL� 4;L�/ to obtain the identities

(8-44)

1

2

Z
Œ�L;�LC4��YZ

�ˇ̌̌ @
@s
A�

ˇ̌̌2
CjB.A; /j

2
C 2r

�ˇ̌̌
@

@s
 �

ˇ̌̌2
CjDA j

2
��
C i

D a.djsD�L/� a.djsD�LC4/;

1

2

Z
ŒL�4;L��YZ

�ˇ̌̌
@

@s
A�

ˇ̌̌2
CjB.A; /j

2
C 2r

�ˇ̌̌
@

@s
 �

ˇ̌̌2
CjDA j

2
��
C i

D a.djsDL�4/� a.djsDL/;
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where i in this case is such that jij � c0r2�1=c when c >c0 and r>cc with cc denoting
a constant that depends only on c . The paragraphs that follow explain how this bound
comes about.

The term denoted by i can be written as the sum of three integrals, iD igC iw C i� .
What is denoted by i� appears here for the same reason it appears in (8-43) and it has the
analogous bound, ji�j � c0r. The integral denoted by ig accounts for the s–dependence
of the metric g on Y� when commuting the operators @

@s
and DA� . In particular, the

integrand that defines ig is bounded by c0r
�ˇ̌
@
@s
g
ˇ̌
j jjrA jC

ˇ̌
Rg

�
@
@s
; �
�ˇ̌
; j j2

�
with

Rg denoting the Riemannian curvature tensor of the metric ds2C g. This understood,
(3-15) with Lemma 8.1’s bounds for j j2 and the L2–norm of jrA j imply that
jigj � c0r3=2C1=c .

The integral iw arises from the contribution to the integral of
ˇ̌
@
@s
A�CBd

ˇ̌2 of the
metric inner product of @

@s
A� with �ir �w� . The integral of this inner product is

written as
R
IL
h.s/ds with IL denoting Œ�L;�LC 4� or ŒL� 4;L� as the case may

be, and with h.s/ denoting the integral of the 3–form �ir @
@s
A� ^w� over fsg �Y� .

Only a portion of the integral of �i r @
@s
A� ^w� contributes to iw . To say more, write

A� as AE C yaA with yaA denoting an s–dependent 1–form on Y� . The integral of the
3–form �i r @

@s
A� ^w� over fsg �Y� is written using yaA as

(8-45) �i r @
@s

�Z
fsg�Y�

yaA ^w�

�
C i r

�Z
fsg�Y�

yaA ^
@

@s
w�

�
:

The contributions of the function W in (2-7) to the right-hand side of (8-44) are given
by the integral over IL of the leftmost term in (8-45), this being a consequence of the
fundamental theorem of calculus. What is denoted by iw is the integral over IL of the
rightmost term in (8-45). A bound for the absolute value of the latter is obtained by
using the assumption in item (b) of the fourth bullet of (3-15) to write @

@s
w� as db

with b as described by this same part of (3-15). Stokes’ theorem equates the rightmost
integral in (8-45) with the integral of i r d yaA ^ b . This being the case, it follows from
(3-15) that this second contribution to iw has absolute value less than c0r2�1=c .

Part 3 Integrate jFCA �r. �� �iwCX /�iw
C
� j
2CrjDA j

2 over s�1.Œ�LC4;L�4�/.
Integrate by parts using the fact this integral is zero to derive an identity that can be
written as

(8-46) 1

2

Z
s�1.Œ�LC4;L�4�/

.jFAj
2
C r2j �� � iwCX j

2
C 2rjrA j

2/C iL

D a.djsD�LC4/� a.djsDL�4/

Geometry & Topology, Volume 24 (2020)
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with iL such that jiLj � c0r1Cc0=c . The paragraphs that follow in a moment derive the
latter bound. By way of comparison, the absolute value of the term i in (8-17) has the
bound c0cr

�R
s�1.Œ�LC4;L�4�/ jFAj

2
�1=2
C c0r1Cc0=c . The difference can be traced to

the assumption that wX is a closed 2–form on s�1.Œ�LC 4;L� 4�/.

The bound on jiLj can be seen by writing iL as a sum of four integrals, these denoted
by i , ics , iw and i� . The integrand of i is 1

4
rj j2R with R denoting the scalar

curvature of X. By way of an explanation, this term comes from the integration by
parts and subsequent commuting of covariant derivatives that rewrites the integral
of rjDA j

2 as an integral over the s�1.�LC 4/ and s�1.L� 4/ boundaries of the
integration domain plus an integral over s�1.Œ�LC 4;L� 4�/ whose integrand is the
sum of rjrA j

2 , a curvature term involving FCA and the product of 1
4

rj j2R with R

denoting the scalar curvature of the metric on X. The boundary terms account for the
rightmost integral in (2-6)’s formula for a. Use the bounds from the first two bullets
of (3-15) with the bound j j2 � c0c from Lemma 8.1 to see that ji j � c0r1C2=c if
r> cc with cc again denoting a constant that depends only on c .

The integrals ics and iw involve a chosen Hermitian connection on det SC whose
curvature has norm bounded by crc0=c and whose pullback from the s � �LC 8 and
s � L � 8 part of X via the embeddings from the second and third bullets is the
respective Y� and YC versions of AK C 2AE . Step 3 of the proof of Lemma 8.1
explains why such connections exist. Let AS denote a chosen connection with this
property.

The integral ics comes by first writing jFCA j
2 as 1

2
jFAj

2 plus the Hodge star of
1
2
FA ^ FA . The latter is rewritten using an integration by parts after writing A as

ASC yaA with yaA being an iR–valued 1–form on X. Writing A in this way yields

(8-47) 1
2
FA ^FA D

1
2
d yaA ^ d yaAC d yaA ^FAS C

1
2
FAS ^FAS :

An integration by parts writes the integrals of the first two terms on the right side of
(8-47) as boundary integrals, these giving the respective cs contributions to a.djsDLC4/

and a.djsDL�4/. The integral of the rightmost term in (8-43) is ics . Thus jicsj �
c0rc0=c .

The integral iw is obtained by invoking Stokes’ theorem to rewrite the term from the
inner product between FCA and i

2
rwX that arises when

ˇ̌
FCA �r

�
 �� � i

2
wX

�
CiwC�

ˇ̌2
is written as jFCA j

2C rj �� �wX j2 plus remainder terms. One of these remainder
terms is twice the inner product of FCA with i

2
rwX . The integral of the latter is the
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integral of the 4–form �i rFCA ^wX . Write �i rFA^wX as the sum of �i rd yaA^wX
and �2irFA ^wX . Because wX is closed, an integration by parts writes the integral
of the first of these as an integral over the boundary of the integration domain. The
latter accounts for the respective W contributions to a.djsD�LC4/ and a.djsDL�4/.
The integral of �2i rFA^w

C

X is iw . This being the case, the bound jiw j � c0cr1Cc0=c

follows directly from the (3-15) and what is said in Step 3 of the proof of Lemma 8.1
about jFAS j.

The integral denoted by i� has two contributions. The first accounts for the terms with
w� that arise in the aforementioned rewriting of jFCA � r. �� � iwX /C iwC� j

2 . It
follows from the left-hand equation in (2-10) that the integrand for this part of i� is
bounded by c0 . The second contribution is proportional to the integral of d yaA^w� ; it
appears when Stokes’ theorem is used to write the respective e� parts of a.djsD�LC4/
and a.djsDL�4/ as a term that has norm bounded by c0 and another whose integrand
is proportional to d yaA ^w� . The norm of the latter is bounded by c0c.jFAj C c2/.
Granted this, it follows that ji�j � c0c

��R
s�1.Œ�LC4;L�4�/ jFAj

2
�1=2
C c2

�
and this is

guaranteed by Lemma 8.1 to be less than c0c.rC c2/.

Part 4 If the first bullet of (3-16) holds, the assumption a.c�/� a.cC/ < r2�1=c with
(8-16) and (8-43) imply that

(8-48) 1

2

Z
R�YZ

�ˇ̌̌
@

@s
A�

ˇ̌̌2
CjBdj

2
C2r

�ˇ̌̌
@

@s
 �

ˇ̌̌2
CjDA j

2
��
� a.c�/�a.cC/Cc0r

� c0r2�1=c

when c > c0 and r is greater than a constant that depends only on c . If the second
bullet of (3-16) holds, the assumption a.c�/� a.cC/ < r2�1=c with (8-16), (8-44) and
(8-46) imply the bounds that follow when c > c0 and r is greater than a constant that
depends only on c :

(8-49)

Z
.�1;�LC4��Y�

�ˇ̌̌
@

@s
A�

ˇ̌̌2
CjBdj

2
C 2r

�ˇ̌̌
@

@s
 �

ˇ̌̌2
CjDA j

2
��
� c0r2�1=c ;Z

ŒL�4;1/�YC

�ˇ̌̌
@

@s
A�

ˇ̌̌2
CjBdj

2
C 2r

�ˇ̌̌
@

@s
 �

ˇ̌̌2
CjDA j

2
��
� c0r2�1=c ;Z

s�1.Œ�LC4;L�4�/

.jFAj
2
C r2j �� � iwCX j

2
C 2rjrA j

2/� c0r2�1=c :

Put away for now the bounds in (8-48) and those in the first two bullets of (8-49).
Assuming that the second bullet of (3-16) holds, the bound in the third bullet of (8-49)

Geometry & Topology, Volume 24 (2020)
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implies the bound

(8-50) r
Z
s�1.Œ�LC4;L�4�/

j �� � iwCX j � c0r1�1=c

when c > c0 and r is greater than a constant that depends only on c . Let B denote the
given ball from Lemma 8.5. Use the second and third bullets of (2-9) and (3-14), the
first bullet of Lemma 8.2, and (8-50) to see that

(8-51) r
Z
B\s�1.Œ�LC4;L�4�/

ˇ̌
1� j˛j2

ˇ̌
� c0r1�1=c

when r is greater than a purely c –dependent constant.

Part 5 If the first bullet of (3-16) holds, then I denotes in what follows any given
length 1 interval in R. If the second bullet of (3-16) holds, then I denotes a length 1
interval in either .�1;�LC 4� or in .L � 4;1/. In either case, reintroduce the
1–form �X from the fifth bullet of (3-16). Take the inner product of both sides of
(8-41) with i�X , then integrate the resulting identity over s�1.I /. The left-hand side
of the result can be written as a sum of four integrals; and the assertion that this sum is
zero can be rewritten as the identity

(8-52)
Z
I

�Z
Y�

�X ^ r.w�C�i �� /
�
ds

D

Z
I

�Z
Y�

�X ^ i d yaA

�
dsC

Z
I

�Z
Y�

�X ^�
@

@s
A�

�
ds

C

Z
I

�Z
Y�

�X ^�
�
�wC�

�
@

@s
; �
�
C
1
2
iBAS

��
ds:

Use what is said by either the first bullet in (3-16) or the second and fifth bullets
of (3-15) to bound the absolute value of the rightmost integral in (8-52) by a purely
c –dependent constant. Meanwhile, Stokes’ theorem finds the middle integral on the
right-hand side of (8-52) equal to zero. The absolute value of the leftmost integral
on the right-hand side of (8-52) is bounded by c0c times the L2–norm over s�1.I /
of @

@s
A� . This being the case, use either (8-48) or the first two bullets in (8-49) to

bound the absolute value of the leftmost integral on the right side of (8-52) by r1�1=.2c/

when r is greater than a purely c –dependent constant.

It follows as a consequence of what was just said in the preceding paragraph that the
absolute value of the integral on the left-hand side of (8-52) is no greater than r1�1=.2c/

when r is large. The plan for what follows is to rewrite this integral as the sum of two
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terms, one being the integral of rj�X j
ˇ̌
jw�j � j j

2
ˇ̌

and the other bounded by r1�1=cc .
This is done in Part 7. Part 6 supplies the necessary tools. A bound of this sort with
the second and third bullets of (2-9) and (3-14) plus the first bullet of Lemma 8.2 leads
directly to the bound

(8-53) r
Z
B\s�1.I /

ˇ̌
1� j˛j2

ˇ̌
� c0r1�1=c

when B is any given ball from Lemma 8.5. This bound implies Lemma 8.5’s assertion
if the first bullet of (3-16) holds. This bound with (8-52) imply Lemma 8.5’s bound
when the second bullet of (3-16) holds.

Part 6 The two lemmas that are stated in a moment and then proved supply what
is needed for Part 7. To set the stage for the first lemma, note that Clifford multi-
plication by wX splits SC where wX ¤ 0 as a direct sum of eigenbundles for the
endomorphism given by Clifford multiplication by wX . Write this direct splitting
as SC D EX ˚ .EX ˝K

�1
X / with it understood that the leftmost summand is the

i jwX j–eigenspace. The upcoming lemma writes a section  of SC where wX ¤ 0
as jwX j1=2� and it writes � with respect to the direct sum decomposition of SC as
.˛; ˇ/. The lemma that follows asserts bounds for j˛j and jˇj that are the analogs of
those asserted by the first two bullets of Lemma 7.2.

Lemma 8.6 There exists � > 100, and given c � � , there exists �c with the following
significance: Fix r� �c and assume that the metric obey the .c; r D r/ version of the
constraints in the first three bullets of (3-15) and jwX j � c , or that the first bullet of
(3-16) holds. Fix elements �� and �C from the respective Y� and YC versions of �
with P–norm bounded by 1 and use all of this data to define the equations in (2-10).
Let dD .A;  / denote an instanton solution to these equations. Fix m> 1. Then

j˛j2 � 1C �cm
3r�1C�=c and jˇj2 < �m3r�1C�=c.1� j˛j2/C �3m6r�2C�=c

at the points in X where jwX j>m�1 .

Proof The proof is much like that of the first two bullets in Lemma 7.2 with the
only salient difference being the r–dependent bounds for the norms of the Riemannian
curvature and the covariant derivatives of wX . The paragraphs that follow briefly
explain how this r–dependence is dealt with.

The section �D .˛; ˇ/ of SC obeys an equation of the form DA�CR � �D 0 with
R being an endomorphism that is bounded by ccm

�1r1=c on U2m . The Weitzenböck
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3680 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

formula for the operator .DACR/2 leads to an equation for � that has the schematic
form

(8-54) r
�
ArA��

1
2

cl.FCA /�CR1 � rA�CR0 � �D 0;

where jR1j � ccm
�1 and jR0j � ccm

�2 . As in the proof of Lemma 7.2, introduce q
to denote the maximum of 0 and j�j2 � 1. It follows from (8-54) that q obeys the
inequality

(8-55) d�dq C rm�1q � ccm
�2r2=c

on U2m when r� cc . It follows from Lemma 8.1 that q � ccm on the boundary of U2m .
This understood, the comparison principle using the Green’s function for d�d C rm�1

can be used to see that q � ccm
3r�1C2=c is no greater than ccme

�
p

r=.2m/ on U2m .
This bound on q implies what is said by Lemma 8.6 about j˛j2 .

To see about the bound for jˇj2 , project (8-54) to the EX˝K�1X –summand of SC to
see that jˇj2 obeys a differential inequality on U2m that has the schematic form

(8-56) d�d jˇj2C rm�1jˇj2 � �2jrˇj2C ckr�1Cc0=cm3jrA˛j
2
C c0m

2rc0=c

when r� cc . Meanwhile, the projection of (8-54) to the EX –summand can be used to
see that wD 1� j˛j2 on U2m obeys the following analog of any given " > 0 version
of (7-11):

(8-57) d�dwC rm�1w� jr˛j2� c0"jrˇj2� c0.1C "�1/m2rc0=c :

It follows from (8-56) and (8-57) that there are constants z1 and z2 that are both bounded
by cc , and there exists an ">c�1c such that q WD jˇj2�z1r�1Cc0=cm3w�z2r�2Cc0=cm6

obeys the equation d�dqC rm�1q � 0 on U2m . This being the case, a comparison
principle argument much like that used in the preceding paragraph bounds q by
ccme

�
p

r=2m on U2m . This bound implies Lemma 8.6’s assertion about jˇj2 .

The next lemma supplies an analog for X of Lemma 7.3:

Lemma 8.7 There exists � > 100, and given c � � , there exists �c with the following
significance: Fix r � �c and assume that the metric obeys the .c; r D r/ version of
the constraints in the first three bullets of (3-15) and jwX j � c , or that the first bullet
of (3-16) holds. Fix elements �� and �C from the respective Y� and YC versions
of � with P–norm bounded by 1 and use this data to define the equations in (2-10).
Let d D .A;  / denote an instanton solution to these equations. Fix m > 1. Then
j j2 � �c.m

�1C ccr�1C�=c/ at points in X where jwX j �m�1 .
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Proof The Weitzenböck formula for D2A was used in Step 1 of the proof of Lemma 8.1
to write the differential inequality d�d j jC r.j j2� jwX j � ccr�1C1=c/j j � 0. The
maximum principle precludes a local maximum for j j2�m�1�ccr�1C1=c on X�Um
and Lemma 8.6 implies that j j2 � 2.m�1 C ccm

2r�1Cc0=c/ on the boundary of
X �Um .

Part 7 Fix m> 1 for the moment and write .ds^�X /C on Um as qXwX C bX with
bX being a self-dual 2–form that obeys bX ^wX D 0. Note in this regard that

(8-58) qX jwX j
2
D �.ds ^ �X ^wX /

with the � here denoting the Hodge star that is defined by the metric ds2Cg on I �Y� .
Granted (8-58), it follows either from the first bullet of (3-16) or from the fourth bullet
and item (c) of the fifth bullet of (3-15) that

(8-59) qX jwX j
2
� �ccr�1=c :

Noting that �.ds^�X^wX / is also the g–Hodge star on Y� of �X^w� , the integrand
of the Um part of the integral on the left-hand side of (8-52) is

(8-60) rqX jw�j2.1� j˛j2Cjˇj2/C r where jrj � ccrjbjjwX jj˛jjˇj:

Use the bound in (8-59) and the bounds supplied by Lemma 8.6 to see that the Um
part of the integral on the left side of (8-52) can be written as

(8-61) r
Z
Um

jqX jjw�j
ˇ̌
jw�j � j j

2
ˇ̌
C e where jej � cc.r1�c0=c

Cm3rc0=c/.

Meanwhile, it follows from Lemma 8.7 that the contribution to the integral on the left
side of (8-52) from X �Um is no greater than cc.rm�1Cm2rc0=c/. Lemma 8.7 also
gives such a bound for the integral of jqX jjw�j

ˇ̌
jw�j � j j

2
ˇ̌

over the part of I �Y�
in X �Um . Granted these bounds, fix for the moment " > 0 but with " < c0c�1 and
take mD r"=c . Use the just stated bounds and (8-61) to see that

(8-62)
Z
I�Y�

jqX jjw�j
ˇ̌
jw�j�j j

2
ˇ̌
�

Z
I�Y�

ds^�X^r.w�C�i �� /Cccr1�"=c :

This last bound with what is said at the end of Part 5 implies Lemma 8.5.

8.7 Proof of Proposition 3.8

Fix a smooth, r–independent metric on X whose pullback via the embeddings from
the second and third bullets of (2-8) restricts to the s <�2 and s > 2 parts of X as the
product metric ds2Cg� , where g� denotes the given metric on Y� and YC as the case
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may be. Use mX to denote this metric. Use this metric to define the bundles SC and
S� over X. The constructions at the beginning of Section 8.3 can be repeated to view
the Y� and YC versions of S as the restrictions to the respective s < �1 and s > 1
parts of X of the mX versions of SC and S� . Use this view of these versions of S to
view the Y� and YC versions AKC 2AE as a Hermitian connection on the restriction
of the mX version of the bundle det SC to the jsj> 1 part of X. This connection has
smooth, r–independent extensions to the whole of X as a Hermitian connection on the
mX version of det SC . Fix such an extension and denote it by AS .

Use the s < �1 and s > 1 isomorphisms between the Y� and YC versions of S to
view the corresponding versions of  E as a section of the mX version of SC over the
jsj> 1 part of X. Fix a smooth extension of the latter to the whole of X and denote it
by  S .

The metric mX and the pair dS D .AS;  S/ defines a version of the operator that
appears in (2.61) of [37]. This operator defines a map from C1.X I iT �X ˚SC/ to
C1.X IƒC˚S�˚ iR/. The latter defines an unbounded, Fredholm operator between
the L2 versions of these spaces, and so it has a corresponding Fredholm index, this
denoted in what follows by {S .

Fix c > c0 so that Proposition 3.7 can be invoked using Y� and YC . Fix r� 1 and
pairs �� and �C from the respective Y� and YC versions of � with P–norm less
than 1, and suppose that c� and cC are the corresponding solutions to the Y� and YC
versions of (2-5). Let m denote a metric on X that obeys (2-9) and (3-14). Suppose
that dD .A;  / is a pair of connection on det SC over X and section over X of SC

with s!�1 limit c� and s!1 limit cC . This metric m and d together define a
corresponding version of the operator that appears in (2.61) of [37]. If both c� and cC
are nondegenerate then this operator has an unbounded, Fredholm extension whose
domain and range are the respective spaces of square-integrable sections of iT �X˚SC

and iƒC˚S�˚ iR. Assume this to be the case for the moment, and let {dC denote
the corresponding Fredholm index. It follows using the excision theorem for the index
(or from what is said in [1]) that {S D {dCC fs.c�/� fs.cC/.

With the preceding understood, write a.c�/� a.cC/ as

(8-63) af.c�/� af.cC/� 2�.r��/.fs.c�/� fs.cC//

and then use the formula in the last paragraph to write

(8-64) a.c�/� a.cC/D af.c�/� af.cC/C 2�.r��/.{dC� {S/:
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Since {S is independent of r and c , this last formula proves Proposition 3.8 when both
c� and cC are nondegenerate.

If one or neither is nondegenerate, fix " > 0 and fix c0� in the set N".c�/ from
Section 7.6 that takes on the supremum in the c� version of (7-37). Fix c0

C
in N".cC/

with the analogous property. With c0� and c0
C

as just described, choose a pair d0

of connection on det SC and section of SC with s ! �1 limit c0� and s ! 1

limit c0
C

. The metric m with d0 define an unbounded, but now Fredholm version of
the operator from (2.62) in [37] with domain and range being the respective spaces
of square-integrable sections of iT �X ˚SC and iƒC˚S�˚ iR. Let {d0 denote the
Fredholm index of this operator. Define {dC to be {d0C . Note that this definition does
not depend on c0� , c0

C
or d0.

The arguments that lead to (8-64) can be repeated verbatim to obtain the modified
version that has c� replaced by c0� and cC replaced by c0

C
. Keeping this in mind,

choose c0� so that ja.c0�/� a.c�/j< 1, and choose c0
C

so that ja.c0
C
/� a.cC/j< 1. It

follows using (7-37) that jaf.c0�/� af.c�/j< 1 and jaf.c0
C
/� af.cC/j< 1. The latter

bound with the .c0�; c
0
C
/ analog of (8-64) implies what is asserted by Proposition 3.8

when the nondegeneracy condition does not hold for one or both of c� and cC .

9 Constructing 2–forms on cobordisms

This section mainly supplies proofs for Propositions 3.9, 3.11, 3.13 and 3.14. The proof
of Proposition 3.9 is in Section 9.2, that of Proposition 3.11 is in Section 9.4, that of
Proposition 3.13 is in Section 9.5, and Section 9.7 contains the proof of Proposition 3.14.
The basic issue in each proof is to construct metrics and closed 2–forms on cobordisms
with certain prescribed properties. These constructions occupy most of these subsections.
By way of a look ahead, these constructions are, on the whole, quite intricate. Note
that there is little by way of the Seiberg–Witten equations in this section.

