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Witten Floer homology and the Heegaard Floer homology of a given compact, oriented
3–manifold. The isomorphism is given as a composition of three isomorphisms; the
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between the differential on the embedded contact homology chain complex and the
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relationship between the various canonical endomorphisms that act on the homology
groups of these two complexes.
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The Heegaard Floer homology of a given compact and oriented three manifold as
defined by Peter Ozsváth and Zoltán Szabó [13] is computed using a suitably chosen
Morse function and associated pseudogradient vector field. This given manifold is
denoted by M. The second paper in this series [9] used this Heegaard Floer data for M

to construct geometric data on the connect sum of M with a certain number of copies
of S1 � S2 . What follows uses Y to denote this connect sum but with orientation
opposite from that on M. The geometric data on Y was used in [9] to define a stable
Hamiltonian version of Michael Hutchings’ embedded contact homology [5]. The
generators of the latter chain complex were described in [9]. In particular, the Z–
module that serves as the chain complex for the embedded contact homology was
written in [9] as the tensor product of the Z–module that serves as the Heegaard Floer
chain complex on M and a second, canonical factor. The pseudoholomorphic curves
that are used to define the embedded contact homology differential were also described
in [9]. This paper uses as input the latter’s description of these curves to relate the
differential on Y s embedded contact homology chain complex to the differential on
M ’s Heegaard Floer chain complex. The relationship between the two differentials
leads to an isomorphism between the embedded contact homology chain complex on Y

and a tensor product of two factors, one being the Heegaard Floer homology on M

and the other a certain canonical Z–module.

The first paper in this series [8] uses the isomorphism provided by this paper as one of a
triad of isomorphisms which compose to define an isomorphism between the Heegaard
Floer homology on M and the Seiberg–Witten Floer homology on M. The input from
this paper to [8] is summarized by [8, Theorem 2.3], which is restated here as part
of Theorem 1.1. The proof of Theorem 1.1 and thus of [8, Theorem 2.3] constitutes
almost all of this article.

Notation, definitions, constructions and results from [9] are used here freely, and so
the reader should be familiar with [9]. Note in particular the following convention:
Section numbers, equation numbers, and other references from [9] are distinguished
from those in this paper by the use of the Roman numeral II as a prefix. For ex-
ample, “Section II.1” refers to [9, Section 1]. Note also that the convention here as
in [9] is to use c0 to denote a constant in .1;1/ whose value is independent of all
relevant parameters. The value of c0 can increase between subsequent appearances.
A second convention used here and in [9] concerns a function that is denoted by �.
It is a fixed, nonincreasing function on R that equals 1 on .�1; 0� and equals 0

on Œ1;1/.
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1 Embedded contact homology on Y and Heegaard Floer
homology on M

The first four subsections that follow provides a very brief summary of what is done
in [9]. Section 1A describes Y and its relevant geometry and Section 1B describes
the Z–module that serves for the embedded contact homology chain complex on Y .
Section 1C supplies a short primer on the almost complex geometry of R�Y . Section 1D
briefly describes how the corresponding pseudoholomorphic curves are used to define
the differential for the embedded contact geometry chain complex. This subsection
also describes how these curves are used to define certain important endomorphisms of
the of this chain complex.

Section 1E states the central result of this article, this being Theorem 1.1. It charac-
terizes the embedded contact homology differential in terms of the differential that
defines the Heegaard Floer homology of M. This theorem likewise characterizes the
aforementioned endomorphisms of the embedded contact homology chain complex in
terms of their analogs for the Heegaard Floer chain complex on M. As noted in the
introductory remarks, Theorem 1.1 restates [8, Theorem 2.3]. Section 1F gives a brief
look ahead at the proof of Theorem 1.1.

The last subsections, Sections 1G and 1H, supply some additional background from [9]
for use in the proof of Theorem 1.1.

1A The manifold Y and its geometry

The manifold Y is diffeomorphic to the connect sum of M and G C 1 copies of
S1 �S2 . A useful handle decomposition of Y is constructed from data on M that is
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3016 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

used to define M ’s Heegaard Floer homology. The first item from this data set is a
self-indexing Morse function, this denoted by f . The map f has image Œ0; 3�; it has
one index 0 critical point, one index 3 critical point, some G� 1 index 1 critical points
and the same number of index 2 critical points. The latter are on the respective f D 1

and f D 3 level sets. The level set f D 3
2

is denoted by †, this being the Heegaard
surface, a surface of genus G . The second item from the data set is the choice of a class
in H 2.M IZ/ which defines a homomorphism from H2.M IZ/ to 2Z. This class is
denoted in what follows by c1M . A SpinC structure will be chosen in a moment, and
its first Chern class will play the role of c1M . The third item from this data set is a
fiducial point in †, this denoted here by z0 . The final item consists of an appropriate
pseudogradient vector field for f . This vector field is denoted by v; it is defined
on the complement of f ’s critical points and it is such that v.f / D 1. This vector
field is chosen to obey various constraints; these are described in Sections II.1B, II.1C
and II.1D. Note in particular that v is constrained so as to give what Ozsváth and Szabó
in [13] deem to be a strongly admissible Heegaard diagram for the chosen class c1M

and the point z0 . The data consisting of .f ; c1M ; z0; v/ is said in what follows to be
the Heegaard Floer data. Constants that depend on just this data are said to depend
solely on the Heegaard Floer data.