A proof of Proposition 1.5 is given in Section 9.6, using notions introduced in Section 9.5.

9.1 MetT metrics on fYkgk2f0;:::;Gg

The eight parts of this section describe a set of preferred metrics on each k 2 f0; : : : ; Gg

version of Yk . These parts also describe the associated harmonic 2–forms with de
Rham cohomology class that of c1.det S/. Let Y� denote Yk for any k 2 f0; : : : ; Gg.
As the Mı [H0 parts of Y� and Y are canonically isomorphic, notions defined on
any of them are defined for others and are denoted by the same notation.
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Part 1 This part of the subsection summarizes various properties of Y� that concern
H0 and the curve  .z0/ . Most of what is said below can be found in Section II.1.

The handle H0 in Y� has coordinates .u; �; �/ with .�; �/ being the standard spherical
coordinates on the 2–sphere and with u 2 Œ�R � ln.7ı�/; RC ln.7ı�/�. As can be
seen in (IV.1-5), the 2–form w and the 1–form �˘ restrict to this handle as

(9-1) w D sin � d� ^ d� and �˘ D 2.�Ce
2.juj�R/

C��e
�2.jujCR// du;

where �C D �
�
�u� 1

4
R
�

and �� D �
�
u� 1

4
R
�
. The curve  .z0/ intersects H0 as

the � D 0 line. Meanwhile, the Mı part of  .z0/ has a tubular neighborhood with
coordinates .t; .�; �// with t 2 Œı2; 3� ı2�, with � 2 Œ0; ��/ and with � the affine
coordinate on R=.2�Z/. Here, �� is positive, smaller than 1

100
ı� but greater 100ı3 .

The 2–form w here appears as in (9-1) and �˘ appears as dt . The coordinate transition
function identifies t with e�2.R�u/ near the index 0 critical point and with e�2.RCu/

near the index 3 critical point.

Recall the function f on M that plays a central role in much of [19; 20; 21; 22]. This is
described in detail in Section II.1. Recall also the vector field v in [20, page 2876]. Set
"� D ı� sin

�
1
2
��
�
. The coordinates just described can be used to construct a piecewise

smooth embedded 2–sphere in the f 2 Œ"2�; 3� "
2
�� part of Mı as follows:

(9-2) � The 2–sphere intersects the complement of the radius-ı� coordinate balls
about the index 0 and 3 critical points of f as the cylinder where � D 1

2
�� .

� The 2–sphere intersects the r 2 ."�; ı�� part of the radius-ı� coordinate ball
centered on the index 0 and index 3 critical points of f as the locus where
.r; �; �/ are such that cos � > 0 and r sin � D ı� sin

�
1
2
��
�
.

� The 2–sphere intersects the rD "� spheres centered about the index 0 and
index 3 critical points as the locus where cos � � 0.

� The 2–sphere is tangent to v on the rest of Mı .

As can be seen, this embedding is smooth except along the following loci: It is C 1 on
the cos � D 0 circle in the boundary of the respective radius "� coordinate balls about
the index 0 and index 3 critical points of f . It is only C 0 on the � D 1

2
�� circle in the

boundary of the respective radius ı� coordinate balls about the index 0 and index 3
critical points.

The piecewise smooth embedding just described can be smoothed to any desired
accuracy so that the vector field @

@�
along the resulting 2–sphere is everywhere tangent,
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the vector field v along the 2–sphere is tangent everywhere on the f D 3
2

circle but
nowhere else, and so that the restriction of f to this sphere has just two critical points
(both nondegenerate), these at the points with � D 0 and � D � on the boundary of
the radius "� coordinate balls about its respective index 0 and index 3 critical points.

Part 2 It proves useful for what follows to be somewhat more precise about the
smoothing of the surface from (9-2) near the f D 3

2
circle. To this end, introduce first

�� to denote 3
2
�"2� and �1�D ��C

p
2
�
1�cos

�
1
2
��
��

. Return to the f 2 Œı2; 3�ı2�
tubular neighborhood of  .z0/ with the coordinates .t; .�; �// as described above.
Replace the coordinate � on a neighborhood of the � D 1

2
�� locus by the function

y� D
p
2.1� cos �/1=2 . Fix "1 2 .0; c�10 "2�/ and use the coordinate y� to define the

smoothing of the f 2
�
3
2
� "1;

3
2
C "1

�
part of the surface defined by (9-2) to be the

locus where

(9-3) y�D �1��
�
�2��

�
t � 3

2

�2�1=2
:

Note that the vector field v is tangent to the locus defined by (9-3) only along the t D 3
2

circle, and note that the corresponding lines are tangent from the inside. Introduce by
way of notation S to denote a smoothing as just described of the original piecewise
smooth embedding given by (9-2). (This is the sphere denoted by Sz in [23], about
equation (6.2).)

Part 3 Use .x1; x2; x3/ for the Euclidean coordinates on R3 . The function f and the
R=.2�Z/–valued coordinate function � can be used to embed a neighborhood of S
into R3 as the sphere of radius ��� 3

2
"2� about the origin by taking x3 D f � 3

2
and

by setting the pair .x1; x2/ to equal ..�2�� x
2
3/
1=2 cos�; .�2�� x

2
3/
1=2 sin�/. Note in

this regard that the values of x3 on the image of S range from ��� to �� because the
values of f on S range from "2� to 3� "2� .

This embedding is extended to a neighborhood of S by exploiting the fact that theˇ̌
f � 3

2

ˇ̌
> 1
2
"1 part of S has a neighborhood with the following property: Let p denote

a point in this neighborhood. Then p sits on an integral curve of v that intersects S,
and there is precisely one such intersection point with distance c�1" "31 or less from p .
Here, c" > 1 is a constant that depends on "1 . Such a neighborhood exists because v
is tangent to S only on the f D 3

2
circle in S. Let N1 denote this neighborhood. Given

p 2N1 , let �.p/2S denote the unique point on the integral curve of v through p with
distance less than c�1" "31 from p . Associate to p the point in R3 with the coordinates

(9-4) x1.p/D x1.�.p//; x2.p/D x2.�.p//; x3.p/D f .p/� 3
2
:
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To complete the definition of the embedding, suppose next that p is a point near the
f 2

�
3
2
� "1;

3
2
C "1

�
part of S where the coordinates .t; y�; �/ are defined. Associate

to p the point in R3 with the coordinates

(9-5)

x1.p/D jy�.p/� �1�j cos�.p/;

x2.p/D jy�.p/� �1�j sin�.p/;

x3.p/D t .p/�
3
2
:

Note in particular that if p is also in N1 , then it follows from the definition of the
function y� and the definition of �1 that the points given by (9-4) and (9-5) are the
same.

What is said at the end of the preceding paragraph has the following implication: the
map from N1 to R3 and the map described in the preceding paragraph together define
a smooth, �–equivariant embedding of a neighborhood of S into R3 that maps S to
the radius �� sphere and maps v to @

@x3
.

Fix " > 0 so that the region in R3 with .x21 C x
2
2 C x

2
3/
1=2 2 .�� � "; ��C "/ is in

the image of the embedding of N1 . By way of notation, N" is used in the subsequent
discussion to denote both this region in R3 and its inverse image in Mı . It is worth
keeping in mind for what follows that the points in the R3 incarnation of N" with
distance greater than �� from the origin are in the H0 component of Y �S.

By construction, the 1–form �˘ appears on the R3 version of N" as dx3 . Meanwhile,
the 2–form w must appear here as K dx1^dx2 with K being a strictly positive function
of x21 C x

2
2 . This is because w is closed, it annihilates v and v appears on the R3

version of N" as @
@x3

.

Use � to denote the function .x21Cx
2
2/
1=2 on R3 and introduce the R=.2�Z/–valued

function � by writing x1 and x2 as � cos� and � sin� . The observations from the
preceding paragraph, the fact that w is harmonic and the fact that its metric Hodge
dual is �˘ have the following implication: the metric from Mı appears on the R3

incarnation of N" as

(9-6) gD K.h�2d�2C h2�2d�2/C dx23

with h denoting a strictly positive function of �2 .

Part 4 This part of the subsection says something of the topological significance
of S and Part 3’s embedding of S and its neighborhood N" in R3 . To set the stage,
recall that Y0 was obtained from M by attaching the 1–handle H0 . This was done
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by first deleting the radius 7ı� coordinate balls about the index 0 and index 3 critical
points of f to obtain a manifold with boundary. The resulting boundary spheres
were then glued to the uDRC ln.7ı�/ and uD�R� ln.7ı�/ boundary spheres of
Œ�R� ln.7ı�/; RC ln.7ı�/��S2 .

The sphere S enters a second description of Y0 as the connected sum of M with
the manifold S1 � S2 . (See [23, (6.2)].) The connected sum description constructs
Y0 by deleting the respective 3–balls from M and S1 �S2 and gluing the resulting
two boundary spheres to the boundary spheres of the product of an interval with S2 .
Denote this product as I �S2 with I �R being an interval. As explained below, the
surface S can be viewed as a cross-sectional sphere of I �S2 .

To see directly this connected sum depiction of Y0 , first view S and N" as subsets
in R3 . Let r D .�2 C x23/

1=2 denote the radial coordinate on R3 . The connected
sum picture of Y0 results in an embedding of I � S2 into R3 whose image is the
r 2

�
�� �

1
16
"; ��C

1
16
"
�

part of N" . This depiction of I � S2 in Y0 identifies the
rD ��C 1

16
" sphere in N" with the boundary of the complement of a ball in S1�S2 .

This missing ball can be identified with the r< ��C 1
16
" part of R3 . Indeed, the Y0

incarnation of the r D ��C 1
16
" sphere in R3 splits Y0 into two components. The

component that contains the r> ��C 1
16
" part of N" is the complement of a ball in

S1 � S2 , and S1 � S2 is reconstituted in full when this complement is filled in by
adding the r� ��C 1

16
" part of R3 to the r> ��C 1

16
" incarnation of N" .

The Y0 incarnation of the r D �� �
1
16
" sphere in R3 also separates Y0 into two

components. The component that has the r< ��� 1
16
" part of N" is the complement

of a ball in M. This ball is attached to give back M by viewing the complement of its
center point as the r> ��� 1

16
"� part of R3 . To see this, take a second copy of R3

and use r0 to denote the distance to the origin in the latter. Use .� 0; '0/ to denote
the associated spherical coordinates. The manifold M is obtained by attaching the
r0 �

�
�� �

1
16
"
��1 ball in this second copy of R3 to the rD �� � 1

16
" sphere in the

original copy of R3 via the identifications r0 D r�1 and .� 0 D � � �; �0 D �/.

Since S splits Y0 into two parts, it likewise splits Y� into two parts. The component of
Y��S that contains  .z0/ has its canonical identification with the  .z0/ component of
Y0�S. The other component of Y��S is obtained from the complementary component
of Y0�S by attaching the p 2ƒ labeled 1–handles.

Both Y� �N" and Y0 �N" likewise have two components because N" is a tubular
neighborhood of S. A given k 2 f0; : : : ; Gg version of Yk is obtained from Y0 by
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attaching k 1–handles with attaching regions that are disjoint from the component of
Y0�N" that contains  .z0/ . This understood, N" can be viewed as a subset of Yk and
Yk �N" also has two components. By way of notation, the component of Y� �N"
or any given k 2 f0; : : : ; Gg version of Yk � N" that contains  .z0/ is denoted in
what follows by Y0 and the other component is denoted by YM (YM has a natural
interpretation as a sutured manifold, which is denoted by M.1/ in Remark 1.3).

Part 5 This part of the subsection introduces a family of distinguished metrics on
the k 2 f0; : : : ; Gg version of Yk that play central roles in the subsequent discussions.
Parts 6 and 8 say more about this set.

This distinguished set of metrics is parametrized by a parameter T which is in all cases
greater than 1. With T chosen, the corresponding set of metric is denoted in what
follows by MetT . The metrics from MetT are constructed in a moment from the set of
metrics on YM [N" that are given by (9-6) on N" . This set of metrics on YM [N" is
denoted by MetN . Note with regards to (9-6) that its formula depicts a 1–parameter
family of metrics with the parameter being the length of the curve  .z0/ . The length
of  .z0/ plays no role of significance. In any event, the length is assumed to be the
same for all metrics in MetN whether defined on Y or on a k 2 f0; : : : ; Gg version
of Yk .

The criteria for membership in MetT follow directly: All metrics in MetT agree on
Y0 [N" ; the metric they define on this set is denoted in what follows by gT . The
metric gT on Y0 is the metric from (3-6). Meanwhile, the metric gT on N" is defined
in the three steps that follow.

Step 1 Introduce �r to denote the function on R3 given by �.64"�1.r� ��/� 1/.
This function equals 1 where r < ��C 1

64
" and equals 0 where r > ��C 1

32
". Fix

T > 1 and introduce rT to denote
�
1��r C

1
T
�r
�
r . The r derivative of rT is strictly

positive because that of �r is nonpositive. Set �T D rT sin � and x3T D rT cos � .
Noting that d�T and dx3T are linearly independent, the quadratic form

(9-7) K.�T /.h
�2.�T /d�

2
T C h

2.�T /�
2
T d�

2/C dx23T

defines a smooth metric on R3 . The metric gT on the r> ��� 14" part of N" is given
by (9-7).

Step 2 The definition of gT on the r 2
�
�� �

1
2
"; �� �

1
4
"
�

part of N" requires yet
another function of r. This one is defined by the rule r 7! �.4"�1.r���/C2/ and it is
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denoted by �r� . The function �r� is equal to 1 where r < ��� 12" and it is equal to 0
where r> ��� 1

4
". Set x3T� to denote the function

�
1��r�C

1
T
�r�

�
x3 . Introduce

by way of notation KT and hT to denote the functions K.�=T / and h.�=T /. Noting
that dx1 , dx2 and dx3T are linearly independent, the quadratic form

(9-8)
1

T 2
KT .h

�2
T d�2C h2T �

2d�2/C
1

T 2
dx23T�

defines a smooth metric on the r 2
�
���

1
2
"; ���

1
4
"
�

part of N" . The latter extends
the metric given in (9-7) because �T D 1

T
� and x3T D 1

T
x3 where � < ��C 1

64
".

Step 3 The definition of gT on the r< ��� 12 part of N" requires one more function
of r. This one is denoted by �r�� and it is defined by the rule r 7!�.4"�1.r���/C3/.
This function is equal to 0 where r> ��� 1

2
" and it is equal to 1 where r< ��� 3

4
".

With this function in hand, define the function T� to be T .1� �r��/C �r�� . The
function T� is equal to T where r> ��� 1

2
" and it is equal to 1 where r< ��� 3

4
".

The metric gT is defined on the r� ��� 1
2
" part of N" to be the quadratic form

(9-9)
1

T 2�
KT�.h

�2
T�
d�2C h2T� d�

2/C
1

T 4�
dx23 :

This definition of gT smoothly extends the metric defined in (9-8). Moreover, the
metric gT as just defined is the metric in (9-6) where r< ��� 3

4
".

Part 6 This part of the subsection and Part 8 point out some key properties of the
MetT metrics. This part focuses on the metric gT , this being the restriction of each
MetT metric to Y0[N" . As explained in the subsequent two paragraphs, each T > 1
version of gT on the complement in Y0[N" of the r� �� part of N" can be viewed
as the pullback of a T –independent metric on S1 �S2 by a T –dependent embedding
of the  .z0/ component of Y� � S or Y � S as the case may be. The embedding is
denoted by ˆT .

To define this T –independent metric on S1�S2 , view S1�S2 as in Part 4. By way of a
reminder, this view comes with a distinguished ball with a distinguished diffeomorphism
onto the r < �� C

1
16
" ball in R3 centered on the origin. There is in addition, a

distinguished identification between the complement of the concentric r� �� ball in
S1�S2 and the union of Y0 and the r� �� part of N" . The latter identifies the metric
from Section 1 on Y0 with a metric on S1�S2 whose restriction to the r���C 1

16
" ball

in the distinguished coordinate chart appears as K.�/.h�2.�/d�2Ch2.�/�2d�2/Cdx23 .
This is the desired T –independent metric on S1�S2 . This S1�S2 metric is denoted
by g� .
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Fix T � 1. The promised embedding of the Y0 component of Y��S into S1�S2 is
defined as follows: This embedding agrees with the embedding from the preceding para-
graph on Y0 and on the r>��C 1

32
" part of N" . Meanwhile, the promised embedding

on the r 2
�
��; ��C

1
16
"
�

part of N" maps the latter onto the r 2
�
T �1��; ��C

1
16
"
�

ball in the distinguished coordinate chart. The map here sends the point with spherical
coordinates .r; �; �/ to that with spherical coordinates .rT ; �; �/.

Part 7 This part of the subsection describes a certain closed 2–form on a given
k 2 f0; : : : ; Gg version of Yk with compact support in YM and with the following
additional property: the de Rham class of this 2–form annihilates all but the H2.M IZ/–
summand in the Mayer–Vietoris direct sum decomposition for H2.Y IZ/ in (IV.1-4) or
in the analogous direct sum decomposition for H2.YkIZ/. Meanwhile, it acts on the
H2.M IZ/–summand as c1.det S/. A version of this 2–form is also defined on M. In
all cases, the 2–form is denoted by p . It is used in the upcoming Lemma 9.1 and in
later subsections. The construction of p follows directly.

View Mı as being a subset of each k 2 f0; : : : ; Gg version of Yk . As such, it sits in the
YM part of Yk . It follows from the description of H2.Y IZ/ in Part 4 of Section II.1C
that there exists a finite set of the form ‚ whose elements are pairs of the form .; Z /,
with  being a loop in a level set of Mı of the function f on M. Meanwhile, Z is an
integer. The loops from ‚ generate the image in any given k 2 f0; : : : ; Gg version of
H1.YkIZ/=Tors of H1.M IZ/=Tors via the Mayer–Vietoris homomorphism for the
Yk analog of the direct sum decomposition in (IV.1-4). Meanwhile, the paired integers
are such that

P
2‚ Z represents the image of the Poincaré dual of the restriction

of c1.det S/ to the H2.M IZ/–summand in this same direct sum decomposition. Let
.; Z / denote a pair from ‚. The loop  has a tubular neighborhood in Mı which is
the image via an embedding of S1�D, where D �R2 is a small radius disk about the
origin and where  corresponds to the image of S1 � f0g. Use T in what follows to
denote a tubular neighborhood of this sort. These are to be chosen so that the pairwise
distinct versions have disjoint closure that is disjoint from the boundary of the closure
of the Mı part of N" .

Note that there exists such a tubular neighborhood with an embedding that has the
following property: the pullback of df via the embedding is a constant 1–form from
the D factor of S1�D and the kernel of the pullback via the embedding of the 2–form
w is a constant vector field that is tangent to this D factor. The existence of such an
embedding follows from two facts, the first being that  is in an f –level set. The
second fact follows from the definition in the first bullet of (IV.1-3) of w on T as
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the area form for the f –level sets. An embedding of this sort is used in Part 6 of the
upcoming Section 9.7.

Fix a compactly supported 2–form on D whose integral is equal to 1. View this
2–form first as an S1–independent form on S1 �D and then as a 2–form on M and
on each k 2 f0; : : : ; Gg version of Yk with compact support in T . Use p to denote
the latter incarnation; then set p D

P
.;Z /2‚

Zp . By construction, the de Rham
class of p agrees with c1.det S/ on the H2.M IZ/–summand of the Mayer–Vietoris
direct sum decomposition of H2.Y IZ/ in (IV.1-4) or its analog for H2.Y0IZ/ as the
case may be. The de Rham class of p also annihilates the H2.H0IZ/–summand in
these direct sum decompositions. In the case of H2.Y IZ/, the de Rham class of p
also annihilates the

L
p2ƒH2.HpIZ/–summand in (IV.1-4).

Part 8 Fix k 2 f0; : : : ; Gg. Given T > 1 and a metric from MetT on Yk , the next
lemma uses wT to denote the associated harmonic 2–form on Yk whose de Rham
cohomology class is that of c1.det S/.

Lemma 9.1 There exists � > 1 with the following significance: Fix a metric from
the Yk version of MetT so as to define wT . Let kpk2 denote the metric L2–norm
of p , and let w be the closed 2–form from (3-5). Then the L2–norm of wT is at most
�.1Ckpk2/ and the C 1–norm of wT �w on Y0 and on the r> ��C 1

2
" part of N"

is at most �T �1=2 .

Proof The proof has four steps.

Step 1 The L2–norm of wT as defined by the metric from MetT on Yk is greater
than c�10 because the integral of wT over H0 must be greater than c�10 so as to have
integral 2 on each cross-sectional 2–sphere. As explained directly, the L2–norm
of wT is also less than c0.1C kpk2/. The proof that this is so uses the fact that
a given harmonic form minimizes the L2–norm amongst all closed forms in its de
Rham cohomology class. To obtain such a form, reintroduce the coordinates .t; z/
for U and let B denote a smooth function with compact support centered on the
origin in C and with integral 2. Choose a T –independent version of B so that its
incarnation as a function on U has support in U \H0 . With B chosen, set p0 to
denote i

2
B dz ^ dxz . This is a closed, compactly supported 2–form in Y0 whose de

Rham cohomology class when viewed in either H 2.YkIZ/ has pairing zero with all
but the H2.H0IZ/–summand in the Yk version of (IV.1-4). By construction, the de
Rham cohomology class of pS D p0C p is that of c1.det S/. The metric L2–norm
of pS is less than c0.1Ckpk2/.
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Step 2 Use � to denote the function on  .z0/ ’s component of Yk �S that equals 1
on  .z0/ ’s component of Yk �N" and is given near S by the function on the r� ��
part of R3 by the radial function r 7! �.2�128"�1.r���//. The function � is equal
to 1 where r > ��C 1

64
" and it is equal to 0 where r< ��C 1

128
".

Use eT to denote the ˆ�1T –pullback to S1 � S2 of the 2–form �wT . This 2–form
is supported on the complement in S1 � S2 of the r < 1

T

�
�� C

1
128
"
�

part of the
distinguished coordinate ball. It follows from what is said in Step 1 that the L2–norm
of eT is bounded from below by c�10 and bounded from above by c0 .

Use � to denote the g�–Hodge dual on S1 �S2 . Note that d eT and d �eT are equal
to zero on the complement of the r� 1

T

�
��C

1
64
"
�

part of the distinguished coordinate
chart. Meanwhile, the norms of both are bounded by c0T j.ˆ�1T /�wT jg� on this same
ball. This observation, the fact that the gT metric is the ˆT –pullback of g� and the
fact that the g�–volume of the r� 1

T

�
��C

1
64
"
�

coordinate ball is bounded by c0T �3

implies that the L1–norm of both d eT and d �eT is bounded by c0.1Ckpk2/T �1=2 .

Step 3 The 2–form w appears in the r � �� part of the R3 incarnation of N" as
K.�/�d� ^ d� . The latter form extends smoothly to the r � �� part of R3 as a
g�–harmonic 2–form. It follows as a consequence that w ’s restriction to Y0 and
to the r � �� C 1

32
" part of N" is the pullback by all ˆT of the g�–harmonic 2–

form on S1 �S2 whose de Rham class has pairing equal to 2 with the generator of
H2.S

1 �S2IZ/. This corresponding form on S1 �S2 is 1
2�

sin � d� ^ d� and also
denoted by w .

Step 4 Introduce the operator D� D �d C d� on S1 � S2 and use it to write the
2–form eT as .1 C zT /w C uT with zT denoting a constant with norm bounded
by c0T

�3=2 and with uT denoting a 2–form which is L2–orthogonal to w and
such that DuT D DeT . As the Green’s function kernel for D is smooth on the
complement of the diagonal in �2.S1 � S2/, the fact that DeT has support where
r < 1

T

�
�� C

1
64
"
�

and the c0.1C kpk2/T �1=2 bound on its L1–norm implies that
juT jC jruT j � c0.1Ckpk2/T �1=2 on Y0 and also on the r>��C 1

2
" part of N" .

9.2 Proof of Proposition 3.9

The three parts of this subsection prove the assertion made by Proposition 3.9.

Part 1 Let YZ denote a given compact, oriented 3–manifold and let Z denote a
nonzero class in H 2.YZ IZ/=Tors. Hodge theory associates to each metric on YZ a
harmonic 2–form whose de Rham cohomology class is Z . Of specific interest in what
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follows are metrics whose associated harmonic 2–form has transverse zeros. There is
a residual set of metrics on YZ with this property; see for example [11] for a proof.

Fix k 2 f0; : : : ; Gg. Let gN denote a metric in the Yk version of MetN . Fix T > 1 and
use gN to define a metric in MetT , this denoted by g1 . Let w1 denote the associated
harmonic 2–form with de Rham cohomology class c1.det S/. If w1 has degenerate
zeros, fix a second metric, g2 , on Yk with the following properties: Let w2 denote
the corresponding g2 harmonic 2–form. Then w2 has nondegenerate zeros, and the
g1–norms of w2 � w1 and g2 � g1 and those of their g1–covariant derivatives to
order 100 are less than T �1 . If w1 has nondegenerate zeros, take g2 D g1 .

Part 2 Write w2 on Y0 and on the r>��C 1
2
" part of N" as wCu2 . By Lemma 9.1,

the 2–form is such that ju2j � c0T �1=2 . This 2–form is also exact; but, more to the
point, u2 can be written as dz2 , where z2 is a 1–form with jz2j < c0T �1=2 on the
r� ��C 5

8
" part of N" . Hold on to z2 for the moment. Let �? denote the function

of r on N" given by �? D �.8"�1.r� ��/� 5/. This function is equal to 1 where
r<��C 5

8
" and it is equal to 0 where r>��C 3

4
". Use w3 to denote the closed 2–form

on Y� that is given by w2 on YM , given by w on Y0 and given by wC d.�?z2/
on N" . The 2–form w3 has the same de Rham class as w2 , the same zero locus as it
agrees with w2 where both are zero, and jw2�w3j � c0T �1=2 .

Use �˘ to denote the g�–Hodge dual on S1 �S2 of the 2–form w D sin � d� ^ d� .
Write the g2–Hodge star of w2 as �˘Cq2 on Y0 and on the r>��C 1

2
" part of N" . As

both the g2–Hodge star of w2 and �˘ are exact on N" , it follows that q2D do2 on N" .
Moreover, such a function o2 can be found with jo2j � c0T �1=2 on the r> ��C 1

2
"

part of N" . This is so because jw�w2j< c0T �1 and jg2� g�j< c0T
�1 on this part

of N" . Fix a version of o2 that obeys this bound. Let �3 denote the closed 1–form
on Y� given by �˘ on Y0 , by the g2–Hodge star of w2 on YM and given on N"
by �˘C d.�?o2/. This closed 1–form is such that w3 ^ �3 � 0 when T > c0 with
equality only at the zeros of w3 .

With T > c0 chosen, the upcoming Lemma 9.2 uses what was just said about w3
and �3 as input to supply a metric on Y� with the properties in the list that follows.
This new metric is denoted by g3T . The g3T –Hodge star sends w3 to �3 ; thus w3
is g3T –harmonic. The metric g3T on Y0 and on the r > ��C 3

4
" part of N" is the

metric g� . The metric g3T on the r 2 Œ��C 1
2
"; ��C

3
4
"� part of N" can be written

as g2C h with h and its g2–covariant derivatives to order 20 having g2–norm less
than c0T �1 . Finally, the metrics g3T and g2 are identical except on the rest of Y .
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Any sufficiently large T version of the metric g3T meets the requirements of Proposition
3.9’s space Met . Conversely, each metric in Met is a sufficiently large T version of
a metric g3T that is constructed as described above from some metric in MetN . The
lower bound on T depends on various properties of the chosen MetN metric, these
being an upper bound on the norm of the metric’s Riemann curvature, the metric volume
of YM , and a lower bound on the metric’s injectivity radius.

Part 3 The existence of the metric g3T follows from the first lemma below:

Lemma 9.2 Let YZ denote an oriented 3–manifold and let g denote a given Rie-
mannian metric on YZ . Use � in what follows to denote the Hodge star defined by g.
Suppose that U and V are open sets in YZ with the closure of V being a compact
subset of U. Let ! and � denote respectively a 2–form and a 1–form on YZ such
that ! ^ � > 0 on U and such that �! D � on YZ �V .

� There are smooth metrics on YZ which equal g on YZ �U and have Hodge
star sending ! to � . Moreover, there exists metric of this sort whose volume
3–form is the same as the g–volume 3–form.

� Fix k 2 f0; 1; : : : g and D>1. There exists � >1 with the following significance:
Suppose that the C k –norms on U of ! and � and the Riemann curvature tensor
of g are less than D . Then YZ has a metric that obeys the conclusions of the first
bullet and differs from g by a tensor whose g–norm and those of its g–covariant
derivatives to order k are bounded by � times the C k –norm of �! � � .

Lemma 9.2 has a generalization that holds for 1–parameter families of data sets. This
parametrized version is given below but used in the next subsection.

Lemma 9.3 Let f.g� ; !� ; �� /g�2Œ0;1� denote a smoothly parametrized family of met-
rics , 2–forms and 1–forms on YZ with !� ^�� > 0 on U and such that the g� –Hodge
dual of !� is �� on YZ �V . There is a corresponding smooth , 1–parameter family
of metrics such that each � 2 Œ0; 1� member obeys the conclusion of the first bullet of
Lemma 9.2. Moreover , this new family of metrics can be chosen to obey the properties
listed below:

� Let I � Œ0; 1� denote an open neighborhood of one or both of the endpoints.
Suppose that the conclusions of the first bullet of Lemma 9.2 hold for .g� ; !� ; �� /
when � 2 I. There is a neighborhood I 0 � I of the endpoints such each � 2 I 0

member of the new family is the corresponding g� .
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� Given a nonnegative integer k and D � 1, there exists � > 1 with the following
significance: Suppose that the conditions of the second bullet of Lemma 9.2
are satisfied for each � 2 Œ0; 1� and that the C k –norms of the � –derivatives to
order k of f.g� ; !� ; �� /g�2Œ0;1� are also bounded by D . There is a 1–parameter
family of metrics that obeys the preceding bullet and the first and second bullets
of Lemma 9.2. In addition, each � 2 Œ0; 1� member of the family differs from
the corresponding metric g� by a tensor whose � –derivatives to order k have
C k –norm bounded by � times the C k –norm of the sum of the � –derivatives to
order k of the difference between �� and the g� –Hodge star of !� .

Proof of Lemmas 9.2 and 9.3 Let � denote g’s volume 3–form. Write ! ^ � as
q� with q being a nonnegative function on U. Let v denote the vector field on U that
is annihilated by ! and has pairing q with � . Let Ker.�/� T U denote the 2–plane
bundle that is annihilated by � . The 2–form ! is symplectic on Ker.�/ and so orients
Ker.�/. Choose an !–compatible almost complex structure on Ker.�/, denoted by
J below. Note in this regard that there are no obstructions to finding such an almost
complex structure. This is so because the space of almost complex structures that are
compatible with a constant symplectic form on R2 is contractible. The construction
just given yields a new metric with volume 3–form �.

With J chosen, a metric on U is defined as follows: The vector field v has norm q1=2

and is orthogonal to Ker.�/. The inner product between vectors v and v0 in a given
fiber of Ker.�/ is q�1=2!.v; J v0/. A metric of this sort has �! D � and is such that
both ! and � have norm q1=2 . Moreover, any metric with these two properties is of
the form just described. In particular, any two differ only with respect to the choice of
the almost complex structure on the Ker.�/.

Let J1 denote a chosen, !–compatible almost complex structure on Ker.�/jU and let
g1 denote the corresponding metric. The metric g on U �V is by necessity of the sort
just described, thus it differs from g1 only on Ker.�/. In particular, the metric g on
Ker.� ) is given by q�1=2!.v; Jgv

0/ with Jg being an !–compatible almost complex
structure on Ker.�/jU�V . As noted above, if point p 2 U, then the space of !jp–
compatible almost complex structures on Ker.�/jp is contractible. This understood,
there are no obstructions to choosing an !–compatible almost complex structure on
Ker.�/jU that agrees with Jg near YZ �U and agrees with J1 on V . Let J2 denote
an almost complex structure of this sort. The metric defined as instructed above by J2
has the properties that are asserted by the first bullet of Lemma 9.2.
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The assertions of the second bullet of Lemma 9.2 and those of Lemma 9.3 are proved
by taking care with the choice of J2 and its � 2 Œ0; 1� counterparts. As the details are
straightforward and rather tedious, they are omitted.

9.3 MetT metrics on cobordisms

Lemma 9.1 has an analog given below that concerns self-dual forms on cobordisms.
The cobordism manifold is denoted below by X and it is assumed to be of the sort that
is described in Section 3.3 with its constant s slices where s < �1 and s > 1 given as
follows: Either one is Y and the other is YG , or one is some k 2 f1; : : : ; Gg version
of Yk and the other is Yk�1 t .S1 �S2/, or one is Y0 and the other is M tS1 �S2 .
The case when both are Y or both some k 2 f1; : : : ; Gg version of Yk is also allowed,
but only the case where both are YG are needed in what is to come. The topology
of X is further constrained by the requirement that s have 1 critical point when it is
not diffeomorphic to a product with R. If one of these slices is Y and the other YG ,
or if both are Y or both Yk for k 2 f1; : : : ; Gg, then s has no critical points and the
cobordism manifold X is R� Y or R� Yk as the case may be, with the projection
to R given by the function s .

One more constraint on X is needed. By way of background, what is said in Part 4
of Section 9.1 identifies Y0 [N" as a subset of Y and Yk , and also S1 � S2 . This
extra constraints uses Y0" to denote the union of Y0 and the r> ��C 1

128
" part of N" .

Here is the extra constraint:

(9-10) There is a distinguished embedding of R � Y0" into X with the following
property: the respective s < 0 and s > 0 slices of the image of this embedding,
when written using the diffeomorphisms from the second and third bullets
of (2-8), appear as the incarnation of Y0" in either Y, Yk or S1 � S2 as the
case may be.

The metric for X is assumed to obey a constraint that requires membership in an
analog for X of the various T > 1 versions of the space MetT . The definition of
this X version of MetT requires the a priori selection of metrics g� and gC from the
respective Y� and YC versions of MetT with it understood that MetT in the case of
M t .S1�S2/ is the space consisting of the metric g� on S1�S2 and a metric on M
of the following sort: If c1.det S/ is torsion on M, then any metric on M is allowed.
If this class is not torsion, then the metric’s associated harmonic 2–form with de Rham
coholomogy class c1.det.SjM // has nondegenerate zeros. Meanwhile, MetT for any
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given k 2 f1; : : : ; Gg version of Yk t .S1 �S2/ consists of a MetT metric for Yk�1
and any metric for S1 �S2 . Reintroduce from Part 5 of Section 9.1 the metric gT on
Y0 [N" . Of immediate interest in what follows is gT ’s restriction to Y0" . By way
of a reminder, gT on Y0" is the metric g� on Y0 and it is the metric in (9-7) on the
r> ��C 1

128
" part of N" .

The analog of MetT for X consists of the space of metrics with the following three
properties:

(9-11) � The metric obeys the LD 100 version of (2-9).

� The metric pulls back via the embedding in (9-10) as the metric ds2C gT .

� The metric pulls back from the s � �104 part of X via the embedding in
the second bullet of (3-10) as ds2Cg� , and it pulls back from the s > 104
part of X via the embedding from the third bullet of (2-8) as ds2C gC .

This analog for X of MetT is denoted in what follows by MetT also, its dependence
on g� and gC being implicit.

Lemma 9.4 given in a moment supplies the promised analog to Lemma 9.1. To set the
notation, suppose that a metric on X has been specified and that pX is a differential
form on X. The lemma uses hpX i2 to denote the L2–norm of pX over the jsj< 104
part of X. Lemma 9.4 uses w� and wC to denote the respective g� and gC harmonic
2–forms with de Rham cohomology class that of c1.det S/; and it uses the embeddings
from the second and third bullets of (2-8) to view w� and wC as 2–forms on the
s � �1 and s > 1 parts of X.

Lemma 9.4 Let X denote a cobordism manifold of the sort described above. Given
metrics g� and gC in the respective Y� and YC versions of MetT , there exists � > 1
with the following significance: Fix T > 1, and fix a Riemannian metric on X from the
corresponding set MetT . There is a self-dual , harmonic 2–form on X whose pullback
to the constant s slices of X converges as s!�1 to w� and as s!1 to wC . Let
pX denote a closed 2–form on X that equals w� where s < �102, that equals wC
where s > 102, and with de Rham cohomology class that of c1.det S/.

� The L2–norm of this harmonic self-dual 2–form on the s–inverse image of any
length 1 interval in R is bounded by �hpX i2 .

� The pullback of this harmonic self-dual 2–form to the constant s >1 and s <�1
slices differs in the C 1–topology from w� and wC by at most �hpX i2e�jsj=z

with z � 1 depending on the corresponding limit metric.
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� The pullback of this harmonic self-dual 2–form to R�Y0" via the embedding
from (9-10) differs from ds ^�˘Cw by a 2–form whose C 1–norm on R�Y0
and on the r> ��C 1

2
" part of R�N" is less than �hpX i2T �1=2 .

Proof The existence of a closed, self-dual harmonic 2–form with the desired s!�1
and s!1 limits follows from the index theorem in [1]. This 2–form is denoted in
what follows by ! . Given the first bullet, then the assertion in the second bullet follows
from the eigenfunction expansion that is depicted below in (9-13). As explained next,
the third bullet also follows from the second bullet.

To prove the third bullet, fix s0 � R and introduce �0 to denote the function on R

given by the rule s 7! �.js � s0j � 1/. This function equals 1 where js � s0j is less
than 1 and it equals zero where js� s0j is greater than 2. Let � denote the function
from Step 2 of the proof of Lemma 9.1 and let ˆT denote the embedding from Part 5
of Section 9.1. View the ˆ�1T pullback of �0�! as a 2–form on R� .S1 �S2/ with
support where js � s0j < 2. The assumed L2–bound for ! with a Green’s function
argument much like that used in Step 4 of the proof of Lemma 9.1 can be used to derive
the pointwise bound that is asserted by Lemma 9.4. The derivation differs little from
that in Step 4 of the proof of Lemma 9.1 save for the fact that the Green’s function in
question is that for the elliptic operator

(9-12) DW C1.R�.S1�S2/IƒC˚R/!C1
�
R�.S1�S2/IT �.R�.S1�S2//

�
given by the formula DD �XdX C dX , where dX denotes the 4–dimensional exterior
derivative ds^ @

@s
. � /Cd and where �X denotes the Hodge star for the metric ds2Cg� .

The lemma’s first bullet is proved in the four steps that follow.

Step 1 Let ! denote the relevant closed, self-dual harmonic form. Fix an integer
n 2 f106; 107; : : : g and introduce by way of notation In �R to denote a closed interval
of length 2n whose endpoints have distance 106 or more from the origin. Let C
denote the space of closed 2–forms on the domain s�1.In/ that agree with ! on some
neighborhood of the s–inverse images of the boundary points of In . The 2–form ! is
the minimizer in C of the functional that is defined by the rule w 7!

R
s�1.In /

jwCj2 .

Step 2 Use the embedding from the second bullet of (2-8) to write the s � 100 part
of X as Œ100;1/�YC and likewise write the s <�100 part of X as .�1;�100��Y� .
Let Y� for the moment denote either YC or Y� . Let � denote either the g� or gC
version of the Hodge star on Y� . The corresponding operator d� defines an unbounded,
self-adjoint operator on the space of closed 2–forms on Y� . Let „� denote an L2–
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orthonormal basis of eigenvectors of d� on the space of closed 2–forms with negative
eigenvalue and let „C denote an L2–orthonormal basis of eigenvectors of d� with
positive eigenvalue. The eigenvalue of d� on a given eigenvector, a, is denoted by �a .

The 2–form ! on .�1;�1��Y� and on Œ1;1/�YC can be written as

(9-13)
�
! D ds^�w�Cw�C

P
a2„C Zae

�a.sC1/.ds^ �aC a/ where s � �104,
! D ds^�wCCwCC

P
a2„� Zae

�a.s�1/.ds^�aC a/ where s � 104.

What is denoted by Z. � / in (9-13) is a real number. Keep in mind for what follows
that any given version of e�as.ds ^�aC a/ is the exterior derivative on its domain of
definition of the 1–form qa D �

�1
a e�as �a.

Step 3 Fix m>1. Let a denote an eigenvector in the Y� version of „C . Introduce �a

to denote the function on R given by the rule s 7!�a.s/D 1��.�m
�1�a.sC102/�1/.

This function equals 0 where s>�102�m��1a and it equals 1 where s<�102�2m��1a .
If a is in the YC version of „� , then �a is given by the rule

s 7! �a.s/D 1��.�m
�1�a.s� 102/� 1/:

This version of �a is 0 where s <102Cmj�aj
�1 and it is 1 where jsj>102C2mj�aj

�1 .
Meanwhile, use �� to denote the function �.102� jsj/. This function is 1 where
jsj> 102 and 0 where jsj< 101.

Use pX and these functions to define the 2–form w on X by the rule

(9-14) wD ��ds ^�pX C pX C
X

a2„C

Za d.�a�
�1
a e�a.sC102/ �a/

C

X
a2„�

Za d.�a�
�1
a e�a.s�102/ �a/:

This is a closed 2–form whose de Rham cohomology class is the same as ! . Let E

denote the smallest of the numbers from the set f�a j a 2„Cg[fj�aj j a 2„�g with it
understood that „C refers to the Y� version and „� refers to the YC version. The
2–form w equals ! where jsj � 1C 2mE�1 .

Step 4 The square of the L2–norm of wC over the jsj � 102C 2mE�1 part of X is
no greater than

(9-15)
Z
s�1.Œ�102;102�/

jpX j2

C c0m
�2e�2m

X
a2„C[„�

j�aj
�1
jZaj

2
C 4mE�1.kw�k

2
2CkwCk

2
2/

C

X
a2„C[„�

j�aj
�1
jZaj

2.e�2m� e�4j�ajm=E/:
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Meanwhile, the integral of ! over this same part of X is equal to

(9-16)
Z
s�1.Œ�102;102�/

j!j2

C

X
a2„C[„�

j�aj
�1
jZaj

2.1� e�2m/C 4mE�1.kw�k
2
2CkwCk

2
2/

C

X
a2„C[„�

j�aj
�1
jZaj

2.e�2m� e�4j�ajm=E/:

As noted in Step 1, the expression in (9-16) cannot be greater than what is written
in (9-15). This being the case, the m > c0 versions of (9-15) and (9-16) imply the
bound

(9-17)
Z
s�1.Œ�102;102�/

j!j2C
X

a2„C[„�

j�aj
�1
jZaj

2
� c0.1ChpX i22/:

This last bound has the following corollary: let I �R denote any interval of length 1.
Then

R
s�1.I / j!j

2 � c0.1ChpX i22/.

9.4 Proof of Proposition 3.11

To explain the first bullet, identify a neighborhood of the critical point of the function s
with a ball about the origin in R4 using coordinates .y1; y2; y3; y4/ and write s in
terms of these coordinates as s D y24 �y

2
1 �y

2
2 �y

2
3 when the constant s < �1 slices

of X are Y0 and the constant s > 1 slices are M t .S1�S2/. With the ends reversed,
the function s appears as s D �y24 C y

2
1 C y

2
2 C y

2
3 . The embeddings given in the

second and third bullets of (2-8) are defined using a pseudogradient vector field for s .
This pseudogradient vector field in the Y� D Y0 and YC DM t .S1 �S2/ case can
be chosen so as to have the following properties: The inverse image of the descending
3–ball from the critical point via the embedding given by the second bullet of (2-8)
appears as the locus .�1; 0/ � S with S being the 2–sphere that is described in
Part 4 of Section 9.1. Meanwhile, the inverse image via the embedding given by the
third bullet of (2-8) of one of the ascending arcs from this critical point intersects the
.0;1/� .S1�S2/ component of .0;1/� .M t .S1�S2// as the locus .0;1/�p�
with p� 2 S1 � S2 being the r D 0 point in the ball that is described in the third
paragraph of Part 4 in Section 9.1. The other ascending arc intersects the .0;1/�M
component as the r0 D 0 point in the ball that is described in the fourth paragraph of
Section 9.1. There is a completely analogous picture of X when Y0 is the constant
s > 0 slice of X and S1 �S2 is the constant s < 0 slice.
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What is said above about the descending and ascending submanifolds from the critical
point has the following consequence: the pseudogradient vector field that defines the
embeddings from the second and third bullets of (2-8) can be chosen so that (3-11) are
obeyed and likewise the condition in (9-10). These properties are assumed in what
follows. The fact that S carries no homology implies that the fourth bullet of (2-8)
holds for X.

Parts 1–10 of this subsection construct large L versions of the form wX and the
metric that are used in Part 11 to satisfy the requirements of the second bullet of
Proposition 3.11. These constructions require the choice of parameters T � 1, L0� 1

and L1 > L0 C 1. Granted these large choices, Parts 1–10 construct a closed 2–
form denoted by !T� and a metric denoted by mT� that makes !T� self-dual. Any
L>L1C20 version of !T� can serve for Proposition 3.11’s desired 2–form wX and
the corresponding version of mT� can serve for the desired metric.

Proposition 3.11 requires as input a metric on M t .S1 �S2/ and asserts that such a
metric determines a certain subset of the set Met on Y0 . To say more about this subset,
recall from Part 2 of Section 9.2 that each metric in Met is determined in part by a
metric from Section 9.1’s set MetN and a large choice for a number denoted by T . A
metric of this sort was denoted by g3T in Section 9.2. As noted at the end of Part 2
of Section 9.2, a lower bound on T is determined by certain properties of the metric
from MetN . A metric of this sort is in Proposition 3.11’s subset if and only if T is
greater than a new lower bound that is determined by the aforementioned properties of
the MetN metric. Suffice it to say for the purposes of the proof that this new lower
bound is defined implicitly by the constructions in the subsequent eleven parts of this
subsection.

The upcoming Parts 1–10 are written so as to simultaneously supply a metric and a
closed, self-dual 2–form for Section 9.5’s proof of Proposition 3.13 and Section 9.7’s
proof of Proposition 3.14. This is done by considering a cobordism space X as
described in the previous section whose limit manifolds Y� and YC are as follows:
Either one is Y0 and the other is M t.S1�S2/, or one is some k 2 f1; : : : ; Gg version
of Yk and the other is Yk�1 t .S1 � S2/, or both are YG . Although not needed for
what follows, the constructions in Parts 1–10 can be done when both limit manifolds
are Y or both are some k 2 f1; : : : ; Gg version of Yk .