The construction of Y requires the choice of a pairing between the set of index 1

critical points of f and the set of index 2 critical points of f . The resulting set of G

pairs is denoted by ƒ. An element p 2ƒ is written as an ordered pair of points with it
understood that the first entry is the index 1 critical point of f and the second entry is
the index 2 critical point of f .

The definition of Y also requires the choice of two additional positive numbers, these
denoted by ı� and R. The constant ı� is from .0; 1/ and it is determined solely by the
Heegaard Floer data. The constant R has the lower bound �100 ln ı� . This constant R

has no a priori upper bound, and the freedom to take R as large as needed is exploited
in [9] and in the constructions to come in this article.

The construction of the geometry needed for the Z–module that serves as the embedded
contact geometry chain complex requires the choice of two additional positive numbers,
these denoted by ı and x 0 . The latter with R are not determined by the Heegaard Floer
data. The trio .ı; x 0;R/ are constrained by the requirements that ı < ı� , x 0 < ı

3 and
R��c0 ln x 0 . Note in particular that the choice of ı determines an upper bound for x 0 ,
and that the choice of x 0 subject to this upper bound then determines a lower bound
for R. Constants ı , x 0 and R that satisfy these bounds are said to be appropriate.
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The remaining parts of this subsection describe first Y and then the geometry that is
needed to define the embedded contact homology Z–module.

Part 1 As noted above, the manifold Y is diffeomorphic to the connect sum of M

with GC 1 copies of S1 �S2 . Section II.1A supplies a useful handle decomposition
of Y as Mı [H0

S
p2ƒHp where Mı is the complement in M of a certain set of

2.GC 1/ disjoint balls whose centers are the critical points of f , and where H0 and
each p 2ƒ version of Hp is a copy of Œ�1; 1��S2 . Figure 1 shows a sketch of Mı

(leaving out balls near the index 0 and index 3 critical points of f .) The sketch
indicates the boundaries of the balls around the index 1 and 2 critical points of f ,
some trajectories of the gradient of f between these critical points, the surface † and
the basepoint z0 in †.

p0
1

p0
2

p0
G

v2 v1
vG

†

z0

p1 p2 pG

Figure 1

What follows next summarizes from Section II.1A how the 1–handles are attached.

The handles fHpgp2ƒ Fix pD .pC;p�/2ƒ. The constant ı� is chosen so that there
are respective coordinate charts centered on the index 1 critical point pC and index 2

critical points p� with coordinates .x;y; z/ defined where jxj2Cjyj2Cjzj2� .10ı�/
2

and such that f appears as

(1-1) f D 1Cx2
Cy2

� 2z2 and f D 2� .x2
Cy2

C 2z2/:

Use .rC; .�C; 'C// to denote the standard spherical coordinates for the Euclidean
coordinate chart centered on pC , and likewise use .r�; .��; '�// to denote the spherical
coordinates for the coordinate chart centered on p� . When d 2 .0; 10ı�/, the ball
in M given by rC < d is said to be the radius d coordinate ball centered on pC , and
the corresponding r�< d ball is said to be the radius d coordinate ball centered on p� .
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The handle Hp is given coordinates .u; .�; �//, where .�; �/ are the standard spherical
coordinates on the S2 factor, and where u 2 Œ�R � ln.7ı�/;R C ln.7ı�/� is the
coordinate for the interval factor. The handle Hp is attached to the complement
in M of the radius e�2yR.7ı�/

�1 coordinate balls centered on pC and p� via the
identifications given by

(1-2) .rCDe�.R�u/; .�CD�; 'CD�//; .r�De�.RCu/; .��D���; '�D�//:

The part of Hp where 1� 3 cos2 � > 0 is denoted by HCp . Any given constant u slice
of HCp is an annular neighborhood of the equator in S2 .

The handle H0 The constant ı� is chosen so that respective coordinate charts
centered on the index 0 and index 1 critical points of f have coordinates .x;y; z/ that
are defined where the coordinate functions obey jxj2Cjyj2Cjzj2 � .10ı�/

2 and are
such that f appears as

(1-3) f D x2
Cy2

C z2 and f D 3� .x2
Cy2

C z2/:

Use .rC; .�C; 'C// to denote the standard spherical coordinates for the Euclidean
coordinate chart centered on the index 0 critical point of f , and use .r�; .��; '�//
to denote the spherical coordinates for the coordinate chart centered on the index 0

critical point of f . When d 2 .0; 10ı�/, the ball in M given by rC < d is said to be
the radius d coordinate ball about the index 0 critical point of f . The corresponding
r� < d ball is said to be the radius d coordinate ball about the index 3 critical point
of f .

The handle H0 is given coordinates .u; .�; �// where .�; �/ are the standard spherical
coordinates on the S2 factor, and where u 2 Œ�R � ln.7ı�/, RC ln.7ı�/� is the
coordinate for the interval factor. The handle H0 is attached to the complement in M

of the radius e�2R.7ı�/
�1 coordinate balls centered on the index 0 and index 3 critical

points of f by the rule in (1-2).