Part 1 When Y� or YC is not M t .S1 �S2/, choose metrics, g1� and g1C in the
respective Y� and YC versions of MetN as the case may be. In the case when one of
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Y� or YC is some k 2 f1; : : : ; Gg version of Yk and the other is Yk�1 t .S1 � S2/,
what is denoted by MetN allows any metric for the S1�S2 component. Fix a T � 1;
in particular so that Lemma 9.1 can be invoked for the metric in MetT defined using
g1� in the case of Y� and g1C in the case of YC . Use g1� to choose a metric g2
as directed in Part 2 of Section 9.2 on Y� . Then set g� D g2 . Meanwhile, use g2 to
construct a version of the metric g3T and denote it by g�T . Do the same using g1C ;
denote the chosen g2 metric on YC by gC and use gCT to denote the resulting g3T
metric. If either of Y� or YC is M t .S1 �S2/, take the metric of the sort described
in Part 1 of Section 3.5 for M and the metric g� on S1 � S2 . Denote the resulting
metric on M t .S1 �S2/ as g� in the Y� case and gC in the YC case. With T � 1
chosen, this same metric is also denoted at times by g�T and gCT as the case may be.

By way of notation, the constant c0 in what follows depends implicitly on the various
properties of the metrics g1� and g1C . In particular, c0 depends on an upper bound
for the norm of the metric’s curvature, upper and lower bounds on the metric’s volume
and a lower bound on the injectivity radius.

Let m denote a chosen metric in the g� and gC version of MetT on X. Certain
constraints on m are imposed later in this subsection. Note that some of the latter
impose constraints on g1� and g1C .

Part 2 Use w� and wC to denote the respective g� and gC harmonic 2–forms on
Y� and YC with de Rham cohomology class that of c1.det S/. Fix for the moment a
closed 2–form pX on X as described in Lemma 9.4. Use ! to denote the self-dual
2–form on X given by Lemma 9.4 for the case when the metric on X is m. The
distinguished embedding from (9-11) pulls ! back to R�Y0" as a 2–form that can
be written as

(9-18) ! D ds ^ �˘CwC ds ^
@

@s
q C dq ;

with q being an s–dependent 1–form on Y0" . Lemma 9.4 says that the C 1–norms
of @

@s
q and dq on R � Y0 and on the r > �� C

1
2
" part of R � N" are less than

c0hpX i2T �1=2 .

An s– and T –independent open cover of Y0" by balls of radius c�10 " can be used
to write q on Y0 and on the r > ��C 17

32
" part of N" as q0C dk with q0 obeying

jq0j� c0hpX i2T �1=2 and
ˇ̌
@
@s

q0
ˇ̌
� c0hpX i2T �1=2 . Meanwhile, k is a smooth function

with jd.k /j � c0hpX i2T �1=2 . Both q0 and k can be constructed so as to depend
smoothly on s . It follows as a consequence of the bound

ˇ̌
d
�
@
@s

k
�ˇ̌
� c0hpX i2T �1=2
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that an s–dependent constant can be added to k so that the resulting function, k 0 ,
depends smoothly on s and obeys

ˇ̌
@
@s

k 0
ˇ̌
� c0hpX i2T �1=2 .

Reintroduce �? from Part 2 of Section 9.2. The 2–form wC d.�?q0/ is equal to w
on R�Y0 on the r> ��C 3

4
" part of R�N" . Meanwhile, it is equal to wC dq on

the r < ��C 5
8
" part of R�N" . Moreover, the norm of the difference between this

2–form and w on the r>��C 1
2
" part of N" is bounded by c0hpX i2T �1=2 , this being

a consequence of the bounds in the preceding paragraph for q0 .

Of interest in what follows is the 2–form on R�Y0" given by

(9-19) ds ^ bCwC d.�?q0/ with b D �˘C �?
@

@s
q0C d

�
�?

@

@s
k 0
�
:

This is a closed 2–form on R� Y0" which is ds ^ �wCw on R� Y0 and on the
r > �� C 3

4
" part of R �N" . The bounds given above on the norms of k 0 , its s–

derivative, and on the norms of q0 , dq0 and @
@s

q0 imply the following: there exists
c˘>1 such that each s 2R version of the 3–form b^.wCd.�q0// is strictly positive
on Y0" if

(9-20) hpX i2T �1=2 � c�1˘ :

Assume in what follows that this bound holds. Granted (9-20), then Lemma 9.3 supplies
a smooth, s–dependent metric on Y0" with the properties listed below; the notation
uses gX to denote the metric at any given s 2R:

(9-21) � The Hodge star of gX sends wC d.�q0/ to b .

� The metric gX is g� on R�Y0 and on the r> ��C 3
4
" part of R�N" .

� The metric gX is the metric in (9-7) on the r< ��C 5
8
" part of R�N" .

� Given k 2 f1; 2; : : : g, there exists ck > 1 such that the s < �104 and
s > 104 versions of gX and their derivatives to order k � 1 differ by at
most cke�jsj=c0 from the metric g�T on Y� incarnation of N" or gCT on
the YC incarnation as the case may be.

By way of an explanation for the fourth bullet, this follows from (9-19) and the third
bullet of Lemma 9.4 given the following fact: the derivatives to order k of any given
coclosed eigenvector of �d on Y� or YC with L2–norm 1 is bounded by a polynomial
function of the norm of the eigenvalue with coefficients that are determined solely by
the given metric.
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Part 3 Let mT denote the metric on X that is equal to m on the complement of the
image of (9-10)’s embedding and whose pullback to R�Y0" via this embedding is the
metric ds2C gX . This is a smooth metric on X whose pullback by the embeddings
from the second and third bullets of (2-8) converge as s!�1 to the metric ds2Cg�T
and converge as s!1 to the metric ds2CgCT . These pullbacks are also independent
of s for jsj > 104 at points of the form .s; p/ if p is in either Y0 , the r > ��C 3

4
"

part of N" or YM .

Let !T denote the closed 2–form on X given by ! on the complement of the image
of (9-10)’s embedding and whose pullback to R � Y0" via this embedding is the
2–form in (9-19). The 2–form !T is closed. This 2–form is also self-dual when
self-duality is defined by the metric mT , this being a consequence of the first bullet
in (9-21). Let w�T and wCT denote the g�T and gCT harmonic 2–forms with de
Rham cohomology class that of c1.det S/. Use � in what follows to denote either
the g�T – or gCT –Hodge dual. The pullbacks of !T via the embedding from the
second bullet of (2-8) differs from ds ^�w�T Cw�T in the C 1–topology by at most
cT e
�jsj=cT with cT > 1 being a constant. The pullback via the embedding from the

third bullet of (2-8) differs from ds^�wCT CwCT in the C 1–topology by at most cT .
By way of an explanation, these bounds follow from the second and third bullet of
Lemma 9.4. Keep in mind that !T obeys the second and third bullets of (2-8).

Neither !T nor mT is likely to be s–independent where jsj is sufficiently large. This
is a defect that is remedied in Parts 4–7 below.

Part 4 Both w�T and wCT have nondegenerate zeros on the components of Y�
and YC where they are not identically zero, these being the components where c1.det S/

is not torsion. Let Y� � Y� denote such a component and let p 2 Y� denote a zero
of w�T . Let B � Y� denote a small radius ball centered on p with the following
properties: the point p is the only zero of w�T in the closure of B ; and B is disjoint
from Y0 and from the r> ��C 3

4
" part of N" . Since w�T vanishes transversely at p ,

there exists L0>1 such that each s <�L0 version of w�T Cdq vanishes transversely
in the closure of B at a single point. Let ps denote this point. Note in particular
that dist.p; ps/� c�e�jsj=c� . Granted that dist.p; ps/� 1 for s��1, there exists
s0 > 1 such that dist.p; ps/ is less than 1

8
times the radius of B when s � �s0 . This

being the case, there exists L0 > s0 , c� > 1 and a family of diffeomorphisms of Y�
parametrized by .�1;�L0� with the properties in the list that follows. The list uses
‰s to denote the diffeomorphism labeled by a given s 2 .�1;�L0�.

(9-22) � If s > �L0� 1, then ‰s is the identity map.
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� Every s 2 .�1;�L0� version of ‰s is the identity where dist. � ; p/ >
2 dist.p; ps/.

� Every s 2 .�1;�L0� version of ‰s differs from the identity in the C 10–
topology by at most e�jsj=c .

� ‰s.p/D ps when s < �L0� 2.

This family of diffeomorphisms defines a diffeomorphism of X which is the identity
on the s >�L0� 1 part of X, and on the image in X of .�1;�L0�� .Y��Y�/ via
the diffeomorphism in the second bullet of (2-8). This diffeomorphism is defined on the
image of .�1;�L0��Y� via the second bullet of (2-8) by that of .�1;�L0��Y�
that sends a given point .s; q/ to .s; ‰s.q//. Use ‰p to denote this diffeomorphism
of X. Various versions of this diffeomorphism are defined by the zeros of w�T on the
components of Y� where c1.det S/ is not torsion. These diffeomorphisms pairwise
commute. Use ‰ to denote their composition.

Introduce mT0 to denote ‰�mT and !T0 to denote ‰�!T . The 2–form !T0 is
closed and it is self-dual if the notion of self-duality is defined using mT0 . The form
!T0 can be written on .�1;�L0��Y� as ds^ .�w�T C n/C .w�T Cm/, where n
and m have C 1–norm less than c�e�jsj=c� and both vanish on .�1;�1��Y0 and on
the r> ��C 3

4
" part of .�1;�1��N" . By way of notation, c� denotes here and in

what follows a constant that is greater than 1. Its value can increase between successive
appearances. Note that the fact that !T0 is closed requires that dn equals @

@s
m .

The pullback of w�T Cm to each constant s slice of .�1;�1��Y� defines the same
cohomology class as w�T . This implies in particular that m D du with u being an
s–dependent 1–form on Y� . Any s–dependent, closed 1–form can be added to u
without changing du , and this fact is used to choose u so that the conditions that follow
hold:

(9-23) � The 1–form u is zero on Y0 and on the r> ��C 3
4
" part of N" .

� The C 2–norm of u is less than c�e�jsj=c� .

� Let p denote a zero of w�T in .�1;�L0��Y� . Then juj and the norm
of u’s covariant derivative along @

@s
at any s 2 .�1;�L0��Y� is bounded

by c� dist. � ; p/2e�jsj=c� .

To explain how the third bullet can be satisfied, let p again denote a zero of w�T . Use
the metric g�T to construct a Gaussian coordinate chart centered at p so as to identify
B with a small radius ball in R3 . The corresponding coordinate map to R3 is denoted
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by x or .x1; x2; x3/. Write the 2–form !T0 as ds^ .�w�T C n/C .w�T Cm/. The
2–form m appears in these coordinates as

(9-24) m D 1
2
oijxi"jnmdxndxmC � � � ;

where the summation convention over repeated indices is used. The unwritten terms
in (9-24) are O.jxj2/. What is denoted by f"jnmg1�j;n;m�3 is antisymmetric with
respect to interchanging indices and so defined by the rule "123 D 1. Meanwhile,
foij gi;jD1;2;3 are the entries of a traceless, s–dependent matrix whose norm and that
of its s–derivative are at most c�e�jsj=c1 . The matrix is traceless because m is closed.
The fact that this matrix o is traceless implies that m on B can be written as duB
with uB D 1

6
oijxixn"jnmdxmC � � �, where the unwritten terms are O.jxj3/. Since

u�uB D dp on B, it follows that u can be modified with no change near the boundary
of B so that u D uB on a small radius ball in B centered at p .

Part 5 Fix L1 > L0C 1 and let �1 denote the function on R given by �.�L1� s/.
This function equals zero where s < �L1� 1 and it equals 1 when s > �L1 . Use �01
to denote the derivative of �1 . The function �1 and the 2–form !T0 are used next to
define the 2–form on .�1;�L0��Y� to be denoted by !T1 . This 2–form is !T0 on
the s > �L1 part of .�1;�L0��Y� , and it is given where s � �L1 by the formula
that follows for its pullback via the embedding from (2-8)’s second bullet:

(9-25) !T1 D ds ^ .�w�T C�1n C�01u/Cw�T C�1 du:

The 2–form !T1 is a closed 2–form on .�1;�L0��Y� . The remainder of this part
of the subsection and Part 6 describe a metric on the s 2 .�1;�L0��Y� that makes
!T1 self-dual. This new metric is equal to mT0 where s � �L1C 1 and it is equal to
ds2C g�T where s < �L1� 2. This new metric is denoted below by mT1 . The five
steps that follow describe the metric mT1 at points in .�1;�L0�� Y� that project
to Y� near the zero locus of w�T .

Step 1 The 2–form w�T and the 1–form �w�T on B can be written using the
Gaussian coordinates .x1; x2; x3/ on B as

(9-26) w�T D
1
2

Aijxi"jnmdxndxmC � � � and �w�T D Aijxi dxj C � � �

with summations over repeated indices implicit. The various i; j 2 f1; 2; 3g versions of
Aij in (9-26) are the entries of an invertible matrix, this denoted by A . The unwritten
terms in (9-26) vanish to order jxj2 . The fact that w�T is closed implies that A is
traceless and the fact that �w�T is self-dual implies that A is symmetric.
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The unwritten terms in (9-26) are incorporated using the notation whereby w�T and
�w�T on .�1;�L0��B are written as

(9-27) ds ^ .f1ye
1
Cf2ye

2
Cf3ye

3/Cf1ye
2
^ ye3Cf2ye

3
^ ye1Cf3ye

1
^ ye2;

where fyekg1�k�3 denotes a g�T –orthonormal set for T �B with yek D dxkCO.jxj2/
for 1�k� 3 and where ffkg1�k�3 are functions with fkD

P
1�i�3 AikxiCO.jxj2/

for 1� k � 3. Note in particular that these are such that df1^df2^df3> 1
2

det A on a
concentric ball in B centered at the origin. This ball is denoted by B 0. It is assumed in
what follows that L0 is chosen so that !T0 D !T on the complement of a concentric
ball in B 0 with radius one-fourth that of B 0. In particular, it is assumed that (9-22)’s
diffeomorphism ‰s is the identity for all s on a neighborhood in B of B �B 0.

Step 2 The ‰–pullback of fds; ye1; ye2; ye3g is mT –orthonormal. The ‰–pullback
of ds is ds . Meanwhile, ‰ can be chosen so that

(9-28) ‰�yek D yekC
X
1�k�3

pkdsC
X
1�j�3

pkj yej ;

where
P
1�k�3 jp

kj � c�e
�jsj=c� and

P
1�k;j�3 jp

kj j � c�jxje
�jsj=c� when s <

�L0 � 1. This is done by defining (9-22)’s diffeomorphism ‰s using the Gaussian
coordinates in (9-25) by the rule x 7!‰s.x/D xCps at points .s; x/ with jxj< 3

2
jpsj

and s <�L0�1. Use fyeks g1�k�3 to denote f‰�yekg1�k�3 . Granted this notation, the
2–form !0T0 near p can be written as

(9-29) !0T0D ds^ .fs1ye
1
s Cfs2ye

2
s Cfs3ye

3
s /Cfs1ye

2
s ^ye

3
s Cfs2ye

3
s ^ye

1
s Cfs3ye

1
s ^ye

2
s ;

where ffsk D‰
�
s fkg1�k�3 .

Step 3 Introduce feks� D ye
kC�0

P
1�j�3 p

kj yej g1�k�3 . Use this s–dependent basis
to write the (9-25)’s 2–form w�T C�1 du on B 0 as

(9-30) w�T C�1 du D fs�1e
2
s�
^ e3s� Cfs�2e

3
s�
^ e1s� Cfs�3e

1
s�
^ e2s� ;

where ffs�kg1�k�3 are smoothly varying functions of s and the coordinate x with
the property that fs�. � / D f. � / when s <�L1�1 and fs�. � / D fs. � / when s >�L1 .
This depiction can be derived from the fact that ffkg1�k�3 generate C1.B 0/. Note
that fs�k D fk C � � � with the unwritten terms such that their norms are bounded by
c�e
�jsj=c� jxj and such that their first derivatives have norms bounded by c�e�jsj=c� .

This implies in particular that the functions ffs�kg1�k�3 also generate C1.B 0/ and
that dfs�1 ^ dfs�2 ^ dfs�3 > det A on B 0 when L0 > c� .
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The 1–form �w�T C �0n C �00u can be written schematically on .�1;�L0��B 0

using the basis feks�g1�k�3 as

(9-31) �w�T C�0n C�00u D
X

1�k;i�3

fs�kCkie
i
s�
;

with fCkig1�i;k�3 denoting a matrix of smooth functions of s and the coordinate x .
Given that the functions ffs�kg1�k�3 also generate C1.B 0/, such a depiction follows
because both n and u vanish at p . Keep in mind for what follows that the matrix with
coefficients fCkig1�i;k�3 differs from the identity matrix by at most c�e�jsj=c� .

Step 4 A particular set of three smooth functions of s2 .�1;�L0� and the coordinate
x is specified in a moment. Let fqkg1�k�3 denote any given set of such functions.
Use this set to define 1–forms fyeks�g1�k�3 on .�1;�L0��B 0 by the rule

(9-32) yeks� D e
k
s�
� qk ds:

Given the formulas in (9-31) and (9-32), it follows that !T1 on .�1;�L0��B 0 can
be written using fyeks�g1�k�3 as

(9-33) ds ^ .fs�k.Cki C "
kniqn//yeis� C

1
2
fs�k"

knm
yens� ^ ye

m
s�
:

This equation uses the summation convention over repeated indices.

Step 5 The set fqkg1�k�3 is introduced for the following reason: there is a unique
choice for fqkg1�k�3 that makes the matrix with entries fCki C "kniqng1�i;k�3 a
symmetric matrix, this being

˚
qk D 1

2
"kinCni

	
. This choice is used in what follows.

With this choice understood, a metric is defined on .�1;�L0��B 0 by the following
rules:

(9-34) � ds has norm 1 and it is orthogonal to fyeks�g1�k�3 .

� Given .i; k/ 2 f1; 2; 3g, then the inner product between yeks� and yeis� is
Cki C "

kniqn .

The inner product defined by the second bullet is positive definite if L0>c0c� because
of the aforementioned fact that the matrix defined by fCkig1�i;k�3 differs by at most
c�e
�jsj=c� from the identity matrix.

The metric just defined is the metric mT0 when s >�L1 , and it is the metric ds2Cg�T
when s <�L1�1. Moreover, the 2–form !T1 is self-dual on .�1;�L0��B 0 when
self-duality is defined by this metric. Denote this metric by mT1p .
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Let B 00�B 0 denote the concentric ball whose radius is one-half that of B 0. The desired
metric mT1 is defined to equal mT1p on .�1;�L0��B 00.

Part 6 Use U to denote the union of the various versions of the ball B 00. The two
steps that follow directly describe the metric mT1 on .�1;�L0�� .Y��U/.

Step 1 This step describes a metric on .�1;�L0��.Y��U/ to be denoted by mT1˘ .
The metrics mT1 and mT1˘ agree on the product of .�1;�L0� with the complement
in Y� of the union of the various versions of the ball B 0. The definition of this
metric mT1˘ assumes that L0 > c˘ with c˘ such that ! D w�T C �1 du and � D
�w�T C�1nC�01u from (9-25) obey � ^! > 1=c˘ on .�1;�L0�� .Y��U/. The
existence of c˘ follows from (9-23). Let p denote a zero of w�T and let B˘ � B 0

denote the concentric ball whose radius is three quarters that of B 0. Use V to denote
the union of the various versions of B˘ . Invoke Lemma 9.3 on .�1;�L0�� .Y��U/
using ! and � to obtain a smooth family of metrics on Y� � V parametrized by
.�1;�L0� with the properties listed in the upcoming (9-35). The notation uses g˘
to denote any given s 2 .�1;�L0� member of the family. To explain more of the
notation, note first that pullbacks of m and Part 4’s metric mT0 via the embedding
from the second bullet of (2-8) agree on .�1;�L0�� .Y� �U/. In particular, the
pullback of mT0 to this part of .�1;�L0��Y� can be written as ds2C gX with gX
denoting here a smooth, s–dependent metric on Y��U. This metric gX is the metric
g�T on YM �U and it is the metric from (9-19) on Y0" .

(9-35) � Each s 2 .�1;�L1� 1� version of g˘ is g�T and each s 2 Œ�L1;�L0�
version is the corresponding version of gX .

� The gX –Hodge dual of the 2–form w�T C�1 du on Y��V is the 1–form
�w�T C�1n C�01u .

The metric mT1˘ on .�1;�L0� � .Y� � U/ is defined to be ds2 C g˘ . It fol-
lows directly from the second bullet in (9-35) that the 2–form !T1 is self-dual on
.�1;�L0��.Y��V / when the notion of self-duality is defined using the metric mT1˘ .

Step 2 Let p denote a zero of w�T . The metrics mT1˘ and mT1p are both metrics
on .�1;�L0��.B 0�B˘/. The 2–form !T1 is self-dual on .�1;�L0��.B 0�B˘/
when the latter notion is defined by either metric. Use z˘ and zp to denote the
respective mT1˘– and mT1p–norms of !T1 . Since !T1 ^!T1 > c�1� here, there are
!T1–compatible almost complex structures for .�1;�L0��.B 0�B˘/, these denoted
by J˘ and Jp , such that

(9-36) mT1˘ D z
�1
˘ !T1. � ; J˘. � // and mT1p D z

�1
p !T1. � ; Jp. � //:
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As the space of !T1–compatible almost complex structures on .�1;�L0��.B 0�B˘/
is contractible, there exists an almost complex structure with two properties, the first
of which is as follows: The almost complex structure is Jp at points with B 0 �B˘
component in a neighborhood of the boundary of the closure of B˘ , and it is J˘ at
points with B 0 �B˘ component in the B 0 part of a neighborhood of the boundary
of the closure of B 0 in B. To state the second property, keep in mind that J˘ D Jp
in some neighborhood of .�1;�L1 � 1� � .B 0 � B˘/ and also in some neighbor-
hood of Œ�L1;�L0� � .B 0 � B˘/. What follows is the second property: the new
almost complex structure is J˘ and thus Jp in a slightly smaller neighborhood of
.�1;�L1�1��.B

0�B˘/ and Œ�L1;�L0��.B 0�B˘/. Use J� to denote an almost
complex structure of the sort just described.

Fix a smooth, strictly positive function on .�1;�L1� 1�� .B 0�B˘/ that is equal
to z˘ where J� D J˘ and equal to zp where J� D Jp . Denote this function by z� .
Use J� and z� to define the metric mT1 on .�1;�L1� 1�� .B 0�B˘/ by the rule
mT1 D z

�1
� !T1. � ; J�. � //. This metric smoothly extends the metrics defined in Step 1

and in Step 5 of Part 5 and it has all of the desired properties.

Part 7 Let Y� � Y� now denote a component where w�T is identically zero, thus a
component where c1.det S/ is torsion. Suppose that L> 1 has been chosen. Let !T0
now denote the pullback of !T to .�1;�L��Y� via the embedding from the second
bullet of (2-8). It follows from Lemma 9.4 that the C 1–norm of !T0 is bounded by
c0hpX i2e�jsj=c0 . The 2–form !T0 is exact on .�1;�L�� Y� , it can be written as
ds^ @

@s
uCdu with d denoting here the exterior derivative along the constant s slices

of .�1;�L��Y� and with u denoting a smooth, s–dependent 1–form on Y� with
juj, jduj and

ˇ̌
@
@s
u
ˇ̌

bounded by c0hpX i2e�jsj=c0 .

With the preceding understood, fix Ltor >LC 4 and let �� denote the function on R

defined by the rule s 7!�.�LtorC3�s/. This function equals 1 where s>�LtorC3 and
it equals 0 where s <�LtorC2. Use �� to define a self-dual form on .�1;�L��Y�
by the following rules: This form is equal to !T0 on Œ�1;�Ltor C 4;�L� � Y� ,
it is identically 0 on Œ�1;�Ltor� � Y� and it is equal to ��

�
ds ^ @

@s
uC du

�
on

Œ�Ltor;�LtorC 4��Y� . Denote this 2–form by !T1 .