The constant ı� is chosen so that the respective radius 10ı� coordinate balls about
any two distinct critical points of f are disjoint. Given r 2 .e�2R.7ı�/

�1; 10ı�/, the
complement in M of the union of the radius r coordinate balls centered on M is
denoted by Mr . The description of Y just given identifies Mr with a subset in Y .
The latter is denoted also by Mr . The just-described identification is used implicitly in
what follows to view these two incarnations of Mr as one and the same 3–manifold
with boundary. In particular, this identification defines f as a function on the Mr part
of Y , the latter also denoted by f .

Geometry & Topology, Volume 24 (2020)
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Part 2 A stable Hamiltonian structure on Y consists of a pair .a;w / where a is a
1–form, w is a 2–form and these are such that dw D 0 and da 2 Span.w /. Moreover,
a ^w is nowhere zero, and this 3–form defines the orientation for Y that is opposite
to that defined for Y by M ’s orientation of Mı . Being nowhere zero, the 2–form w
defines a homomorphism from T Y to T �Y whose kernel is a real line bundle over Y .
The 1–form a is nonzero on this line subbundle. This understood, let v henceforth
denote the vector field that spans the kernel of w and has pairing 1 with a .

Sections II.1B–II.1E describe a stable Hamiltonian structure for Y that is defined using
the Heegaard Floer data .f ; c1M ; v/ and appropriate constants ı , x 0 and R. The
salient features of a , w and v are summarized in a moment. This summary restates
what is said in Section II.1E.

By way of notation, the upcoming formulas use functions x , �C and �� of u 2 R

given by x D x 0�.juj�R� ln ıC12/ and �CD �
�
�u� 1

4
R
�

and ��D �
�
u� 1

4
R
�
.

The formulas also employ functions f and g of the variable u given by

(1-4) fD x C2.�Ce2.u�R/
C��e�2.uCR// and gD�Ce2.u�R/

C��e�2.uCR/:

Their respective derivatives are denoted by f0 and g0. (By way of a reminder, the
function � denotes here and subsequently a fixed, nonincreasing function on R that
equals 1 on .�1; 0� and equals 0 on Œ1;1/.)

The bullets that follow supply the promised description of a , w and v .

� On Mı The 2–form w on Mı is nowhere zero on the kernel of the 1–form
df and v here is the pseudogradient vector field v.

� In the handle H0 The 2–form w and the vector field v on H0 are

(1-5) w D sin � d� ^ d� and v D 1

2.�Ce2.u�R/C��e�2.uCR//

@

@u
:

� In the handles fHpgp2ƒ Fix p 2ƒ. The trio a , w and v on Hp are

(1-6)

a D .x Cg0/.1� 3 cos2 �/ du�
p

6f cos � sin2 � d�C 6g cos � sin � d�;

w D 6x cos � sin � d� ^ du�
p

6 dff cos � sin2 � d�g;

v D ˛�1
ff .1� 3 cos2 �/ @u�

p
6 x cos � @� Cf

0 cos � sin � @�g:

Here, ˛ is a certain positive function of the pair .u; �/.
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The next bullet concerns the cohomology class of the form w . This bullet refers to the
direct-sum decomposition

(1-7) H2.Y IZ/DH2.M IZ/˚ .H2.H0IZ/˚

�M
p2ƒ

H2.HpIZ/

�
that comes via Mayer–Vietoris by writing Y DMı[H0[

�S
p2ƒHp

�
. The summands

in (1-7) that correspond to the various 1–handles are isomorphic to Z, and any oriented,
cross-sectional sphere is a generator. The convention in what follows is to orient these
spheres with the 2–form sin � d� d� .

� The cohomology class of w Integration of the 2–form w defines the linear
map from H2.Y IZ/ to Z that has value 2 on the generator of H2.H0IZ/,
it has value zero on each p 2 ƒ version of H2.HpIZ/, and it acts on the
H2.M IZ/–summand in (1-7) as the pairing with the chosen class c1M .

A particular integral curve of the vector field v plays a distinguished role in the
embedded contact homology story. This curve is described next.

� The curve through z0 There is a closed integral curve of v in Mı[H0 whose
intersection with † is the chosen fiducial point z0 . This is curve is denoted
by  .z0/ . It also has a single intersection with each cross-sectional sphere in H0 .

The final bullets introduce a pair of auxiliary 1–forms on Y that play central roles.
The definition of the first of these 1–forms refers to the function f� that is defined on
any given p 2ƒ version of Hp by the rule

(1-8) f� D .�Ce2.u�R/
���e�2.uCR//.1� 3 cos2 �/:

The definition of the second of these 1–forms refers to the function �ı that is defined
on any given p 2ƒ version of Hp by the rule �ı D �.juj �R� ln ıC 10/.

� The 1–form �˘ The 1–form �˘ is closed and is such that �˘ ^ w � 0.
Furthermore, �˘ ^ w D 0 only where both u D 0 and 1 � 3 cos2 � D 0 on
each p 2 ƒ version of Hp . This 1–form equals df on Mı , it is given by
�˘ D 2.�Ce2.u�R/C ��e�2.uCR// du on H0 , and it is given by df� on any
given p 2ƒ version of Hp .

� The 1–form ya The 1–form ya has pairing 1 with v and is such that ya^w > 0.
It is �˘ on Mı [H0 and it is �ıa C .1� �ı/�˘ on any given p 2 ƒ version
of Hp .
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1B The embedded contact homology Z–module

This subsection describes the Z–module that serves as the chain complex for embedded
contact homology. The subsection has four parts that briefly summarize material from
Section II.1F and Section II.2.