The 2–form !T1 can be written as ds^�w�Cw� with w�Dd.��u/ with it understood
again that d here denotes the exterior derivative along Y� . Let �0� denote the derivative
of the function s 7! ��.s/. The 2–form w� on Œ�Ltor;�LtorC4��Y� can be written
as db with b D �0�uC��u. Note in particular that jbj � c0chpX i2e�jsj=c0 .
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Fix c > 1. The bound just given for jbj leads to the following conclusion: Fix r> 1.
Then jbj � r�10 if Ltor > c0

�
jln.hpX i2/jC ln r

�
.

Part 8 Define the 2–form !T� on the s � 0 part of X as follows: This 2–form is
equal to !T where s 2 Œ�L; 0�. Meanwhile, its pullback to each component of the
s <�1 part of X via the embedding from the second bullet of (2-8) is the corresponding
version of the 2–form !T1 . Modulo notation, what is said in Parts 4–7 can be repeated
for the s > 0 part of X to extend the definition of !T� and the metric mT� to the
whole of X. The form !T� is self-dual if the latter notion is defined by mT� . This
construction has the following additional property: Suppose that pX obeys (9-20). Fix
c > c0 . If r > 1 has been chosen to be greater than a purely c –dependent constant,
then the .LD c; Ltor D c ln r/ version of mT� and !T� obey the constraints given by
(2-9), (2-12), (3-13), (3-14) and the .c; r / version of (3-15). Here, the closed 1–form
�X can be chosen so that it is s–independent and �X D �w˙T over constant s slices
of X where jsj>L� 4. The bounds in items (4)(b), (4)(d) and (5)(c) of (3-15) follow
from the bounds on u in (9-23) and those for b in Part 7 above.

Part 9 The happy conclusions of Part 8 are contingent on the existence of a closed
2–form, pX , on X with the following properties: the de Rham cohomology class of pX
is c1.det S/, it equals w� where s <�102, it equals wC where s > 102, and it obeys
the bound in (9-20).

The subsequent four steps in this part of the subsection construct pX on various parts
of X. These constructions are used in Part 11 and they are also used in the proofs of
Propositions 3.13 and 3.14.

Step 1 This step first states and then proves a lemma that supplies a crucial tool for
what is to come.

Lemma 9.5 Let U denote a 3–manifold and let V � U denote an open set with
compact closure in U. Given the data set consisting of U, V and a Riemannian metric
on U, there exists � > 1 with the following significance: Let u denote a closed , exact
2–form on U. There is a 1–form on U, this denoted by q , with

R
V jq j

2 � �
R
U juj

2

and such that dq D u .

To set the notation used below, the L2–norm of a function or differential form over a
given set W � U is denoted by k � kW .

Proof The set V has a finite cover by Gaussian coordinate balls with centers in U
with the property that the mutual intersection of balls from this cover is either empty or
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convex. This cover can also be chosen so that each ball has the same radius and such
that no ball intersects more than c0 others. The minimal number of balls in such a
cover, their common radius and the combinatorial properties of the mutual intersections
are determined a priori by U, V and the metric. Let U denote such a cover and let �
denote the radius of its constituent balls.

Let B 2 U. The fact that B is convex can be used to write u on B as u D dqB with
kqBkB�c0�kukB . Let B and B 0 denote two sets from U. Then dqB�dqB 0D0 on their
intersection, and so qB�qB 0DdkBB 0 with kBB 0 being a function on B 0\B. It follows
that kdkBB 0kB 0\B � c0�.kukB CkukB 0/. Changing kBB 0 by a constant if needed
produces a version with kkBB 0kB\B 0 � c0�kdkBB 0kB 0\B and thus kdkBB 0kB 0\B �
c0�

2.kukB CkukB 0/.

Now suppose that B, B 0 and B 00 are from U with a point in common. Let cBB 0B 00 denote
kBB 0CkB 0B 00CkB 00B . This cBB 0B 00 is constant and the collection of such numbers is a
Čech cohomology cocycle whose cohomology class gives the class of u via the de Rham
isomorphism. It follows that this cocycle is zero, and so cBB 0B 00 D cBB 0CcB 0B 00CcB 00B
with each term being constant. Noting that jcBB 0B 00 j � c0��1.kukBCkukB 0CkukB 00/,
it follows that jcBB 0 j � c���1 supB 002U WB 00\B 0\B¤∅.kukB C kukB 0 C kukB 00/ with
c� � 1 determined a priori by the combinatorics of the cover U.

Let f�BgB2U denote a partition of unity subordinate to the cover U. Note that these
functions can be chosen so that jd�B j � c0��1 . Define now a 1–form q on B by the
rule q jB D qBCd

�P
B 0 �B 0.kBB 0� cBB 0/

�
. This defines a smooth 1–form on V with

dq D u and with kqkV � c��kukU .

Step 2 The lemma that is stated and then proved in this step makes the first application
of Lemma 9.5.

Lemma 9.6 There exists � > 0 with the following significance: Fix k 2 f0; : : : ; Gg

and then T > 1 so as to define MetT on Yk . Let g denote a MetT metric on Yk and
let wg denote the corresponding harmonic 2–form whose de Rham cohomology class
is that of c1.det S/. The 2–form wg on the r 2

�
���

1
16
"; ��C

1
128
"
�

part of N" can
be written as dq with q being a 1–form whose L2–norm on this part of N" is bounded
by �=T times that of wg .

Proof The metric on the r 2
�
�� �

1
8
"; ��C

1
64
"
�

part of N" is the metric given by
(9-7) with �T D �=T and with x3T D x3=T . The functions K and h are smooth
around �D 0 with h.0) and K.0/D 1. It follows as a consequence that the metric in
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the region of interest when written using �T and xT is uniformly close for T > c0
to the Euclidean metric on the part of the radius

�
��C

1
64
"
�
=T ball about the origin

in R3 that lies outside the concentric ball of radius
�
���

1
8
"
�
=T . Take this to be the

region U for Lemma 9.5 and take V to be the part of this same ball where the radius
is between

�
���

1
16
"
�
=T and

�
��C

1
128
"
�
=T . A cover U can be found as in the proof

of Lemma 9.5 with a T –independent bound on the number of sets, a T –independent
combinatorial structure to the intersections between them, and a common radius for
the balls, c0 . This can be done because the T –dependence is just given by scaling
the coordinates. Granted all of this, then the claim by the lemma follows by appeal to
Lemma 9.5.

Step 3 This step supplies a part of what will be pX on the s 2 Œ�102;�101� part
of X when Y� is a k 2 f0; : : : ; Gg version of Yk , and on the s 2 Œ100; 102� part of X
when YC is a k 2 f0; : : : ; Gg version of Yk . The constructions that follow use the
embeddings from the second and third bullets of (2-8) to view the s < 0 and s > 0
parts of X as .�1; 0/�Y� and as .0;1/�YC .

Let �˘1 denote the function on R given by the rule �.jsj�101/. Denote its derivative
by �0

˘1 . This function is equal to 0 where jsj�102 and it is equal to 1 where jsj�101.
Use � to construct a smooth function on N" that equals 0 where jr� ��j> 1

128
" and

equals 1 where jr� ��j< 1
256
". Construct this function of r so that its derivative is

bounded by c0 . Use �1 to denote this new function of r .

If Y� is a k 2 f0; : : : ; Gg version of Yk , let q1� denote the wgDw� version of q that
is given by Lemma 9.6. Define pN1 where s 2 Œ�102;�101� to be

(9-37) pN1 D�ds ^�0˘1�1q1�Cw���˘1d.�1q1�/:

This is a closed form with de Rham cohomology class that of c1.det S/ and it equals w�
where s ��102. Of particular note is the fact that pN1D 0 on the jr���j< 1

256
" part

of N" where s >�101 and that it equals w� on the complement of the jr���j< 1
128
"

part of N" . It follows from Lemma 9.6 that the L2–norm of pN1 at any given
s 2 Œ�102;�101� is bounded by c0 times that of w� .

If YC is a k 2 f0; : : : ; Gg version of Yk , then very much the same formula defines
an s 2 Œ101; 102� analog to pN1 . The latter is obtained by using Lemma 9.6 with
wgDwC . Lemma 9.6 supplies a 1–form q1C with dq1CDwC on the jr���j< 1

128
"

part of N" . Use wC and q1C in (9-37) in lieu of w� and q� to define pN1 where
s 2 Œ101; 102�.
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3714 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

Step 4 This step extends the definition of pN1 to the s 2 Œ�101;�100� part of X
when Y� is a k 2 f0; : : : ; Gg version of Yk , and to the s 2 Œ100; 101� part of X when
YC is a k 2 f0; : : : ; Gg version of Yk . The embeddings from the second and third
bullets of (2-8) are again used to view the s < 0 and s > 0 parts of X as .�1; 0/�Y�
and as .0;1/�YC .

The extension of pN1 uses the function �˘2 on R that is given by �.jsj � 100/. The
latter function is 0 where jsj � 101 and it is equal to 1 where jsj � 100. The derivative
of �˘2 is denoted by �0

˘2 . Reintroduce the closed 2–form p0 from Step 1 of the proof
of Lemma 9.1. By way of a reminder, this 2–form has compact support on Y0 , and it
has integral 2 over each cross sectional 2–sphere in H0 .

Suppose that Y� is a k 2 f0; : : : ; Gg version of Yk . The extension of pN1 will equal
pN1 on the complement in Y� of the union of Y0 and the r� ��C 1

512
" part of N" .

Lemma 9.5 is used in a moment to obtain a 1–form to be denoted by q2� with the
following properties: the 1–form q2� has compact support on Y0 and the r���C 1

512
"

part of N" , its exterior derivative is wg D w� � p0C d.�1q1�/, and its L2–norm is
bounded by c0 times that of w� . Granted such a 1–form, the extension of pN1 is
given by

(9-38) pN2 D�ds ^�0˘2q2�Cw�� d.�1q1�/C�˘2 dq2�:

This is a closed 2–form that equals pN1 where s ��101 and for all s 2 Œ�101;�100�
on the complement of Y0 and the r� ��C 1

512
" part of N" . This 2–form for s��100

is equal to p0 on Y0 and the r� �� part of N" .

The application of Lemma 9.5 takes U D V D S1 � S2 . The diffeomorphism ˆT

in Part 6 of Section 9.1 is used to view p0 � .w� � d.�1q1�// as a smooth 2–form
on S1 � S2 , and viewed as such, Lemma 9.5 is applied using this 2–form for wg .
Lemma 9.5 then finds a 1–form, q , on S1 � S2 with dq D p0 � .w� � d.�1q1�//
and with L2–norm bounded by c0 times the L2–norm of w� on Y� . The next two
paragraphs explain how to obtain q2� from q .

View p0�.w��d.�1q1�// as a 2–form on S1�S2 as done in the preceding paragraph.
As explained in Part 4 of Section 9.1, the coordinates .�; �; x3/ for N" can be viewed
where r � ��C 1

16
" as coordinates for a ball of this same radius in S1 � S2 . The

2–form p0�.w��d.�1q1�// vanishes on the concentric ball of radius
�
��C

1
256
"
�
=T .

It follows as a consequence that q can be written as dk with k being a smooth function
on this ball. Since the L2–norm of dk on this ball is bounded by c0 times the L2–norm
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of w� over Y� , it follows that k can be modified by adding a constant if necessary
so that its L2–norm over this ball is bounded by c0=T times the L2–norm of w�
over Y� .

Use � to construct a smooth function of the radial coordinate on this ball with compact
support that equals 1 on the concentric ball of radius

�
��C

1
512
"
�
=T . In particular,

such a function can be constructed so that the absolute value of its derivative is bounded
by c0T . Let �2 denote such a function and define q� to be q � d.�k /. This 1–form
has the same properties as q but it is zero on the complement of the image of the
embedding ˆT from Part 6 of Section 9.1. The desired 1–form q2� is ˆ�T q� .

If YC is a k 2 f0; : : : ; Gg version of Yk , then there is an analogous construction that
defines pN2 on the s 2 Œ100; 101� part of X. The formula for the latter is given by
replacing w� , q1� and q2C by wC , q1C and a 1–form, q2C , that is defined by the
rules given in the preceding paragraph with wC and q1C used in lieu of w� and q1� .

Part 10 Constructions in Part 11 and in the proof of Proposition 3.13 require a
particular choice for the metric m on certain parts of X. The constraint given in a
moment holds on the s 2 Œ�100;�96� part of X when Y� is a k 2 f0; : : : ; Gg version
of Yk , and it holds on the s 2 Œ96; 100� part of X when YC is a k 2 f0; : : : ; Gg version
of Yk .

The statement of the constraint uses the embeddings from the second and third bullets
of (2-8) to view the s < 0 and s > 0 part of X as .�1; 0��Y� and as .0;1/�YC .
Viewed this way, the constraint on the metric m involves only the r 2

�
���

15
16
"; ��

�
parts of Œ�100;�96� � N" and Œ96; 100� � N" . To define m on these parts of X,
construct a smooth, nondecreasing function on R to be denoted by T˘ : This function
equals T where jsj � 99 and it equals 1 where jsj � 98. The ubiquitous function �
can be used to define this function T˘ . Reintroduce the metric gT on N" that is defined
in Part 5 of Section 9.1. The assignment s 7! gT˘ defines a 1–parameter family of
metrics on N" with parameter space either Œ�100;�96� or Œ96; 100� as the case may
be. The jsj D 100 end member of this family is gT and the jsj D 96 member is the
metric in (9-6).

Use � to construct a smooth function of the coordinate r on N" that is equal to 1
where r < �� � 1

1024
" and equal to 0 where r > �� � 1

2048
". Use �� to denote this

function.

The metric m is constrained by requiring that its pullback to Œ�100;�96��N" via
the embedding from the second bullet of (2-8) or to Œ96; 100��N" via the embedding
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from the third bullet of (2-8) to be the metric

(9-39) ds2C ��gT˘ C .1� ��/gT :

Note in particular that this metric smoothly extends ds2C gT near jsj D 100 and it
smoothly extends ds2C gT from the r� ��� 15

16
" part of N" for all s in the relevant

interval.

An important observation is given in a moment about the versions of the L2–norm of
w��d.�1q1�/ on the r� ��� 1

512
" part of N" . Keep in mind in what follows that this

2–form is zero on the r> ��� 1
256
" part of N" . Given s 2 Œ�100;�96�, the notation

uses kw�� d.�1q1�/ks to denote the version of the L2–norm of w�� d.�1q1�/ on
the r<��� 1

512
" part of N" . There is the analogous definition for kwC�d.�1q1C/ks

when s 2 Œ96; 100�. Here is the key observation:

(9-40) � Each s 2 Œ�100;�96� version of kw� � d.�1q1�/ks is bounded by c0
times the L2–norm of w� on Y� .

� Each s 2 Œ96; 100� version of kwC� d.�1q1C/ks is bounded by c0 times
the L2–norm of wC on YC .

To see about (9-40), write any s 2 Œ�100;�96� or s 2 Œ96; 100� version of gT˘ at any
given point in the r< ��� 1

512
" part of N" as

(9-41) gT˘ D �1ye
1
˝ye1C�2ye

2
˝ye2C�3ye

3
˝ye3

with �1 , �2 and �3 being positive numbers and with fyekgkD1;2;3 being a gT –
orthonormal frame. It follows from (9-7)–(9-9) that each �k can be written as
.T=T˘/

2ek , where the numbers e1 , e2 and e3 are such that c�10 � e1; e2 � c0 and
c�10 � e3 � c0.T=T˘/2 . It follows from this that the volume form of the metric
is less than c0.T=T˘/4 times that of gT . It also follows from this that the square
of the gT˘ –norm of w� � d.�1q1�/ is less than c0.T=T˘/4 times the square of its
gT –norm. These last two observations imply that the integrand whose integral gives
kw�� d.�1q1�/k2s is no greater than c0 times the integrand whose integral computes
the square of the gT version of the L2–norm of w��d.�1q1�/. This last fact implies
directly the first bullet of (9-40). But for replacing � subscripts with C subscripts, the
same argument proves the second bullet of (9-40).

Part 11 This part of the subsection completes the proof of Proposition 3.11. According
to Part 8, it is sufficient to find the closed 2–form pX with certain special properties.
This is done given two more constraints on m. The first constraint affects m only on the
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jsj 2 Œ96; 100� part of X. The statement of this uses the embeddings from the second
and third bullets of (2-8) to view the s < 0 and s > 0 parts of X as .�1; 0��Y� and
as .0;1/�YC :

(9-42) The metric m on Œ�100;�96� � YM is the product metric ds2 C g� when
Y� D Y0; and when YC D Y0, the metric m on Œ96; 100��YM is the product
metric ds2C gC.

To state the second constraint, reintroduce from Part 7 of Section 9.1 the set ‚ and
the associated collection fTg.;Z /2‚ of subsets of Mı . The following observation
views them as subsets of Y0 and M :

There exists an embedding of R � .
S
.;Z /2‚

T / into X with the following two
properties:

(9-43) � The function s on X pulls back via the embedding to its namesake on the
R factor of R�

�S
.;Z /2‚

T
�
.

� The composition of this embedding of the jsj>1 part of R�
�S

.;Z /2‚
T
�

with the inverse of the embeddings from the second and third bullets of
(2-8) is the tautological inclusion map.

The existence of such an embedding is implied by what is said in the first paragraph of
this section about the ascending and descending manifolds from the critical point of s .
The second constraint uses m� and mC to denote the metrics ds2Cg� and ds2CgC
on the product R�

�S
.;Z /2‚

T
�
.

(9-44) There exists a T –independent constant, c�>1, with the following significance:
The pullback of m via the embedding in (9-43) obeys c�1� m� � m � c�m�
and c�1� mC �m� c�mC.

Granted these constraints, the three steps that follow construct pX when Y� D Y0 .
The construction when YC D Y0 is not given as it has the identical description but for
changes of � to C in various places.

Step 1 Define pX on the s 2 Œ�102;�101� part of X to be pN1 and define pX on
the s 2 Œ�101;�100� part of X to be pN2 . The rest of this step extends the definition
of pX to the s 2 Œ�100;�98� part of X. To this end, use the embedding from the
second bullet of (2-8) to view this part of X as Œ�100;�98��Y0 .

The 2–form pN2 near s D �100 is the s–independent 2–form on Y0 given by p0
on Y0 and w�� d.�1q1�/ on the rest of Y0 . This understood, pX is extended to the
s 2 Œ�100;�98� part of X as this s–independent 2–form on Y0 .
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Write the metric m appearing on Œ�100;�98�� Y0 as ds2C g with g denoting an
s–dependent metric on Y0 . The constraint in (9-42) asserts that g D g� on YM .
Meanwhile, g is Part 9’s metric on the r< ��� 1

512
" part of N" . It therefore follows

from (9-40) that the L2–norm of pX on Y as defined by any s 2 Œ�100;�98� version
of g is bounded by c0 .

Step 2 This step extends the definition of pX to the s 2 Œ�98;�96� part of X. To
do this, view the s 2 Œ�98;�96� part of X as Œ�98;�96�� Y0 as in Step 1. Keep in
mind for what follows that the metric m here has the form ds2C gM with gM being
an s–independent metric on Y0 . Note in particular that gM D g� on YM and it is the
metric that is depicted in (9-6) on the r� ��� 1

1024
" part of N" .

Lemma 9.5 is invoked in a moment to construct a 1–form on the union of YM and the
r< �� part of N" , with the three properties listed in a moment. The list of properties
denotes the 1–form by q3� and it reintroduces the 2–form p from Part 7 of Section 9.1.
Here are the three properties: The 1–form q3� obeys dq3� D p�w�C d.�1q1�/, it
vanishes on the r� ��� 1

512
" part of N" , and its L2–norm as defined by the gM is

bounded by c0 times the L2–norm of w� on Y .

Let �˘3 denote the function on R given by �.jsj � 97/. The function �˘3 equals 0
where jsj � 98 and it equals 1 where jsj � 97. Introduce �0

˘3 to denote its derivative.
The 2–form pX on the s 2 Œ�98;�96� part of X is p0 on Y0 and it is given on the
rest of Y0 by

(9-45) ds ^�0˘3q3�Cw�� d.�1q1�/C�˘3 dq3�:

Of particular note is that the m version of the L2–norm of the 2–form pX on
Œ�98;�96� � Y0 is bounded by c0 . What follows is a key point to keep in mind
for Step 3: the 2–form pX on Œ�97;�96��Y0 is the 2–form p0C p from Y0 .

Lemma 9.5 is invoked using for the set U the union of YM and the r<��� 1
1024

" part
of N" . Lemma 9.5’s set V is the union of YM and the r< ��� 1

512
" part of N" . The

2–form wg is p�w�Cd.�1q1�/. Note that this 2–form is zero on the r> ��� 1
256
"

part of U. The metric used for the lemma is the metric gM . It follows from (9-40)
and (9-42) that the L2–norm of p �w�C d.�1q1�/ as defined by gM is bounded
by c0 . As neither U, V nor gM depend on T , Lemma 9.5 finds a 1–form q on U
with dq D p �w�C d.�1q1�/ whose L2–norm on V is bounded by c0 . To obtain
q3� from q , note that q on the r > �� �

1
256
" part of N" is given by dk with k

denoting a smooth function. Changing k by a constant if necessary supplies a version
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whose L2–norm is bounded by c0 times that of dk ; thus by c0 . Take such a version.
Meanwhile, use � to construct a smooth function of r on N" that equals 0 where
r � ��� 1

512
", equals 1 where r� ��� 1

256
" and whose derivative has norm bounded

by c0 . Denote this function by �3 and set q3� D q � d.�3k /.

Step 3 This step extends the definition of pX to the s 2 Œ�96; 102� part of X. To
this end, consider first the definition of pX on the s 2 Œ�96; 100� part of X. As p0 is
supported in the image of the embedding from (9-10) and as the 2–form p is supported
in the image of the embedding from (9-43), these embeddings can be used to view
p0Cp as a 2–form on the s 2 Œ�96; 100� part of X. View them in this light and define
pX on this same part of X to be p0C p . The constraint in (9-44) has the following
implication: the L2–norm of pX on the s 2 Œ�96; 100� part of X is bounded by c0 .

The definition of pX on the s 2 Œ100; 102� part of X views this part of X via the
embedding from the third bullet of (2-8) as Œ100; 102�� .M t .S1�S2//. The 2–form
p0 on S1 �S2 can be written as wC dq0 with q0 being a smooth 1–form. Likewise,
the 2–form p on M can be written as wCjM C dqM with qM denoting a smooth
1–form. Set q4C D q0C qM . Let �˘4 denote the function on R given by �.s� 100/.
This function �˘4 is equal to 1 where s < 100 and it is equal to 0 where s > 101.
Use �0

˘4 to denote its derivative.

Define pX on the s 2 Œ100; 102� part of X to be the 2–form

(9-46) ds ^�0˘4q4CC p0C p��˘4 dq4C:

This form is closed, and it extends pX as a 2–form that equals wC where s > 101. Of
particular note is that the L2–norm of pX on the s 2 Œ100; 102� part of X is bounded
by c0 .

9.5 Proof of Proposition 3.13

The proof of this proposition has two parts. Of the two possible cases, only that where
Y� D Yk and YC D Yk�1 t .S1 � S2/ is discussed as the case when the roles are
switched is proved with the same argument but for changing the direction of various
inequalities and signs that involve s .