Part 1 Fix a SpinC structure on M and use c1M now to denote the associated first
Chern class in H 2.M IZ/. This class is used to construct the strongly admissible
Heegaard diagram that is used to define the Heegaard Floer chain complex on M.

The Z–module that serves for the Heegaard Floer chain complex on M for the chosen
SpinC structure can be defined with the help of a finite set that is denoted by ZHF . Any
given element in ZHF is viewed here and in [9] as a suitably constrained, unordered
G–tuple of integral curves of v. Let y� denote an element from ZHF . There are three
constraints on y� : First, each constituent integral curve from y� runs from an index 1

critical point of f to an index 2 critical point of f . Second, no two distinct constituents
share the same index 1 critical point or the same index 2 critical point. This being the
case, y� defines a pairing between the set of index 1 critical points of f and the set of
index 2 critical points of f . The third constraint demands that the G points that formS
�2y�.� \†/ with the point z0 define the chosen SpinC structure in the manner that

is described in [13].

The Heegaard Floer chain complex is the free Z–module generated by the elements
of the set ZHF �Z. This module is denoted by Z.ZHF �Z/. This interpretation of
the Heegaard Floer chain complex is used by Robert Lipshitz in [10] to reformulate
Heegaard Floer homology.

Part 2 The class c1M is used to define Y and its stable Hamiltonian data .a;w ; v/.
The Z–module for the relevant version of embedded contact homology on Y is defined
with the help of a set that is denoted by Zech;M and whose elements are suitably
constrained, finite sets of closed integral curve of v that lie entirely in the union of the
various p 2ƒ versions of Hp and the f 2 .1; 2/ part of Mı . The set Zech is described
in the upcoming Part 3 of this subsection. What follows directly summarizes some of
what is said in Section II.2 about the closed integral curves of v that lie entirely in the
subset of Y just described.

Closed curves in
L

p2ƒHp Fix p 2ƒ. There are precisely two integral curves of v
that lie entirely in Hp . These constitute the two components of the locus where both
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uD 0

yCp

y�p

cos � D� 1p
3

�

Figure 2: The uD 0 sphere in Hp .

uD 0 and 1� 3 cos2 � D 0. The curve with cos � D 1p
3

is denoted by yCp and that
where cos � D� 1p

3
is denoted by y�p . These curves are labeled on Figure 2.

Intersections with Mı There exists a purely Heegaard Floer dependent constant
� � 1 whose significance is described in what follows. Construct Y with ı < ��1ı3

� .
Let  denote a closed integral curve of v in Mı [

�S
p Hp

�
that intersects Mı . Then

 \Mı consists of a finite set of segments of integral curves of v in the f �1..1; 2//

part of Mı . Each such segment lies in the radius �ı tubular neighborhood of an integral
curve of v that runs from an index 1 critical point of f to an index 2 critical point
of f .

Intersections with
S

p2ƒHp Let  denote a closed integral curve of v in the space
Mı [

�S
p Hp

�
that intersects Mı . Fix p 2ƒ. The intersection of  with Hp consists

of a finite set of segments. Let � denote any one such segment. The following is true:

(1-9) � � sits where 1� 3 cos2 � > 0.

� � runs from the uD�R� ln.7ı�/ end of Hp to the uDRC ln.7ı�/ end.

� The function h D f .u/ cos � sin2 � is constant on � .

� The coordinate u restricts as an affine coordinate to  .

� The angle � on  changes according to the rule

d�

du
D�
p

6
x .u/
f .u/

cos �.u/
1� 3 cos2 �.u/

:
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The assertion about the closed integral curves in
S

p2ƒHp summarizes Lemma
II.2.1, the assertion about  \Mı summarizes Lemma II.2.4, and the assertion about
 \

�S
p2ƒHp

�
summarizes Lemma II.2.2 and (II.2-5).

Part 3 Let O denote the four-element set f0; 1;�1; f1;�1gg. The elements in Zech;M

enjoy a 1-to-1 correspondence

(1-10) Zech;M D ZHF �

� Y
p2ƒ

.Z� O/

�
:

This correspondence is canonical when the various p 2ƒ factors of Z are viewed as
affine spaces modeled on Z. A basepoint in a given p 2ƒ version is determined by
the choice of a lift to R of the R=2�Z value � coordinate in Hp .

What follows describes the geometric meaning of the correspondence in (1-10). Write
a given element in ZHF �

�Q
p2ƒ.Z� O/

�
as .y�; .kp; Op/p2ƒ/ with y� from ZHF and

with any given p 2ƒ version of .kp; Op/ in Z� O. Let ‚ denote the corresponding
element in Zech;M. As noted in Part 2, each element in Zech;M is a finite set of closed
integral curves of v that lie in Mı [

�S
p2ƒHp

�
. With this in mind, consider first the

significance of the entry y� . The intersection of
S
2‚  with Mı has G components,

each being a segment of an integral curve of v that runs from the boundary of the
radius ı coordinate ball about an index 1 critical point of f to the boundary of the
radius ı coordinate ball centered on an index 2 critical point of f . The components
Mı\

�S
2‚ 

�
enjoy a 1-to-1 correspondence with the integral curves from y� with the

correspondence such that a given segment from Mı \
�S

2‚ 
�

lies in the radius c0ı

tubular neighborhood of its partner from y� . This version of c0 depends only on the
Heegaard Floer data.

To say more about the curves in ‚, fix p 2ƒ. The intersection of
S
2‚  with Hp

has precisely one component that crosses Hp from the uD�R� ln.7ı�/ end to the
end where u D RC ln.7ı�/. More is said about this component in a moment. The
remaining components (if any) are determined by Op using the following rule:

(1-11) � If Op D 0, then ‚ contains neither yCp nor y�p .

� If Op D 1 or Op D �1, then ‚ contains yCp or y�p respectively, but not
both of them.

� If Op D f1;�1g, then ‚ contains both yCp and y�p .

The endpoints of the segment of
�S

2‚ 
�
\Hp that crosses Hp intersects the re-

spective uD RC ln ı and uD �R� ln ı spheres in Hp at a point whose spherical

Geometry & Topology, Volume 24 (2020)
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coordinates .�; �/ differ by at most c0ı from the coordinates of the sphere’s intersection
with

S
�2y� � . Note that this version of c0 depends solely on the Heegaard Floer data.

The entry kp in ‚’s label gives an indication of the total change in the coordinate �
along this segment. To elaborate, view p’s entry of Z in (1-10) as an affine space
modeled on Z. Suppose that ‚ and ‚0 are any two elements from Zech;M. Label these
two elements as in (1-10) and assume that they have identical ZHF factor. Write their
respective entries in p’s factor of the affine copy of Z as kp and kpC k with k 2 Z.
Let � denote the total change in � along part of the curve from ‚ that crosses Hp ,
and let �0 denote the analogous ‚0 angle change. Then

(1-12) �0��D kC e;

where jej � c0ı . As before, this version of c0 depends only on the Heegaard Floer
data.

See Section II.2 and in particular Corollary II.2.7 and Proposition II.2.8 for an expanded
version of what was just said in this Part 3.

Part 4 The Z–module for the relevant version of embedded contact homology is
freely generated by a certain principal Z–bundle over Zech;M. This bundle is denoted
in what follows by yZech;M and the free Z–module generated by yZech;M is denoted
by Z. yZech;M /. Elements of this Z–module are finite, integer-weighted formal sums
of elements in yZech;M.

The definition of yZech;M is given in a moment. By way of preliminaries, note that any
given integral curve of v is oriented by v . This being the case, each closed integral
curve of v defines a closed 1–cycle in Y . When  denotes the closed integral curve,
then Œ � is used to denote the corresponding cycle. The set of the closed integral curves
from any given ‚ 2 Zech;M likewise defines a closed 1–cycle in Y , this being the
cycle

P
2‚Œ �. The latter cycle is denoted by Œ‚�. The Poincaré dual of 2Œ‚� defines

via the tautological pairing the homomorphism from H2.Y IZ/ to 2Z that acts as
follows: it sends the H2.H0IZ/–summand in (1-7) to 0, it sends the generator of each
p 2ƒ–labeled summand in (1-7) to 2, and it acts on the H2.M IZ/ summand as the
pairing with the given class c1M .

A somewhat noncanonical description of yZech;M requires the choice of a fiducial
element ‚0 2Zech;M. This done, any given element y‚ can be viewed as an equivalence
class of pairs .‚;Z/ with ‚ 2 Zech;M and with Z an element in the Z–module
H2.Y I Œ‚�� Œ‚0�/. The equivalence relation is defined with the help of the closed
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integral curve  .z0/ that is described in the fifth bullet of Part 2 in Section 1B. Pairing
with the Poincaré dual of  .z0/ defines a homomorphism from the Z–module of closed
2–cycles to Z. This pairing is denoted by Œ .z0/�Pd. � /. The equivalence relation has
.‚;Z/� .‚0;Z0/ if and only if ‚D‚0 and also Œ .z0/�Pd.Z�Z0/D 0. The principal
bundle projection map sends an equivalence class .‚;Z/ to ‚. The element 1 2 Z

acts to send .‚;Z/ to .‚;ZC ŒS0�/, where ŒS0� is the uD 0 sphere in H0 .

A different choice for ‚0 produces a different principal Z–bundle over Zech;M, but
the new one and the original are canonically isomorphic. To elaborate, suppose that ‚0

0

is a second choice. Any cycle in H2.Y I Œ‚0�� Œ‚
0
0
�/ has a well-defined intersection

pairing with the curve  .z0/ . Adding a suitable multiple of the f D 3
2

level set in Mı

will give a cycle in H2.Y I Œ‚0�� Œ‚
0
0
�/ with zero intersection pairing against  .z0/ .

Let Z0 denote such a cycle. The isomorphism in question sends the equivalence class
of .‚;Z/ in the ‚0 version of yZech;M to that of .‚;ZCZ0/ in the ‚0

0
version. A

different intersection pairing zero choice gives the same equivalence class and thus the
same isomorphism.

As explained next, the existence of cycles with zero intersection pairing against  .z0/

can be exploited to construct a canonical principal Z–bundle isomorphism

(1-13) Zech;M �Z! yZech;M :

The isomorphism depicted here is defined by a certain section of yZech;M whose image
corresponds via (1-13) to Zech;M �f0g. This section sends any given ‚2Zech;M to the
equivalence class of a pair .‚;Z/, where Z can be any 2–cycle in H2.Y I Œ‚�� Œ‚0�/

that has pairing 0 against  .z0/ . A different choice of Z with intersecting pairing zero
against  .z0/ defines the same equivalence class and so the same section. This is why
(1-13) is canonical. In fact, (1-13) is canonical in the following stronger sense: the
canonical isomorphism between any two ‚0 and ‚0

0
versions of yZech;M intertwines

their respective versions of (1-13).