Part 1 of what follows proves the first bullet of Proposition 3.13. Part 2 of this subsection
addressses the assertion in the second bullet and, in doing so, defines implicitly the
required subset Met.Yk/. To make the definition only slightly less implicit, return
momentarily to what is said about Met just prior to Part 1 of Section 9.4. By way of a
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reminder, each metric in Met is determined in part by a metric from the Y0 version
of Section 9.1’s set MetN and a sufficiently large choice for a number denoted by T .
A lower bound on T is determined by certain properties of the chosen MetN metric.
This said, a metric from Met is in Proposition 3.13’s subset Met.Yk/ if and only if
the chosen value for T is larger than a new lower bound. This new lower bound is
determined in part by the same properties of the chosen MetN metric that determine the
Met.Y0/ lower bound. The chosen metrics on the S1�S2 components also determine
in part the lower bound for T . By the way, no generality is lost by taking the metrics
on these components to be the product of the standard Euclidean S1 and the standard
round metric on S2 . In any event, this new lower bound is determined implicitly by
the constructions in Part 2.

Part 1 This part discusses the first bullet of the proposition. The notation used below
is that used to describe Y and its geometry in [19; 20; 21; 22]. In particular, the
manifold Y and its 2–form w are described in Section II.1. A summary of the salient
features can be found in Section IV.1.1. The notation used below is the same as that
used in Sections II.1 and IV.1.1.

To set the stage, label the G pairs in the set ƒ as fp1; : : : ; pGg. A k 2 f1; : : : ; Gg

version of the manifold Yk is obtained from Y0 by attaching k 1–handles, these being
the handles from the set fHpgp2fp1;:::;pkg . Thus, Yk is obtained from Yk�1 by attaching
just the handle Hpk . By way of a short review, Y is obtained from Y0 by a surgery
that attaches G 1–handles to Y0�H0 . The attaching region of each handle are disjoint
coordinate balls centered around a pair of points in Y0�H0 . The set of such pairs is
denoted by ƒ. The 1–handle that corresponds to a given pair p 2ƒ is denoted by Hp .
The geometry of Yk near Hpk is as follows: The handle Hpk is diffeomorphic to
Œ�R� 7 ln ı�; RC 7 ln ı���S2 given by the preferred coordinates .u; .�; �// with u
denoting the Euclidean coordinate for interval factor and with .�; �/ denoting spherical
coordinates on the constant u cross-sectional spheres of Hpk . The handle is attached
to Yk�1 using the identifications given in (3-3) with it understood that .rC; .�C; �C//
and .r�; .��; ��// are certain preferred spherical coordinates for respective balls about
the two points that form the pair pk .

The definition of X requires choosing a properly embedded arc in the YM part of Yk�1 .
The arc has one endpoint at one of the points in pk and the other endpoint at the other.
This arc intersects a neighborhood of the boundary of the radius 7ı� coordinate ball
centered at the points from pk as a ray from the origin when viewed using the coordinate
system that is specified in Section II.1A. Part 7 of Section 9.1 introduces a finite set of
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pairs ‚ in Mı with one partner in each pair being an embedded loop in Mı . Part 7
of Section 9.1 associates each such loop a small radius tubular neighborhood, this
being T when  is the loop in question. The arc must be chosen so as to lie in the
complement of the closure of all such tubular neighborhoods. The arc can and should
be chosen to intersect the f D 3

2
Heegaard surface in Mı transversely in a single point.

Denote this arc by �pk .

Let Spk �YM denote an embedded 2–sphere boundary of neighborhood of the arc �pk
with each point having distance between 2ı and 4ı from the arc. The neighborhood in
question and S DSpk should be disjoint from the closures of the tubular neighborhoods
of the loops from ‚. The sphere S appears in Yk as an embedded 2–sphere that
separates Yk into two components. One of these contains Hpk and is diffeomorphic to
the complement in S1 �S2 of an embedded ball.

The following is a consequence of what is said above about the descending and ascending
submanifolds from the critical points of s : the pseudogradient vector field that defines
the embeddings from the second and third bullets of (2-8) can be chosen so that (3-11)
are obeyed and likewise (3-12) and the conditions in (9-10) and (9-43). These properties
are assumed in what follows. The condition for the first Chern class is satisfied if and
only it has zero pairing with the cross-sectional 2–spheres in each p 2 fp1; : : : ; pk�1g

version of the Yk�1 version of Hp and annihilates the generator of H2.S1 �S2IZ/.

Part 2 Proposition 3.13 requires as input a metric from a certain subset of a set of
metrics on Yk�1 that is denoted by Met.Yk�1/ and a metric from a set of metrics
on Yk , this denoted by Met.Yk/. These subsets of metrics are in the respective Yk�1
and Yk versions of Met . They are defined roughly as follows: Let Y� for the moment
denote either Yk�1 or Yk . Each metric in the Y� version of Met is determined in part
by a metric from the corresponding version of MetN , this defined in Section 9.1. The
second input for the definition is a large choice for the parameter T . A metric in Met
of this sort is denoted in Section 9.2 by g3T . A Y� metric g3T is in Met.Y�/ if T is
greater than a certain lower bound that is determined implicitly by the chosen MetN
metric. As in the case of Proposition 3.13’s implicit definition of Met.Y0/, this lower
bound is determined implicitly by the requirements of subsequent constructions. In
any event, it is determined by certain curvature norms, injectivity radius lower bounds
and volume.

The construction of a suitable metric on X starts by choosing metrics g1� and g1C
from the respective Y� and YC versions of MetN . This done, use what is said in Parts
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1–10 of Section 9.4 to define a metric mT� and self-dual 2–form !T� on X. It then
follows from what is said in Part 8 and at the start of Part 9 of Section 9.4 that the pair
mT� and !T� satisfy the requirements of Proposition 3.13 if there exists a suitable
closed 2–form pX on X with the following properties: The de Rham cohomology
class of pX is that of c1.det S/. In addition, pX must equal w� where s < �102
and wC where s > 102 with w� and wC being the respective g� and gC harmonic
2–forms on Y� and YC with de Rham cohomology class that of c1.det S/.

The construction of pX in this case differs in only one respect from the construction
described in Parts 9–11 of Section 9.4, this involving Step 3 in Part 11 of Section 9.4.
To say more about this difference, require as in Part 11 of Section 9.4 that the metric m

obey (9-42). Require in addition that (9-43) is obeyed; as noted in Part 1 above, such a
requirement can be met. With (9-43) understood, the metric m is chosen so as to obey
the constraints in (9-44). Proceed with the constructions in Steps 1 and 2 of Part 11 in
Section 9.4. Step 3 in Part 11 of Section 9.4 is replaced with the following Step 30 :

Step 30 Define pX on the s 2 Œ�96; 96� part of X by viewing p0C p as a 2–form
on this part of X via the embeddings in (9-10) and (9-43). The constraint in (9-44)
implies that such a definition yields a version of p with L2–norm bounded by c0 on
the s 2 Œ�96; 96� part of X. Extend pX to the Œ96; 102� part of X by copying almost
verbatim what is done in Steps 1 and 2 with the direction of s reversed and with the
metric gC in (9-42) used in lieu of g� .

9.6 Proof of Proposition 1.5

This subsection provides a proof of Proposition 1.5 and thus completes the proof of
Theorem 1.4.

Explicit formulas for the differentials and A�.Y /–actions on the chain complex used to
define echı are given in Theorem 1.1 of [21]. These formulas were also written in terms
of a factorization of A�.Y / into a tensor product A�.M/˝H��.S

1/˝H��.S
1/˝G ,

which is however different from that in (1-8), the factorization used in the statement
of the proposition. The difference originates from a different choice of splitting for
H1.Y IZ/=Tors from that in (1-4).

In [21], an “M –adapted 1–cycle basis” is assigned to H1.Y IZ/=Tors, whose basis
elements are represented by “M –adapted 1–cycles” in Y . Each “M –adapted 1–cycle”
is of one of the following three types:

� O{.z/ for every z 2 U � z0 ;
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�  .z0/ ; and

� O{p for each p 2ƒ.

Decompose H1.Y IZ/=Tors accordingly into

(9-47) H1.Y IZ/=Tors'H1.M IZ/=Tors˚H1.S1�S2IZ/˚
M
p2ƒ

H1..S
1
�S2/pIZ/

with the first, second, and third summand generated by the ordered sets fŒO{.z/�gz2U�z0 ,
fŒ .z0/�g and fŒO{p�gp2ƒ , respectively.

On the other hand, in Section 1.1 we split H1.Y IZ/=Tors differently using a connected-
sum decomposition of Y . Namely, by combining (1-2) and (1-4) we get another splitting

(9-48) H1.Y IZ/=Tors

'H1.M IZ/=Tors˚
M
p2ƒ

H1..S
1
�S2/pIZ/

'H1.M IZ/=Tors˚H1.S1 �S2IZ/˚
M
p2ƒ

H1..S
1
�S2/pIZ/:

Note that the preceding splitting (9-48) depends on the relative homology class of the
chosen arcs z and �p . The summands from this splitting are generated by elements
in H1.Y IZ/=Tors represented by the following sets of 1–cycles in Y :

� For the first summand H1.M IZ/=Tors, b1.M/ 1–cycles from the M –summand
of the connected sum decomposition Y 'M #GC1 .S

1�S2/, so that as 1–cycles
in M they avoid all the arcs z and �p and their homology classes together
form an (arbitrary) basis for H1.M IZ/=Tors. For example, the set of 1–cycles
fŒO{.z/�gz2U�z0 is a possible choice.

� For the second summand H1.S1 �S2IZ/, the cycle coming from the 1–cycle
 in the M –summand of the connected sum Y 'M #G .S

1 �S2/. (This cycle
in Y was called  .z0/ in [21].)

� For each H1..S1�S2/pIZ/–summand in
L

p2ƒH1..S
1�S2/pIZ/, a 1–cycle

�p � Y constructed from the arc �p �M in Part 1, in a way parallel to the
construction of  .z0/ or  from z �M.

Here is a more precise description of the cycles �p . For pD pk with k D 1; : : : ; G , let
�pk be a 1–cycle in Yk characterized by the properties listed below. Recall the sphere
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Spk from Part 1. Let Nk;" denote the version of N" from Part 4 of Section 9.1 when
the sphere S therein is set to be Spk . Then

� on Yk �Nk;" , �pk agrees with �pk [ O{pk ;

� on Nk;" , �pk is transverse to the spheres f�g � S2 for all � 2 I under the
identification Nk;" ' I �S2 in Part 4 of Section 9.1.

Recall that YkC1; : : : ; YG D Y are constructed from Yk by iteratively connected sum-
ming with S1 �S2 , and thus they all contain a 1–cycle inherited from the �pk � Yk
described above. We use the same notation �pk for all such cycles in YkC1; : : : ; YGDY .

With the above understood, the splitting (9-47) adopted in [21] is related to the splitting
(9-48) used in this article’s Section 1.1 via a transformation matrix of the block form

(9-49)

24 X 0 0

0 Id 0

Y E1 Id

35 ;
where E1 denotes a row vector of all entries 1, X is an automorphism of H1.M IZ/=Tors,
and Y depends on the relative homology classes of �p ’s. One may choose the arcs �p
so that the entry Y vanishes. Such a choice of the �p is adopted in this article.

Use .C ıech; @ech/ to denote the underlying chain complex of echı , and let .CFı; @HF/

be the Heegaard Floer complex. In [21]’s notation, the chain module C1ech is generated
by the set yZech;M , which is a Z–bundle over the set Zech;M . The latter is written
in [21, (1-10)] as a product of ZHF , the generating set for the Heegaard Floer chain
module cCF, and for each p 2ƒ, a copy of Z� O . This can be used to write the ech
chain module C ıech as a tensor product of CFı and, for each p 2 ƒ, a polynomial
algebra Cp D ZŒ�p; ��1p ; yCp ; y

�
p �. Here, �p is an even variable and corresponds to the

generator 1 2 Z of the first factor in Z� O , and yCp and y�p are odd variables such
that the polynomials 1, yCp , y�p and yCp y

�
p D�y

�
p y
C
p correspond respectively to the

elements 0, 1, �1 and f1;�1g of O in [21]’s notation.

Recall that a U –map on the ech–chain complex C ıech , and for each M –adapted 1–
cycle y , a map we shall denote by ty , were defined in [20, Appendix; 21, Section 1].
Together they define the A�.Y /–action on echı .

Stated in the language of this article, Theorem 1.1 of [21] asserts the following, with
respect to the aforementioned decomposition of the chain module

(9-50) C ıech ' CFı˝
O
p2ƒ

Cp W
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� .C ıech; @ech/ is the product complex of the Heegaard Floer chain complex
.CFı; @HF/ and for each p 2ƒ, the chain complex

.Cp; @p/ WD .ZŒ�p; �
�1
p ; yCp ; y

�
p �; .1C �p/.@yCp

C ��1p @y�p //;

where �p has degree 0 and yCp and y�p both have degree 1. Note that the
homology H.Cp; @p/ has two generators, one of degree 0 and the other of
degree 1, and they are respectively represented by the elements 1 and yCp ��py

�
p

in the polynomial algebra ZŒ�p; ��1p ; yCp ; y
�
p �.

� The U –map on C ıech acts only on the CFı factor, namely UechDUHF˝
N

p2ƒ Id,
and the map UHF on CFı induces the U –action on HFı .

� The t.z0/ –action on C ıech likewise has the form t
.z0/
HF ˝

N
p2ƒ Id under the

decomposition (9-50).

� The tO{.z/ –action on C ıech has the form t
.z/
HF ˝

N
p2ƒ Id under the decompo-

sition (9-50), and the map t
.z/
HF induces the action of ŒO{.z/� 2 H1.Y IZ/=Tors

on HFı .

� For pDpk with kD1; : : : ; G , the tO{p –action on C ıech is the tensor product of @
y
C
p

on the Cp factor, and Id on all other factors of C ıech . Note that with @yCp identified
as the generator of the algebra H��.S1/'ZŒ@

y
C
p
�'

V�
H1..S

1�S2/pIZ/, the
homology H.Cp; @p/ is identified with the module H�.S1/ with the standard
H��.S

1/–action.

View HFı as a module over A�.M/˝
V�
H1.S

1�S2IZ/ with the
V�
H1.S

1�S2IZ/

factor part of the action generated by the induced map from t
.z0/
HF in the fourth bullet

above. It follows that there is an isomorphism between echı and HFı�H�.S1/�G as
modules over

.A�.M/˝H��.S
1//˝H��.S

1/˝G:

Here, the .A�.M/˝H��.S
1//˝H��.S

1/˝G –module structure on echı comes from
the decomposition (9-47) to identify A�.Y / with

A�.Y /'icycle

�
A�.M/˝

V�
H1.S

1
�S2IZ/

�
˝

O
p2ƒ

V�
H1..S

1
�S2/pIZ/

' .A�.M/˝H��.S
1//˝H��.S

1/˝G;

which is isomorphic to the external tensor product HFı�H�.S1/�G as modules over
.A�.M/˝H��.S

1//˝H��.S
1/˝G: The two factorizations of A�.Y /, isum in (1-8)

and, above, icycle , are related via (9-49) (where Y D 0). According to Theorem 1.1(2),
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the middle H��.S1/ factor in (1-8)’s factorization of A�.Y / acts trivially on H ı.Y /.
Recalling from [22] that H ı.Y / and echı are canonically isomorphic as A�.Y /–
modules, this means that the A�.M/˝H��.S

1/˝G –action on echı in the statement
of Proposition 1.5 is the same as the one arising from composing the inclusion

A�.M/˝ 1˝H��.S
1/˝G ,!A�.M/˝H��.S

1/˝H��.S
1/˝G

with icycle . The assertion of the proposition then follows from the isomorphism echı'
HFı�H�.S1/�G described above.

9.7 Proof of Proposition 3.14

The construction of the cobordism manifold X, its metric and self-dual 2–form has
nine parts.

Part 1 This part sets some of the notation for the construction in the subsequent parts
of the subsection of the desired metric on X and the 2–form wX . Fix a metric on
Y of the sort that is described in Part 2 of Section 3.5 and denote the latter by gY .
The 2–form w on Y has gY –norm equal to 1 and its Hodge dual is the 1–form ya
that is described in Section II.3A; see also (IV.1-6). The constant L for use in (2-9) is
specified at the end of the proof. Assume until then that L> 100 has been chosen.

The description of the metric for X and the 2–form wX on the s 2 Œ�L;�LC8� part
of X requires the formula for w on a given p 2ƒ version of Hp from (IV.1-3),

(9-51) w D 6x cos � sin � d� du�
p
6f 0 cos � sin2 � du d�

C
p
6f .1� 3 cos2 �/ sin � d� d�:

The notation here uses x and f to denote a pair of nonnegative functions on Hp , these
given in (IV.1-2), with f 0 denoting the derivative of f . Both x and f are invariant
under the reflection u 7! �u. The function x has compact support and is a nonzero
constant where juj<2. This constant is denoted by x0 . The function f on the juj<4
part of Hp is given by the rule u 7! f .u/D x0C 4e

�2R cosh.2u/.

The 1–form �˘ given in (IV.1-5) plays a central role in what follows. This 1–form on
the juj< 4 part of Hp can be written as

(9-52) �˘ D 4e
�2R cosh.2u/.1� 3 cos2 �/ duC 12e�2R sinh.2u/ cos � sin � d�:

The 1–form �˘ is a closed form on Y , and its zero locus are the loci in each p 2ƒ

version of Hp where both u and the function 1� 3 cos2 � are zero. Note also that
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�w D �˘ on the complement in Y of the juj � RC ln ı � 9 parts of each p 2 ƒ

handle Hp . A second point to note is that �.w^ �˘/� c�10 j�˘j
2 on the whole of Y .

Part 2 Let � denote for the moment the Hodge star of the metric gY on Y . The
desired metric for X must pull back to .�1;�L�� Y via the embedding from the
second bullet of (2-8) as the metric ds2C gY . Meanwhile, the corresponding pullback
of wX must equal ds ^�wCw . This 2–form is self-dual but it is not closed; this is
because d �w ¤ 0 on the juj �RC ln ı� 9 part of each p 2ƒ version of Hp . This
last fact follows from the formula in (IV.1-6).

The rest of this part of the subsection describes wX for s 2 Œ�L;�LC 3�. The metric
on this part of X still pulls back as ds2C gY via the second bullet of (2-8).

Let �˘1 denote the function on R given by the rule s 7! �.�s�LC2/. This function
is equal to 0 where s <�LC1 and it is equal to 1 where s >�LC2. The derivative
of �˘1 is denoted in subsequent equations by �0

˘1 . Fix m> 1 and introduce �m to
denote the function of the coordinate s given by the rule s 7!�.mjuj�1/. This function
equals 0 where juj > 2m�1 and it equals 1 where juj < m�1 . By way of a look
ahead, m will be set equal to r 1=c0c when the time comes to verify the requirements
of Proposition 3.13.

Use w1 to denote the s–dependent 2–form on Y that is equal to w on the Mı [H0
part of Y , and equal to the following 2–form below on each p 2ƒ version of Hp :

(9-53) w1 D d.x.1��˘1�m/.1� 3 cos2 �/ du/�
p
6f 0 cos � sin2 � du d�

C
p
6f .1� 3 cos2 �/ sin � d� d�:

Note that jw1j � c0 . Meanwhile, @
@s
w1 D db with b D �x�0

˘1�m.1� 3 cos2 �/ du.
As �m D 0 where juj> 2m�1 , the L2–norm of b on Œ�L;�LC3��Y is no greater
than c0m�1 . The appearance of �˘1 in the definition guarantees that w1 D w where
s ��L. Note that w1 is a closed 2–form on Y for each s . A key point to note is that
the zero set of the s > �LC 1 version of w1 consists of two circles in each p 2 ƒ

version of Hp , these being the circles where u and 1� 3 cos2 � are both zero.

The desired 2–form wX pulls back to Œ�L;�LC 3��Y via the embedding from the
second bullet of (2-8) as ds ^�w1Cw1 .

Part 3 What follows directly describes the desired metric and the 2–form wX on the
s 2 Œ�LC 3;�LC 4� part of X. To this end, let �˘2 denote the function on R that is
given by the rule s 7! �.sCL� 3/. This function is equal to 1 where s � �LC 3
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and it is equal to 0 where s � �LC 4. A smooth metric on Y will be constructed
in a moment, whose Hodge star sends the s � �LC 3 versions of w1 to �˘ , thus
making w1 harmonic. Let g1 denote this metric. Use g to denote the s–dependent
metric �˘2gY C .1��˘2/g1 and let � now denote its Hodge dual. The metric on X
pulls back Œ�LC3;�LC4��Y via the embedding from the second bullet of (2-8) as
ds2Cg. The pullback of wX to Œ�LC3;�LC4��Y is the 2–form ds^�w1Cw1 .
This 2–form is self-dual when s is near �LC 4. The two steps that follow construct
the metric g1 .

Step 1 The 2–form w1 is equal to w on the Mı [H0 part of Y and its gY –Hodge
star here is �˘ . This understood, the metric g1 on Mı [H0 is set equal to gY . To
define g1 on a given p 2ƒ version of Hp , note first that the function �˘1 in (9-53) is
equal to 1 when s 2 Œ�LC 3;�LC 4�. This implies that w1 is s–independent when
s 2 Œ�LC3;�LC4�. More to the point, it also implies that the s 2 Œ�LC3;�LC4�
version of w1 shares the same zero locus with the closed 1–form �˘ , this being the
circles in each p2ƒ version of Hp where u and 1�3 cos2 � are both zero. Meanwhile,
w1 ^ �˘ > 0 on the complement of their common zero locus. This last observation
can be used with Lemma 9.2 to construct the desired metric g1 on any part of the
complement in Hp of the uD 0 and 1� 3 cos2 � D 0 locus as a smooth extension of
the metric gY from Mı [H0 .

Step 2 Let T �Hp denote the juj<m�1 part of Hp . The function �m in (9-36) is
equal to 1 on T and f D x0C 4e�2R cosh.2u/ on T . This being the case, it follows
from (9-51) and (9-52) that the metric on T with volume 3–form �D sin � du d� d�
and Hodge star defined by the rules

(9-54)

� sin � d� d� D 1
p
6

4e�2R cosh.2u/
x0C 4r�2R cosh.2u/

du;

� sin � d� duD 3

2
p
2
d�;

�dud� D 3

2
p
2

sin � d�

sends w1 to �˘ . Note that a suitable change of coordinates near the � D 0 and � D �
loci can be used to prove that the metric defined by (9-54) is smooth on the whole
of T .

As noted previously, Lemma 9.2 can be used to extend the metric defined in (9-54) to
the whole of Hp so as to agree with gY on Hp\Mı . This must be done with some
care so as to obtain an mD r1=c0c extension that can be used to satisfy the second item
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of (3-15). With this goal in mind, note that Lemma 9.2 can be used to find an extension
with the following three properties:

(9-55) � The norm of the Riemannian curvature tensor and those of its covariant
derivatives to order 20 are bounded by c0 .

� The injectivity radius is bounded from below by c�10 .

� The metric volume of Y is at most c0 .

The first bullet of Lemma 9.2 gives metrics that obey the third bullet of (9-55) and the
second bullet of Lemma 9.2 supplies metrics that obey all three bullets.