The image via (1-13) of the set Zech;M � f�1; : : : ;�1g defines a subfiber bundle
in yZech;M. The latter is denoted by yZ0

ech;M . The free Z–module generated by the
elements in yZ0

ech;M plays a central role in Theorem 2.3 of [8]. This submodule is
denoted here by Z. yZ0

ech;M /.

Pairing with the class c1M defines a linear functional from H2.M IZ/ to 2Z. Let
pM 2 2Z denote the divisibility of the subgroup defined by the image. Rules laid out
by Hutchings (see [4]) can be used here to give each generator of yZech;M a relative
Z=.pM Z/ degree and so give Z. yZech;M / a relative Z=.pM Z/ grading.
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1C The almost complex geometry of R�Y

An endomorphism of Z. yZech;M / that serves as the embedded contact homology dif-
ferential is defined using certain sorts of submanifolds in R � Y . The latter are
pseudoholomorphic for a chosen almost complex structure. Part 1 of this subsection
describes the allowed almost complex structures. Part 2 of the subsection summarizes
some standard definitions.

Part 1 Section II.3A and (II.6-1) describe the constraints that delineate the set of
allowed almost complex structures on R�Y . The first two constraints are the R�Y

versions of standard constraints that are used in all contact and symplectic versions of
Floer homology. The remaining constraints are special to the situation at hand. By way
of notation, the Euclidean coordinate on the R factor of R�Y is denoted by s .

Let J denote a given almost complex structure on R�Y . This almost complex structure
is allowed if it has the properties listed in the seven bullets that follow:

� J maps the Euclidean tangent vector @s to the R factor of R�Y to v .

� J is not changed by constant translations along the R factor of R�Y .

� J preserves the kernel of the 1–form ya , and its restriction to this 2–plane field
defines the orientation given by w .

The next two bullets concern the restriction of J to any given p2ƒ version of R�Hp .
The statement of the second refers to the vector fields

(1-14)
e1 D�6g cos � sin � @uC .x Cg0/.1� 3 cos2 �/ @� ;

e2 D @� C
p

6�ıf cos � sin2 � v :

These span the kernel of ya where both u and .1� 3 cos �/ sin � are not zero.

� J is unchanged by constant, R=2�Z translations of the coordinate � .

� Je1 D �
�1e2 , where � is a positive function of u and � .

The final two bullets concerns the restriction of J to R�Mı . The first of these refers
to two sets of pairwise disjoint annuli in the Heegaard surface †. The annuli in the
first set are labeled by the index 1 critical points of f , and those in the second are
labeled by the index 2 critical points of f . Let p denote a given index 1 or index 2

critical point. The corresponding annulus is denoted respectively by TpC or Tp� .

To say more about these annuli, let p denote an index 1 critical point of f . The
annulus TpC is the image via Lie transport along the integral curves of v of the annulus

Geometry & Topology, Volume 24 (2020)



HFD HM , III 3027

in the radius ı� coordinate ball centered on p where 1� 3 cos2 �C > 0. By way of a
review from [9], the image of the central, �C D �

2
, circle in this annulus is denoted

by CpC ; this is the intersection between the Heegaard surface † and the ascending
disk from the critical point p . Let hC denote the function 2e2tC cos �C sin2 �C on the
radius 8ı� coordinate ball centered on p . Lie transport by v gives TpC coordinates
.'C; hC/ with the former being R=2�Z–valued. The restriction of w to TpC �† is
given using these coordinates by

p
6 d'C ^ dhC .

Let p now denote an index 2 critical point of f . The annulus Tp� is the image via
Lie transport via v of the annular region where 1� 3 cos2 �� > 0 in the boundary of
the radius ı� coordinate ball centered on p . The image in Tp� of the central �� D �

2

circle is denoted by Cp� ; it is the intersection between † and the descending disk
from p . Set h� D 2e2t� cos �� sin2 �� . Lie transport by v identifies gives Tp� the
coordinates .'�; h�/. The 2–form w on Tp� is �

p
6 d'� ^ dh� .

There is one more point to note regarding an intersection TpC \ Tp0� . The respective
coordinates .'C; hC/ for TpC and .'�; h�/ for Tp� are related on this intersection
by the rule .d'C; dhC/ D ˙.dh�; d'�/ with the C sign taken when the pair of
vectors .@=@'C; @=@'�/ define an oriented basis for T† at the corresponding point
in CpC \ Cp0� .

The union of the annuli in the set labeled by the index 1 critical points of f is denoted
by TC , and of the union of the annuli from the set labeled by the index 2 critical
points of f is denoted by T� . The union of the index 1 critical point versions of CpC

is denoted by CC and the corresponding union of the index 2 critical point versions
of Cp� is denoted by C� .

The bullet that follows identifies the f 2 .1; 2/ part of Mı with .1; 2/ �† in the
manner just described:

� J @=@'CD@=@hC on R�.1; 2/�TC and J @=@'�D�@=@h� on R�.1; 2/�T� .