Part 4 The desired metric for X and the 2–form wX on the s 2
�
�LC4;�3

4
LC2

�
portion of X are described below. This is done by specifying their pullbacks via the
embedding from the second bullet of (2-8) to

�
�LC4;�3

4
LC2

�
�Y . In this part, we

use �˘2 to denote the function on R given by the rule s 7! �
�

4
L�20

.sCL�5/
�
. This

function is equal to 1 where s < �LC 5 and it is equal to zero where s > �3
4
L. Use

�0
˘2 to denote the derivative of �˘2 . Note in particular that j�0

˘2j � c0L
�1 .

Let w2 denote the s–dependent 2–form on Y given by w1 for s < �LC 4, given by
w on Mı [H0 , and given on each p 2ƒ version of Hp for s � �LC 4 by

(9-56) w2 D �˘2 d.x.1��m/.1� 3 cos2 �/ du/�
p
6f 0 cos � sin2 � du d�

C
p
6f .1� 3 cos2 �/ sin � d� d�:

The 2–form w2 is a closed 2–form on Y for each s , it has the same zero locus as w1
and it has the property that w2^�˘ D w1 ^ �˘ .

An s–dependent metric on Y is described in a moment for the cases when L>c0 . This
metric is denoted by g. Let � denote the corresponding Hodge dual. By way of a look
ahead, g is chosen so that d �w2 D @

@s
w2 . The pullback of the desired metric on X to�

�LC4;�3
4
LC2

�
�Y via the embedding from the second bullet of (2-8) is the quadratic

form ds2 C g, and the corresponding pullback of wX is ds ^ �w2 Cw2 . Note in
particular that wX is self-dual and closed if self-duality is defined by the metric ds2Cg.

The metric g1 from Part 3 is s–independent and so it is defined where s > �LC 4.
This understood, the metric g is set equal to g1 where s <�LC 5. It is also set equal
to g1 for all s 2

�
�LC 4;�3

4
LC 2

�
on Mı [H0 . This is to say that it equals gY for

all such s on Mı [H0 . The metric g is chosen where s � �LC 5 on each p 2 ƒ

version of Hp so that its Hodge star on each p 2ƒ version of Hp acts on w2 as

(9-57) �w2 D �
0
˘2x.1��m/.1� 3 cos2 �/ duC �˘:
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As will be explained directly, if L> c0 , there are metrics of the sort just described that
obey the c0 D 1 version of (9-55) where s > �3

4
LC 1.

To see about these requirements, consider first constructing a metric of the desired sort
where s >�3

4
L. The metric that is defined by (9-54) with volume form sin � du d� d�

satisfies the requirements where juj < 2. Since w2 ^ �˘ > 0 on the rest of Hp and
the gY –Hodge star of w2 is �˘ on Mı [H0 , Lemma 9.2 finds an extension of the
latter metric from the juj< 1 part of each Hp that has the desired properties. Use g2
to denote this s–independent metric.

Consider next the story where s < �3
4
LC 1. The metric on any given p 2ƒ version

of Hp that is defined by (9-54) with volume form sin � du d� d� has Hodge star
sending w2 to �˘ where juj<m�1 . Let � denote the 1–form on the right-hand side
of (9-57). The 3–form � ^w2 can be written where juj � 1

2
m�1 as q�˘ ^w2 and it

follows from the fact that j�0
˘2j < c0L

�1 that q > c�10 � c0L
�1 . Thus, � ^w2 > 0

where juj > 1
2
m�1 . Given this positivity and given what was said in the preceding

paragraphs, Lemmas 9.2 and 9.3 can be used to construct an s–dependent metric where
s < �3

4
LC 1 that equals g2 where s > �3

4
LC 1

2
, that equals g1 where s < �LC 5

and equals gY on Mı [H0 .

Part 5 This part and Part 6 construct the desired metric for X and the 2–form wX

where s 2
�
�
3
4
LC 1;�1

2
LC 2

�
. By way of a look ahead, the metric pulls back from

this part of X via the embedding from the second bullet of (2-8) as ds2C g3 with g3
being an s–dependent metric on Y that equals the metric g� for all s on the set Y0"
from (9-10).

The metric g3 is independent of s on the whole of Y when s 2
�
�
1
2
LC 1;�1

2
LC 2

�
.

This s–independent version of g3 is in a large T version of the space MetT that is
defined in Part 5 of Section 9.1. For the purposes to come, the choice of T requires
choosing L > cT with cT denoting here and in what follows a constant that depends
on T and is greater than c0T 2 in any event. The value of cT may increase between
appearances.

Use � now to denote the g3–Hodge star on Y . The 2–form wX pulls back via the
embedding from the second bullet of (2-8) to

�
�
3
4
LC1;�1

2
LC2

�
�Y as ds^�w3Cw3 ,

with w3 denoting an s–dependent, closed 2–form on Y . The 2–form w3 is also
independent of s where s 2

�
�
1
2
LC 1;�1

2
LC 2

�
and it is independent of s on Y0"

for all s . With regards to the motivation for what follows below and in Part 6, keep in
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mind that ds ^�w3Cw3 is closed if and only if both dw3 D 0 and d.�w3/D @
@s
w3

for all s .

This part of the subsection assumes that c1.det S/ annihilates the H2.M IZ/–summand
of the direct sum decomposition for H2.Y IZ/ given in (IV.1-4). This assumption
makes for a simpler construction. Even so, much of what is done here is used again for
Part 6’s construction for the general case.

The construction that follows has six steps. Note that some of these steps use notation
from Section 9.1.

Step 1 Let �˘3 denote the function of s given by �
�
3

L�8
.sC 3

4
L�2/

�
. This function

equals 1 for s < �3
4
LC 2 and it equals 0 for s � �1

2
L. Reintroduce the notation

from Section 9.1 and let �r denote the function on R3 given by �.64"�1� .r���/�1/.
This function equals 1 where r< ��C 1

64
" and it equals 0 where r> ��C 1

32
". Let

T � 1 and use �r with �˘3 to define the s–dependent function on R3 given by

(9-58) rsT D �˘3rC .1��˘3/
�
1��rC

1

T
�r

�
r:

Note in particular that @
@s

rsT > 0 because �r is a nonincreasing function of r. Use �sT
and xsT 3 to denote the respective s–dependent functions on R3 given by rsT sin �
and rsT cos � .

Define the s–dependent 2–form w3 on Y by setting w3 D w2 for s � �3
4
LC 2 and

setting it equal to w on the Y0 component of Y �N" . The 2–form w3 is defined on N"
by specifying it on the R3 incarnation of N" to be K.�sT /�sT d�sT d� . The definition
of w3 on the rest of Y uses � to denote the function of s given by .�˘3C.1��˘3/=T /2 .
The latter function equals 1 where s <�3

4
LC2 and it is equal to 1

T 2
where s >�1

2
L.

The 2–form w3 is defined on YM \Mı to be �w2 , and it is defined on each p 2ƒ

version of Hp by the upcoming (9-59). This upcoming definition uses �� to denote
the function of u and � given by �.juj2� 1/�.4.1� 3 cos2 �/� 1/. The function ��
is equal to 1 where both juj < 1 and j1� 3 cos2 � j < 1

4
, and it is equal to 0 where

either juj> 2 or j1� 3 cos2 � j> 1
2

. Note in particular that the support of �� consists
of two open sets. These are mirror images under the involution � 7! � � � , with one
being a neighborhood of the u D 0 and cos � D 1p

3
circle with 0 < � < �

2
on its

closure. Define

(9-59) w3 D�
p
6� d.f cos � sin2 � d� � .x0C 4e�2R/ sign.cos �/�� d�/

on Hp for s > 3
4
LC 2.
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By way of comparison, the 2–form w2 on Hp can be written as
p
6 d.f cos � sin2� d�/.

What is written in (9-59) adds a 2–form with support on Hp to �w2 .

The 2–form w3 on Y is closed for each s . Moreover, it defines the s–independent de
Rham cohomology class c1.det S/ because the latter class is assumed to annihilate the
H2.M IZ/–summand in (IV.1-4).

Step 2 The s–dependent metric g3 is defined when s 2
�
�
3
4
LC 1;�1

2
LC 2

�
with

the help of a certain s–dependent 1–form, b . The 1–form b should obey db D @
@s
w3 .

There are four additional constraints on b . The first is that b should vanish on Y0
and on the part of N" where r > ��C 1

16
". The second constraint specifies b on the

juj< 4 part of Hp :

(9-60) b D�
p
6� 0.f cos � sin2 � � .x0C 4e�2R/ sign.cos �/��/ d�;

where � 0 denotes @
@s
� . The third constraint asks that b ’s norm at s2

�
�
3
4
LC1;�1

2
LC2

�
when measured by the metric gY obeys jbjg� � cTL�1 . The fourth constraint requires
the following: Fix k 2 f0; : : : ; 20g. Then the gY –covariant derivatives up to order 20
of
�
@
@s

�kb are bounded by cTL�k�1 .

To see about satisfying these constraints, note first that b can be chosen to vanish on
Y0 and on the r > ��C 1

16
" part of N" because w3 is constant on these parts of Y ,

and because the first cohomology of the r 2
�
��C

1
32
"; ��C

1
64
"
�

part of N" is zero.
The c0L�1 bound on j�0

˘3j implies that b can be chosen to vanish on Y0 and so
that its norm elsewhere when measured by the metric gY is bounded by c0L�1 . A
1–form of this sort can be chosen so that the gY –norms of its derivatives also have the
required norm bound. Let b� denote such a choice, and let bƒ denote the 1–form on
any given p 2ƒ version of Hp given by (9-51). Their difference, b�� bƒ , is a closed
1–form on Hp . As H 1.Hp\Mı IR/D 0, this difference can be written as dk with k
denoting a function on Hp . The function k can be taken so that jk j � c0L�1 since
the gY –norms of both b� and bƒ obey a similar c0L�1 bound. Granted this bound
on k , then b D b�� d.�.juj � 4/k / has all of the requisite properties.

Step 3 The definition of the upcoming Steps 4 and 6 use observations made below
about w3 and b on the juj � 4 part of each p 2ƒ version of Hp . The first series of
observations concern w3 . To start, note that the zero locus of the 2–form in (9-60) is
the same as that of �˘ , this being the locus where both uD 0 and 1� 3 cos2 � D 0.
The reason being that f 0 and �� have the same sign where �� ¤ 0, and likewise
the functions 1� 3 cos2 � and sign.cos �/�� have the same sign where �� ¤ 0. In
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fact, these comments about the derivatives of �� imply that w3 on Hp can be written
schematically as

(9-61) w3 D�.1C A1/�
p
6f 0 cos � sin2 � du d�

C .1C A2/�
p
6f .1� 3 cos2 �/ sin � d� d�;

where A1 and A2 are smooth, nonnegative functions of u and � that equal zero where
both juj < 1 and j1� 3 cos2 � j < 1

4
and where either juj > 2 or j1� 3 cos2 � j > 1

2
.

Given that w2 on Hp is �
p
6 d.f cos � sin2 � d�/, these last remarks imply that

(9-62) w3 ^ �˘ � �w2 ^ �˘ on Hp

with the inequality being a strict one only where d�� ¤ 0.

The next series of remarks concern the 1–form b on the juj � 4 part of Hp , the first
point of note being that f .u/ cos � sin2 � is equal to .x0C4e�2R/ 2

3
p
3

sign.cos �/ on
the zero locus of �˘ . It follows as a consequence that b can be written as

(9-63) b D�B1�
0f 0 cos � sin2 � d�C B2�

0f .1� 3 cos2 �/ sin � d�;

where B1 and B2 are smooth functions of u and � .

Step 4 The metric g3 on each p 2ƒ version of Hp is defined to be the metric from
Part 5 for s < �3

4
LC 2. The metric g3 on Hp at other values of s is defined in part

so that its Hodge star obeys

(9-64) �w3 D ��˘C b:

There is one other constraint. To explain it, note first that the metric g2 does not depend
on s when s 2

�
�
3
4
LC 1;�3

4
LC 2

�
. Use g2C to denote this s–independent metric.

Look at (9-45) to see that the s > �1
2
LC 1 version of w3 on the juj > 4 part of

each Hp is 1
T 2
w2 . Since b is zero when s > �1

2
LC 1, the constraint in (9-64) is

satisfied by taking the Hodge star to be that defined by g2C . This understood, the final
constraint is as follows:

(9-65) The metric g3 on each p 2ƒ version of Hp when s > �1
2
LC 1 must be both

s–independent and T –independent, and it must equal g2C where juj> 4.

As explained in what follows, an s–dependent metric with all of these requisite proper-
ties exists if L is greater than a T –dependent constant.

Consider first the existence of a metric with the desired properties where juj< 1 and
j1�3 cos2 � j< 1

4
, this being a neighborhood of the common zero locus of w3 and �˘ .
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The metric g is defined on this part of Hp by its volume 3–form �D sin � du d� d�
and the Hodge duals

(9-66)

�sin � d� d� D 1
p
6

4e�2R cosh.2u/
x0C 4e�2R cosh.2u/

duC ��1� 0B2 sin � d�;

�sin � d� duD
p
3

2
p
2
d� � 1p

6
��1� 0B1 sin � d�;

�dud� D
p
3

2
p
2

sin � d�C 1p
6
��1� 0B2 du�

1p
6
��1� 0B1 d�:

These formulas for the Hodge dual define a symmetric, bilinear form on the cotangent
bundle of this part of Hp . This bilinear form is positive definite if ��1j� 0j < c�10 ,
which is guaranteed if T 2L�1 < c�10 since ��1 < T 2 and j� 0j< c0L�1 .

To see about defining g3 on the rest of Hp , use the fact that jbj � c0L�1 to draw the
following conclusion: If L> c0T 2 , then w3^ .��˘C b/ > 0 on the complement in Y
of the juj < 1

2
and j1� 3 cos2 � j < 1

8
part of each p 2ƒ version of Hp . This being

the case, then Lemma 9.3 can be used directly to obtain a family of metrics on Hp

parametrized by the set
�
�
3
4
LC 1;�1

2
LC 2

�
so as to obey (9-64) and (9-65). Use

g3ƒ to denote this family of metrics on
S

p2ƒHp .

Step 5 The 1–form �˘ is used here to construct another closed, s–dependent 1–form
that plays a central role in the upcoming definition of the s 2

�
�
3
4
LC 1;�1

2
LC 2

�
versions of g3 on Mı [H0 . This new 1–form is denoted by �˘3 and its definition is
given in the subsequent paragraph.

The 1–form �˘3 on Y0 is �˘ and it is defined on the r > �� � 1
4
" part of N" to be

dxsT 3 with the latter defined in Step 1. Since �˘ D dx3 on N" , it follows from the
definition of xsT 3 that �˘3 as defined so far is a 1–form on the union of Y0 and the
r>��� 14" part of N" . The definition of �˘3 on the r2

�
���

1
2
"; ���

1
4
"
�

part of N"
requires the reintroduction of the function �r� from Step 2 in Part 5 of Section 9.1.
This function is used here to define xsT 3� D

�
�˘3C .1��˘3/

�
1��r�C

1
T
�r�
��
x3 .

Define �˘3 on the r 2
�
�� �

1
2
"; �� �

1
4
"
�

part of N" to be �1=2dxsT 3� . It follows
from the definitions of xsT 3 and xsT 3� that the definition just given defines a smooth
1–form on the union of Y0 with the r> ��� 1

2
" part of N" . As the latter’s restriction

near the r D �� � 1
2
" is � dx3 , a smooth 1–form on Y0 [N" is defined by setting

�˘3 D � dx3 on the r� ��� 1
2
" part of N" . Noting that � dx3 D ��˘ , defining �˘3

on YM to be ��˘ defines a smooth, closed 1–form on Y .

The 1–form �˘3 has the four properties that are listed below.
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Property 1 The 1–form �˘3 is equal to �˘ where s 2
�
�
3
4
LC 1;�3

4
LC 2

�
.

This follows because �˘3 D 1 at these values of s .

Property 2 The zero locus of each s 2
�
�
3
4
L C 1;�1

2
L C 2

�
version of �˘3 is

identical to that of �˘ .

This is because �˘3 has no zeros on Y0[N" and it is equal to ��˘ on YM .

Property 3 Each s 2
�
�
3
4
LC 1;�1

2
LC 2

�
version of w3 ^ �˘3 is positive on the

complement of the common zero locus of w3 and �˘3 .

This property follows directly from the definitions on Y �
�S

p2ƒHp

�
and from (9-61)

on each p 2ƒ version of Hp .

To set the stage for the fourth property, note that w3 and �˘3 do not depend on s
when s 2

�
�
3
4
LC 1;�3

4
LC 2

�
. Use w3C and �˘3C to denote these s–independent

differential forms. To continute the stage setting, let g3ƒC denote the s–independent
metric on

S
p2ƒHp given by the s2

�
�
3
4
LC1;�3

4
LC2

�
version of Part 5’s metric g3ƒ .

What with (9-55), this metric on
S

p2ƒHp with g2C on Y �
�S

p2ƒHp

�
define a

smooth, s– and T –independent metric on Y . Denote the latter by g˘ . The restriction
of g˘ to YM [N" is in the space MetN from Part 5 of Section 9.1. This understood,
let g˘T denote the MetT metric that is constructed in Part 5 of Section 9.1 from T

and YM [N" part of g˘ .

Property 4 The g˘T –Hodge star of w3C is �˘3C .

The definitions in Part 5 of Section 9.1 with those given above for w3C and �˘3C
imply this on Y �

�S
p2ƒHp

�
and (9-64)–(9-65) imply this on

S
p2ƒHp .

Step 6 This step completes the definition of g3 on Y so as to satisfy five constraints,
the first being that �w3 D �˘3 C b at each s 2

�
�
3
4
LC 1;�1

2
LC 2

�
. The second

constraint asks that the s 2
�
�
3
4
LC 1;�3

4
LC 2

�
versions are independent of s ; and

the third asks that the s 2
�
�
1
2
LC 1;�1

2
LC 2

�
versions are also independent of s

and that this s–independent metric is g˘T . The fourth constraint asks that g3 D g3ƒ
on the juj<RC ln ı part of each p 2ƒ version of Hp . The fifth and final constraint
asks that g3 D g� on Y0 and on the r > ��C 1

16
" part of N" .

Use Property 3 and what is said in Step 4 with the bound jbjg� < c0L�1 to see that
w3 ^ .�˘3C b/ > 0 on the complement in Y of the common zeros of w3 and �˘3 if
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L� cT . Given this bound, Lemma 9.3 with the input from Step 4 and Property 4 of
Step 5 find a metric with all of the desired properties. Take such a metric for g3 . Note
for future reference that the s–independent, s >�1

2
LC1 version of g3 is equal to gY

on YM \Mı .

Part 6 This part of the subsection puts no constraints on the restriction of c1.det S/ to
the H2.M IZ/–summand in H2.Y IZ/. The s–dependent metric g3 and the 2–form
w3 in this case are identical to their namesakes in Part 5 on Y �

�S
.;Z /2‚

T
�
. The

three steps that follow define g3 and w3 on
S
.;Z /2‚

T .

Step 1 Reintroduce from Part 7 of Section 9.1 the closed 2–form p on Y . By way of
a reminder, the de Rham class of p has pairing 0 with the H2.H0IZ/˚

�L
p2ƒHp

�
–

summand in (IV.1-4)’s decomposition of H2.Y IZ/ and its pairing with the H2.M IZ/–
summand is the same as that of c1.det S/. Since p ’s support lies in

S
.;Z /2‚

T and
thus in YM �

�S
p2ƒHp

�
, setting w3 on YM [

�S
p2ƒHp

�
to be w3D �w2C.1��/p

defines a closed 2–form on Y for each s 2
�
�
3
4
LC 1;�1

2
LC 2

�
with de Rham

cohomology class c1.det S/.

The metric g3 is defined on
S
.;Z /2‚

T so that its Hodge star maps w3 to ��˘C b
with b denoting a certain 1–form with dbD @

@s
w3 . As done previously, Lemma 9.3 will

be used to construct a metric with this property that meets all of the other requirements.

Step 2 The definition of g3 and b on
S
.;Z /2‚

T requires what is said here about
the w2 and p in the support of p . To start, reintroduce from Part 7 of Section 9.1 the
set ‚ and write p as

P
.;Z /2‚

Zp with each .; Z / version of p being a closed
2–form with support in the tubular neighborhood T that is described in Part 7 of
Section 9.1. Part 7 of Section 9.1 describes a diffeomorphism from S1�D to T with
D denoting a small radius disk about the origin in R2 . The diffeomorphism identifies
 with S1 � f0g and it has two important properties that concern the 2–form w on Y
and the function f from Section II.1. As noted in Part 7 of Section 9.1, the 1–form
df pulls back via the embedding of S1 �D as a constant 1–form on the D factor
and the kernel of the pullback via the embedding of the 2–form w is a constant vector
field that is tangent to this D factor. These last properties are exploited in the next
paragraph.

As can be seen in (IV.1-5), the 1–form �˘ on T is df . Meanwhile, the 2–form w2

on T is still the original 2–form w on Y as described in (IV.1-3). This understood,
what was said above about df and the kernel of w imply that S1�D has coordinates
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.t; .x; y// with t denoting an affine coordinate for the S1 factor and .x; y/ coordinates
for D with the following two properties: The 1–form �˘ pulls back as dx and the
2–form w2 pulls back as H .y; t/ dy dt with H denoting a positive function. Granted
these coordinates, the 2–form p has the form h .x; y/ dx dy with h denoting a
function with compact support in a small radius disk about the origin in the .x; y/–plane
and with total integral equal to 1.

Step 3 An almost verbatim repeat of what is said in Step 2 of Part 6 supplies a version
of the 1–form b which obeys the four properties listed in the first paragraph of Step 2
in Part 6 with it understood that w3 is now defined as in Step 1.

It follows as a consequence of what is said in Step 2 that

(9-67) .�w2C .1� �/p/^ �˘ D �w2 ^ �2I

thus, the gY –norm of .�w2C.1��/p/^.��˘Cb/ is no less than �2.c�10 �cT T
2L�1/.

This being the case, Lemma 9.3 supplies an s–dependent metric on Y with all of the
desired properties if L is larger than a purely T –dependent constant.

Let g3C denote the s–independent metric on Y given by the s 2
�
�
1
2
LC1;�1

2
LC2

�
versions of g3 . This is the metric gY on .YM \Mı/ �

�S
.;Z /2‚

T
�
. It proves

necessary for what follows to take some care with regards to the choice of g3C onS
.;Z /2‚

T . In particular, Lemmas 9.2 and 9.3 will construct a version of g3 with
g3C on each T by gY –volume 3–form H dx dy dt and the Hodge star rules

(9-68)

�dx dy D A dt�A�
�1.1��/ H�1 Zh dxCB dy;

�dy dt D H�1 .1C��2H�1 A .1��/
2Zh / dx�A�

�1.1��/H�1 Zh dt;

�dt dx D dyCB dt;

with A being a positive function and with � equal to 1
T 2

. The function A is
constrained for the moment only to the extent that A < c

�1
0 �2 on the support of Zh

and that A is independent of T on the complement in T of a T –independent open
set that contains the support of h and has compact closure in T . This set is denoted
by T 0 . This upper bound on A is needed so that (9-68) defines a positive definite
metric. As for B , it is zero on T and it is independent of T elsewhere.

Part 7 This part of the subsection defines the desired metric on X and 2–form wX

on the s 2
�
�
1
2
LC 1;�1

2
LC 5

�
part of X. As done previously, these are defined by

their pullbacks via the embedding from the second bullet of (2-8). The pullback of
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the metric will have the form ds2C g with g denoting an s–dependent metric on Y .
Meanwhile, the pullback of wX will have the form ds^�w4Cw4 , with w4 denoting
a closed, s–dependent 2–form on Y and with � denoting the Hodge � defined by g.
The de Rham cohomology class of w4 at each s is c1.det S/.

The metric g is independent of s for s 2
�
�
1
2
L C 1;�1

2
L C 2

�
and the 2–form

w4 is independent of s for s 2
�
�
1
2
LC 1;�1

2
LC 3

�
. Both the metric and w4 are

independent of s when s 2
�
�
1
2
LC 4;�1

2
LC 5

�
. Moreover, the restriction of both

to Y �
�S

p2ƒHp

�
are independent of s for all values of s . The salient difference

between the s ��1
2
LC3 version of w4 and the s ��1

2
LC4 version is that the latter

has nondegenerate zeros and the former does not.

The construction of g and w4 has two steps.

Step 1 Let g3C denote the �1
2
LC 2 version of the metric that is supplied in Parts 5

and 6, and let w3C denote the s D �1
2
LC 2 version of w3 . The 2–form w3C is

g3C–harmonic but it does not vanish transversely. By way of a reminder, the zero locus
of w3C consists of the two circles in each p 2ƒ version of Hp where both uD 0 and
1� 3 cos2 � D 0. Note in this regard that w3C on Hp is the 2–form

(9-69)
p
6T �2.�f 0 cos � sin2 � du d�Cf .1� 3 cos2 �/ sin � d� d�/:

The construction of w4 starts by introducing �˘4 to denote the function on R given
by s 7! �.s C L � 3/. This function is equal to 1 where s < �1

2
LC 3 and it is

equal to 0 where s > �1
2
LC 3. The derivative of �˘3 is denoted by �0

˘3 . Use ��
to denote the function of u given by the rule u 7! �.juj � 1/. This function is equal
to 1 where juj � 1 and it is equal to 0 where juj > 2. One last function is needed
for what follows, this denoted by �� . It is a function on Œ0; �� with values in Œ0; 2�
which has the following two properties: It is zero near the endpoints, and has two
local minima at the two values of � where 1� 3 cos2 � D 0. Moreover, �� should
appear on a neighborhood of these minima as 1C .1� 3 cos2 �/2 . Take �� so that
�� .�/D �� .� � �/.

Fix z > 1 and define the 2–form wz by

(9-70) wz D�
�p

6f 0 cos � sin2 � C z�1 cos� �˘4 �� sin � @

@�
��

�
dud�

C
p
6f .1� 3 cos2 �/ sin � d� d�

� z�1 sin� �˘4��
@

@�

�
sin � @

@�
��

�
dud�:

Geometry & Topology, Volume 24 (2020)



HFD HM , V 3739

This is a closed 2–form for all s that equals w3C for s ��1
2
LC3 and for all s where

juj > 2. This 2–form is independent of s when s � �1
2
LC 4. Moreover, if z > c0 ,

then the s–independent version of wz defined where s��1
2
LC4 has a nondegenerate

zero locus, this being the four points where sin� D0, 1� 3 cos2 � D 0 and uD 0.

The desired 2–form w4 is defined to be w3C on Y �
�S

p2ƒHp

�
and it is defined on

each p 2ƒ version of Hp to be a z > c0 version of T �2wz .

Step 2 This step defines the metric g. This is done by first constructing g near the
zero locus of w4 in each p 2ƒ version of Hp and then extending the result to the rest
of Y with the help of Lemma 9.3.

Fix z > c0 so that wz as defined in (9-70) has nondegenerate zeros. The 2–form wz

can be written as dbz , where bz is given by

(9-71)
p
3

2
p
2
z�1 cos� �˘4.�0��� duC���

0
� d�/�

p
3

2
p
2
z�1 sin� �˘4���� d�

C z�1 sin� �0˘4 �� sin � @

@�
�� du:

Granted this formula, then �C bz has the same zero locus as wz if z > c0 , and it also
vanishes transversely. Moreover, wz ^ .�˘C bz/ can be written as Q sin � du d� d�
and a calculation finds that Q � 0 with equality only on the joint zero locus of wz and
�˘Cbz . In fact, the calculation finds Q�c�10

�
juj2C.1�3 cos2 �/2Cz�2 sin2 � sin2 �

�
if z > c0 .

With z large and w4 defined by (9-70) on Hp , the metric g is defined near the zeros
of (9-71) so that its Hodge star sends wz to �˘ C bz . The definition requires the
introduction of yet another function of s , this denoted by �˘˘4 and defined by the rule
whereby �˘˘4.s/D �

�
sC 1

2
L� 2

�
. This function equals 1 where s < �1

2
LC 2 and

it equals 0 where s > �1
2
LC 3. The desired metric g is defined by taking its volume

form to be sin � du d� d� and its Hodge star to act as follows:

(9-72)

�sin � d� d� D 1p
6
.4e�2R cosh.2u/C 12z�1 sin� �0˘4 cos � sin2 �/ du;

�sin � d� duD
p
3

2
p
2
d�;

�dud� D
p
3

2
p
2

�
�˘˘4 sin � C .1��˘˘4/��

�
@

@�

�
sin � @

@�
��

���1�
d�:

By way of a parenthetical remark, the metric g3C near the zeros of wz is defined by
the same volume form but with Hodge star rule given by (9-54). The appearance of
�˘˘4 in the third line of (9-72) guarantees that gD g3C where s � �1

2
L.
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As noted previously, wz^ .�˘Cbz/ > 0 on the complement of the common zero locus
of wz and .�˘ C bz/. Having constructed g on a neighborhood of this locus with
the desired properties, Lemma 9.3 provides an extension to the whole of Y which is
independent of s where s <�1

2
LC2, where s >�1

2
LC4 and on Y �

�S
p2ƒHp

�
. This

extension is such that the 2–form ds^�w4Cw4 is self-dual on
�
�
1
2
LC1;�1

2
LC5

�
�Y

when self-duality is defined by the metric ds2C g.

Part 8 This part of the subsection supplies the input for the definition in Part 9 of the
desired metric and the 2–form wX on the s 2

�
�
1
2
LC4;L

�
part of X. The discussion

in this section refers to an auxiliary copy of the space X, this denoted by X� . The
manifold X� is the same as X, but its metric is not a metric of the sort that is described
in Parts 1–7. The eight steps that follow construct a metric on X� and a corresponding
self-dual 2–form with certain desirable properties.

Step 1 Fix a metric in the YG version of MetN . The latter with a sufficiently large
choice for T determines metrics in the set Met.YG/. This understood, choose T large
enough that this is the case and that two additional requirements are met, the first being
that Part 7’s metric g and 2–form w4 can be constructed for any choice of L > cT
with cT denoting a constant that is greater than 1 and depends only on T . The second
requirement is given in Step 2.

Let g� and w� denote the respective s 2
�
�
1
2
LC4;�1

2
LC5

�
versions of g and w4 ,

these being independent of s . The metric g� is in the Y version of the space MetT , so it
can be used for the metric g1 in Part 1 of Section 9.2, and since w� has nondegenerate
zeros, it can also be used for the metric g2 in Part 1 of Section 9.2. This part of
Section 9.2 uses w2 to denote the g2–harmonic 2–form with de Rham cohomology
class that of c1.det S/. This 2–form w2 is w� . The 2–form w� is equal to w on Y0
and on the r� ��C 5

8
" part of N" and so it follows that w� is also the 2–form that is

denoted by w3 in Part 2 of Section 9.2. This fact implies that the metric g� is also a
version of what Part 2 of Section 9.2 denotes as g3T . Parts 1–10 of Section 9.4 will be
invoked in the upcoming steps using X� and the g� version of g3T . These parts of
Section 9.4 denote the latter version of g3T by g�T . What Parts 1–10 of Section 9.4
denote as w�T in this case is the 2–form w� .

Step 2 Let g˘ denote the given metric from Met.YG/. By way of a reminder, the
metric g˘ is determined in part by Step 1’s chosen metric from the YG version of MetN

and T .
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As explained in Part 1 of Section 9.2, a metric denoted by g2 determines various
versions of the metric g3T , and g˘ can be any one of these g3T metrics. Set gC to
be the version of g2 that is used to construct g˘ and set gCT to denote g˘ . What
follows is the second requirement for T : It should be large enough that the Y� D Y
and YC D YG versions of the constructions in Parts 1–10 from Section 9.4 can be
invoked using X� and the metrics g� on Y� and gC on YC .

The constructions in Parts 1–8 of Section 9.4 require a closed 2–form on X� , this
denoted by pX , whose de Rham cohomology class is c1.det S/ and which has the
following additional properties: it equals w� where s < �102, it equals wC where
s >102 and it obeys the bound in (9-20). Given such a 2–form, Parts 1–8 of Section 9.4
supply L1� 1, a metric on X� and a 2–form on X� with the properties listed below;
the metric and 2–form are denoted in the list and subsequently by mT� and !T� :

(9-73) � The metric mT� obeys (2-9) and (3-14) when the version of L in the latter
is greater than L1C 20.

� The pullback of mT� from the s < �L1� 1 part of X via the embedding
from the second bullet of (2-8) is ds2C g� and the pullback of mT� from
the s > L1C 1 part of X� by the embedding from the third bullet of (2-8)
is ds2C gC .

� The 2–form !T� is self-dual when self-duality is defined by mT� . In
addition, the pullback of !T� to any constant s > 1 slice of X� is closed.

� The pullback of !T� from the s < �L1� 1 part of X� by the embedding
from the second bullet of (2-8) is ds ^�w�Cw� with � denoting here
the g�–Hodge star.

� The pullback of !T� from the s > L1C 1 part of X� via the embedding
from the third bullet of (2-8) is ds ^�wCCwC with � now denoting the
gC–Hodge star and with wC denoting the gC–harmonic 2–form with de
Rham cohomology class c1.det S/.

� The 2–form !T� obeys the constraint in (3-13).

� The norm of !T� and those of its mT�–covariant derivatives to order 10
are less than c0 .

When comparing the notation in (9-73) with the notation in Parts 1–10 of Section 9.4,
keep in mind that this case has g�T D g� and w�T D w� , and gCT D g˘ and
wCT D w˘ .

The remaining steps construct a version of pX with the required properties.
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Step 3 The construction of pX requires the three constraints on mT� that are described
here and a fourth constraint that is described in Step 4. The first constraint is that
imposed in Part 10 of Section 9.4.

The remaining constraints and that in Step 4 refer to the subset
S
.;Z /2‚

T �Mı ,
this viewed as a subset of Y and also as a subset of YG . The second constraint uses
the embeddings from the first and second bullets of (2-8) to view the s < 0 and s > 0
parts of X� as .�1; 0��Y and as .0;1/�YG . This constraint is the analog of that
given in (9-42):

(9-74) The metric mT� on Œ�100;�96��YM is the product metric ds2C gY . The
metric mT� on Œ96; 100��YM is the product metric ds2C gC.

By way of background for the third constraint, note that (9-43) holds for X� , this being
a consequence of what is said in Part 1 about the ascending and descending manifolds
from the critical points of s . The third constraint refers to this embedding; it also uses
mY and mC to denote the metrics ds2C gY and ds2C gC on R�

S
.;Z /2‚

T :

(9-75) There exists a T –independent constant, c�>1, with the following significance:
the pullback of mT� from the s >�94 part of X� via the embedding in (9-43)
obeys c�1� mY �m� c�mY and c�1� mC �m� c�mC.

This third constraint is the analog of the constraint in (9-44).

Step 4 This step describes the fourth constraint on mT� . This constraint on mT�
specifies its pullback to Œ�96;�94��

S
.;Z /2‚

T via the embedding from the second
bullet of (2-8). The constraint asks that this pullback have the form ds2C g with g

denoting a certain s–dependent metric on
S
.;Z /2‚

T . The upcoming description
of g refers to the depiction in (9-68) of g� on

S
.;Z /2‚

T ; and it refers to an
analogous depiction of the metric gY on

S
.;Z /2‚

T . The metric gY on each T has
the same form as (9-68) but with h D 0 and with different versions of A and B . The
gY versions of these functions are denoted by AY and BY . Note that AY � c

�1
0 .

The specification of g uses two functions on R, the first being the function �T
˘1 given

by �.sC 96/. This function equals 1 where s < �96 and it equals 0 where s � �95.
The second function is denoted by �T

˘2 , it is given by �.sC 95/. The latter is equal
to 1 where s < �95 and it is equal to 0 where s > �94.

The metric g on T is defined by its volume form, this being H dx dy dt , and by the
following Hodge star rules:
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(9-76)

�dx dyD.�T˘2AC.1��
T
˘2/AY / dt��

T
˘1A�

�1.1��/H�1 ZhdxCB dy;

�dy dtDH�1 .1C�T˘1�
�2H�1 A .1��/

2Zh / dx

��T˘1A�
�1.1��/H�1 Zh dt;

�dt dxDdyCB dt:

Important points to note are that g is independent of T and s on a neighborhood of
s D�94, that gD g� on a neighborhood of s D�96 and that gD g� for all s on the
complement of T 0 .

Step 5 This step describes pX and says more about the metric mT� . The 2–form pX
and the metric mT� on the s 2 Œ�102;�98� part of X� are described by the analog of
Step 1 in Part 11 of Section 9.4 that has Y replacing YG . By way of a summary, pX is
defined on the s 2 Œ�102;�101� part of X to be the 2–form pN1 that is described in
the Y version of Step 3 from Part 9 of Section 9.4. The 2–form pX is defined on the
s 2 Œ�101;�100� part of X to be the Y version of the 2–form pN2 that is described
in Step 4 from Part 9 of Section 9.4. The definition of pX on the s 2 Œ�100;�98�
part of X is made by specifying its pullback via the embedding from the second
bullet of (2-8). This pullback is the s–independent 2–form that equals p0 on Y0 and
w� � d.�1q1�/ on the rest of Y . The metric mT� on this part of X pulls back via
the embedding from the second bullet of (2-8) as ds2C g with g denoting the metric
given by g� on YM , the metric in (9-39) on Œ�100;�98��N" and the metric g� on
Œ�100;�98��Y0 . Note in this regard that mT� is in any event described by (9-10).

Step 6 This step describes pX and the metric on the s 2 Œ�98;�96� part of X. But
for one significant difference, the description of pX here is similar to the description
of its namesake given in Step 2 from Part 11 in Section 9.4. Both pX and the metric
on this part of X are described by their pullbacks via the embedding from the second
bullet of (2-8). The metric pulls back as ds2C g with g given by g� on Y0" and by
the metric in (9-39) on N" . The metric g on YM is the metric g� .

As in the Step 2 from Part 11 of Section 9.4, a 1–form to be denoted by q3� is
constructed with the following properties: it obeys dq3� D p �w� C d.�1q1�/, it
vanishes on the r� ��� 12" part of N" and its L2–norm is bounded by c0 . Reintroduce
�˘3 to denote the function on R given by �.jsj � 97/ and use �0

˘3 to denote its
derivative. The 2–form pX on Œ�98;�96��Y is p0 on Y0 and given on the rest of Y
by the formula in (9-45). Note that pX is p0Cp near f�96g�Y , and that its L2–norm
on this part of X is bounded by c0 .
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To start the description of q3� , let  denote a loop from a pair in the set ‚. The
2–form w� on T is given by �wC .1� �/Zp and so it can be written as

(9-77) p C �.Q dt � Zq dx/;

where Q is a function of y and t whose y–derivative is H , and where q is a
function of x and y whose y–derivative is h . Meanwhile, � D 1

T 2
. Let q denote

�.Q dt�Zq dx/. Use (9-68) to see that the q^�q can be written as �H dx dy dt

with j� j � c0�2A�1 . Now, A is constrained to be positive and less than c�10 �2 , and
these constraints are met if A is chosen greater than c�20 �2 . Take A so that this is
the case, and then the L2–norm (and pointwise norm) of q is bounded by c0 .

The 2–form w�� d.�q1�/ is exact on YM �
�S

.;Z /2‚
T 0
�

and on the r� �� part
of N" . This being the case, it can be written as dq� on this part of Y . More to the point,
Lemma 9.5 can be used as in the last paragraph of Step 2 from Part 11 in Section 9.4
to obtain a version of q� that is zero where r� ��� 1

512
" and has L2–norm bounded

by c0 on YM �
�S

.;Z /2‚
T 0
�

and on the r� ��� 1
512
" part of N" .

Let  again denote a loop from a pair in ‚. The difference q� � q on T � T 0 is
exact. This being the case, it follows from the Mayer–Vietoris exact sequence and
from the fact that the various loops from ‚ freely generate H1.Mı IR/ that there is
a closed 1–form, k , on YM with the following three properties: First, q� � q D k
on each .; Z / 2 ‚ version of T � T 0 . Second, k D 0 near N" and on

S
p2ƒHp .

Finally, the L2–norm of k is bounded by c0 . This understood, the sought after 1–
form q3� is defined to be q on each .; Z / 2‚ version of T and to be q�� k on
YM �

S
.;Z /2‚

T .

Step 7 This step describes pX and the metric on the s 2 Œ�96;�94� part of X. The
story with pX is simple: it is the 2–form p0C p . The metric on X is described by
its pullback to Œ�96;�94��Y via the embedding from the second bullet of (2-8). In
particular, it pulls back as ds2C g with g being an s–dependent metric on Y . The
s–dependence involves only g’s restriction to

S
.;Z /2‚

T where it is given in Step 4.
The metric g is independent of s on the rest of Y . As explained in the next paragraph,
this metric on X is such that the L2–norm of pX on the Œ�96;�94� part of X is
bounded by c0 , a T –independent constant.

The aforementioned L2–norm bound holds for p0 . To see about p , write it asP
.;Z /2‚

Zp . A given version of p has support in T , where the metric is given
by (9-76). Fix s 2 Œ�96;�94� and since p D h dx dy , the first bullet of (9-76) can
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be used to write p ^�p as Pjh j
2H dx dy dt with PD .�T

˘2A C .1��
T
˘2/AY /

2 .
Since P < c0 , so the L2–norm of p at any s 2 Œ�96;�94� slice of Œ�96;�94��Y is
bounded by c0 .

Step 8 This last step describes pX and the metric on the s 2 Œ�94; 102� part of X.
The description of pX starts where s 2 Œ96; 102�. The 2–form pX here is described by
the YC D YG version of the 2–form that is defined in Steps 1 and 2 from Part 11 of
Section 9.4. The s 2 Œ96; 100� part of the constraint in (9-74) and the constraint from
Part 10 of Section 9.4 are needed to repeat Steps 1 and 2 from Part 11 in the case at
hand. These steps define a version of pX whose L2–norm on the s 2 Œ96; 102� part
of X is bounded by c0 times the L2–norm of wC on YG . This version of pX is wC
near the s D 102 slice of X� and it is the 2–form p0C p near the s D 96 slice. The
2–form pX is set equal to p0C p on the s 2 Œ�94; 96� part of X. Its L2–norm on the
s 2 Œ�94; 96� part of X is bounded by c0 , this being a consequence of (9-75).

Part 9 Taking up where Part 8 left off, this last part of the subsection defines the desired
metric on X and wX on the s 2

�
�
1
2
LC4;L

�
part of X. To this end, fix T large and

then L1� cT so as to use the constructions in Part 8 of the metric mT� and !T� . With
L1 chosen, assume that L>4L1 . The metric mT� where s 2

�
�
1
2
LC4;�1

2
LC5

�
is

the same as the s 2
�
�
1
2
LC 4;�1

2
LC 5

�
version of the metric from Part 8, and !T�

on this same part of X is the s 2
�
�
1
2
LC4;�1

2
LC5

�
version of Part 8’s 2–form wX .

This understood, the desired metric for X is taken to be mT� where s � �1
2
LC 4,

and the 2–form wX is taken to be !T� on this same part of X. Here, �X is set to
be the s–independent 1–form �˘ , and the bounds in items (4)(b) and (5)(c) of (3-15)
are verified by choosing the parameter m to be sufficiently small, as directed in Part 2
above.
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3748 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

[40] D Toledo, Y L L Tong, Duality and intersection theory in complex manifolds, I, Math.
Ann. 237 (1978) 41–77 MR

Department of Mathematics, University at Buffalo
Buffalo, NY, United States

Institute of Mathematical Sciences, The Chinese University of Hong Kong
Shatin, NT, Hong Kong

Department of Mathematics, Harvard University
Cambridge, MA, United States

kutluhan@buffalo.edu, yjlee@math.cuhk.edu.hk,
chtaubes@math.harvard.edu

Proposed: Tomasz Mrowka Received: 31 March 2012
Seconded: András I Stipsicz, Ciprian Manolescu Revised: 2 June 2018

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.1007/BF01351557
http://msp.org/idx/mr/506654
mailto:kutluhan@buffalo.edu
mailto:yjlee@math.cuhk.edu.hk
mailto:chtaubes@math.harvard.edu
http://msp.org
http://msp.org

	1. Introduction
	1.1. The main theorem and an outline of proof
	1.2. Relating Heegaard and Seiberg–Witten Floer homologies
	1.3. Some notation and conventions

	2. Elements of Seiberg–Witten Floer theory
	2.1. Seiberg–Witten equations on 3–manifolds
	2.2. Seiberg–Witten equations on 4–dimensional cobordisms
	2.3. The monopole Floer chain complex
	2.4. Cobordism-induced maps between monopole Floer complexes
	2.5. A_dagger–module actions and geometric cochains

	3. Filtered monopole Floer homologies
	3.1. Motivation and sketches of construction
	3.2. The 3–manifold Y_Z
	3.3. 4–dimensional cobordisms
	3.4. Positivity on cobordisms
	3.5. The bound for a(c_-) - a(c_+) in Proposition 3.5
	3.6. The cases when Y_Z is M u S^1 x S^2, Y_k or Y_k u S^1 x S^2
	3.7. Cobordisms with Y_+ and Y_- either Y, M u S^1 x S^2, Y_k, or Y_k u S^1 x S^2
	3.8. Filtered Floer homologies and filtration-preserving chain maps

	4. Some homological algebra
	4.1. Terminology and conventions
	4.2. From H^*(BS^1)–modules to H_*(S^1)–modules
	4.3. From H_*(S^1)–modules to H^*(BS^1)–modules
	4.4. Koszul duality

	5. Balanced Floer homologies from monotone Floer chain complexes
	5.1. Some properties of the maps i, j and p
	5.2. The overline-C_* complex and localization
	5.3. Monopole Floer homologies from twisted tensor products

	6. Monopole Floer homology under connected sum
	6.1. Preparations
	6.2. A connected sum formula for nonbalanced perturbations
	6.3. Filtered monopole Floer homology and handle addition

	7. Properties of solutions to (2-5)
	7.1. Pointwise bounds
	7.2. The microlocal structure of (A,psi)
	7.3. Holomorphic domains
	7.4. The L^1–norm of B_A when w is harmonic
	7.5. Where 1 - |alpha|^2 is not small
	7.6. The spectral flow function
	7.7. The L^1–norm of B_A, the spectral flow and the functions cs^f, W^f, a^f
	7.8. The proof of Proposition 3.7

	8. Cobordisms and the Seiberg–Witten equations
	8.1. The three key lemmas
	8.2. Proof of Proposition 3.5
	8.3. Proof of Lemma 8.1
	8.4. Proof of Lemma 8.2
	8.5. Proof of Lemma 8.3
	8.6. Proof of Lemma 8.5
	8.7. Proof of Proposition 3.8

	9. Constructing 2–forms on cobordisms
	9.1. Met_T metrics on Y_k for k = 0,...,G
	9.2. Proof of Proposition 3.9
	9.3. Met_T metrics on cobordisms
	9.4. Proof of Proposition 3.11
	9.5. Proof of Proposition 3.13
	9.6. Proof of Proposition 1.5
	9.7. Proof of Proposition 3.14

	References