These two conditions are compatible on TC\T� because .d'C; dhC/D˙.dh�; d'�/
on any given component of TC\ T� .

The final bullet refers to a certain residual subset in the C1–Fréchet space of almost
complex structures that obey the preceding bullets. This is the subset Jech from
Theorem II.A.1:

� J comes from the residual set Jech .
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The membership in the residual set Jech guarantees the vanishing of the cokernel of a
Fredholm operator that is associated to certain sorts of pseudoholomorphic submani-
folds.

An almost complex structure that obeys the first three bullets is compatible with the
2–form y! D ds ^ ya Cw . Said differently: The bilinear form yw . � ;J. � // defines a
Riemannian metric on R � Y when J obeys the first three bullets. Note that this
metric gives both @

@s and v norm 1, it makes them mutually orthogonal, and it makes
both orthogonal to the kernel of ya . This metric also makes J into an orthogonal
endomorphism of T .R�Y /. With J given, the metric yw . � ;J. � // is used implicitly
in what follows to define norms and covariant derivatives on the various tensor bundles
over R�Y .

An almost complex structure that obeys all seven of these bullets will be said to be a
member of Jech .

Part 2 Let J denote an almost complex structure on R�Y . Assume for the moment
that J obeys only the constraints from the first three bullets of Part 1. A proper subset
C � R� Y is said in what follows to be a J –holomorphic subvariety if it has the
following properties:

(1-15) � C has no isolated points and the complement of a finite set in C is a
submanifold with J –invariant tangent space.

� The integral of w over C is finite.

A J –holomorphic subvariety is said to be irreducible if the complement of any given
finite set is connected.

A J –holomorphic subvariety may or may not be compact. If not, these conditions have
the various standard implications [3; 18; 7] about the large js j part of the subvariety.
To say more, let C denote a given, noncompact pseudoholomorphic subvariety. There
exists s0 > 1 such that the js j � s0 part of C is a disjoint union of embedded cylinders.
The 1–form ds is nonzero on the tangent space of each such cylinder. A component
cylinder of the js j � s0 part of C is said to be an end of C. An end of C where s � s0

is said to be positive and an end where s � �s0 is said to be negative. A constant
js j � s0 slice of any given end is an embedded circle in Y . This circle appears as
a braid in a small radius tubular neighborhood of a closed integral curve of v . As
js j increases, the circle in question moves via an ambient isotopy so as to converge
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pointwise as js j!1 as a multiple cover of the central integral curve of v . The closed
integral curve in question is said to be associated to the given end.

The set of J –holomorphic subvarieties is given the topology that associates to any
given J –holomorphic subvariety a basis of open neighborhoods of the following sort:
Let C denote the given subvariety. The sets of C ’s neighborhood basis are labeled by
.0; 1/. A J –holomorphic subvariety C 0 is in a given " 2 .0; 1/ member of this basis
when:

(1-16) � supz2C dist.z;C 0/C supz2C 0 dist.C; z/ < ".

� Let � denote a smooth 2–form on R�Y with j�j � 1, with jr�j< "�1

and with compact support where js j< "�1 . Then
ˇ̌R

C ��
R

C 0 �
ˇ̌
< ".

The resulting topological space is called the moduli space of J –holomorphic sub-
varieties. The group R has a continuous action on the moduli space, this given by
the constant translations along the R factor of R� Y . An irreducible, R–invariant
J –holomorphic subvariety is the product of R with a closed integral curve of v .

Of particular interest in much of what follows are the moduli space components that
contain elements that are characterized as follows. Let C denote a member.

(1-17) � C is embedded.

� Distinct ends of C have distinct associated closed integral curves of v .
This is also the case for distinct negative ends of C.

� The constant js j slice of any given end are isotopic in the tubular neighbor-
hood of the associated integral curve of v to this central integral curve.

� The set of integral curves of v that are associated to the positive ends of C

defines an element of Zech;M, This is also true for the negative ends.

A J –holomorphic subvariety that is described by the second, third and fourth bullets
of (1-17) is said to be an ech-subvariety. An ech-subvariety is said to be an ech-HF
subvariety if it lacks irreducible components that intersect R�Mı in an f D constant
level set, or that intersect R�H0 in a uD constant level set, or that intersect some
p 2 ƒ version of R �Hp in the u D 0 level set. Any such forbidden irreducible
component is described completely by one of Propositions II.3.1–II.3.4. An ech-HF
subvariety is said here to be an ech-HF submanifold if it obeys all four of the bullets
in (1-17).

Let C denote an ech-subvariety. The element in Zech;M that comes from the positive
ends of C via the fourth bullet of (1-17) is denoted by ‚CC ; the analogous negative
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end element in Zech;M is denoted by ‚C� . The smooth part of C is oriented by J, and
so C ’s image in Y via the projection defines a 2–cycle with boundary Œ‚CC �� Œ‚C� �.
This 2–cycle is denoted by ŒC �Y . Meanwhile, Hutchings (see [4]) gives rules for
assigning an integer to C, its ech index. This ech index is denoted here by Iech.C /.

Let y‚0 and y‚ denote a given pair from yZech;M and let k denote a given integer. Use
Mk.y‚

0; y‚/ to denote the set of ech subvarieties with membership characterized as
follows: Write y‚ as a pair .‚;Z/ with ‚2Zech;M and Z 2H2.Y I Œ‚��Œ‚0�/. Write
in the analogous fashion y‚0D .‚0;Z0/. The subvariety C is a member of Mk.y‚

0; y‚/

when

(1-18) ‚CC D‚; ‚C� D‚
0; Z0 DZ � ŒC �Y and Iech.C /D k:

The set Mk.y‚
0; y‚/ is a union of components of the moduli space of J –holomorphic

subvarieties. By way of a parenthetical remark, the set Mk.y‚
0; y‚/ is empty unless

the sum of k mod .pM / and the Z=pM Z grading of y‚0 equals the Z=pM Z grading
of y‚.

1D The differential and the geometric endomorphisms of Z. yZech;M /

Part 1 of this subsection supplies a brief description of the differential on Z. yZech;M /

that defines the relevant version of embedded contact homology. As noted in Appendix
II.A1, rules laid out by Hutchings [6] can be used to define an action of the alge-
bra ZŒU �˝

�V�
.H1.Y IZ/=torsion/

�
on the embedded contact homology Z–module.

Part 2 of this subsection describes the generators of this ZŒU �˝
�V�

.H1.Y IZ/=torsion/
�

action. Part 3 talks about the grading of this Z–module.

All that is said in what follows assumes that J comes from Jech .

Part 1 An endomorphism of Z. yZech;M / is given by its action on the generators and
the action on any given generator y‚ 2 yZech;M results in a formal sum of the form

(1-19) y‚!
X

y‚02yZech;M

N y‚0;y‚
y‚0;

with each coefficient an integer and where only finitely many coefficients are nonzero.
The collection of integers fN y‚0;y‚gy‚0;y‚2yZech;M

defines the endomorphism.

Theorem II.A.1 asserts that the endomorphism of Z. yZech;M / that serves as the differ-
ential for embedded contact homology can be defined according to the rules laid out
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by Hutchings (see [6; 5; 7]). These rules are summarized in Part 1 of Section 9B to
come. Suffice it to say here that each f y‚0; y‚g version of the relevant version of N y‚0;y‚
is computed using the components of M1.y‚

0; y‚/.

Theorem II.A.1 implies that M1.y‚
0; y‚/ is a smooth manifold with a finite set of

components, each R–equivariantly diffeomorphic to R, and that each component of
this space contributes either C1 or �1 to a sum that gives N y‚0;y‚ .

The endomorphism that defines the differential for embedded contact homology is
denoted in what follows by @ech .

Part 2 As noted above, the homology of @ech is a Z–module with certain canonical
endomorphisms that generate an action of Z.U/˝

�V�
.H1.Y IZ/=torsion/

�
. The

generators of this action are defined by endomorphisms of Z. yZech;M /. As explained
in Part 3 of Appendix II.A1, the endomorphism of Z. yZech;M / that supplies the action
of U on the homology is defined with the help of a chosen point in either H0 or the part
of Mı where f 2 .0; 1/[ .2; 3/. Let y denote such a point. It follows from (II.A-6)
and Theorem II.A.1 that a given y‚0; y‚ 2 yZech;M version of the coefficient N y‚0;y‚ is
zero unless y‚0 and y‚ are related as follows: Write y‚ as .‚;Z/ with ‚ 2 Zech;M

and with Z 2H2.Y I Œ‚�� Œ‚0�/. Then y‚0 D .‚;Z � ŒS �/, where ŒS � here denotes
the uD 0 sphere in H0 . The coefficient N y‚0;y‚ in this case is 1.

What follows is also a consequence of Theorem II.A.1. The endomorphisms of
Z. yZech;M / that generate the action of

V�
.H1.Y IZ/=torsion/ on the homology are

defined with the help of a chosen, suitably generic basis of cycles that generate
H1.Y IZ/=torsion. Fix such a basis and let O{ � Y denote a chosen basis element.
Any given y‚0; y‚ 2 yZech;M coefficient N y‚0;y‚ in the corresponding version of (1-19) is
computed using the submanifolds from M1.y‚

0; y‚/ that intersect f0g � O{ and the
corresponding intersection points. If  is suitably generic, then the set of pairs
consisting of a submanifold in M1.y‚

0; y‚/ and an intersection point with f0g � O{
is a finite set. Moreover, each such intersection point contributes either C1 or �1 to a
sum that gives N y‚0;y‚ . The upcoming Section 9C explains how these ˙1 contributions
are determined.

The upcoming Theorem 1.1 refers to an M–adapted 1–cycle basis for H1.Y IZ/=torsion.
The definition of M –adapted requires the introduction from Part 7 in Section II.1C
of a certain finite set in the interior of † n .T� [ TC/. The set contains the fiducial
point z0 and dim.H1.M IZ// additional points. This set is denoted by °. Each z 2 °
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is the intersection point of † with a closed integral curve of v . The latter curve
is denoted by  .z/ . Pairing with the Poincaré duals of the homology classes of the
cycles in the set fŒ .z/�� Œ .z0/�gz2°nz0

generates the dual in Hom.H2.Y IZ/IZ/ of
the H2.M IZ/–summand in (1-7).

An M –adapted basis is characterized as follows: The basis contains the cycle Œ .z0/�,
it contains a set of cycles that can be labeled fO{.z/gz2°nz0

, and it is rounded out by a
set of G cycles that can be labeled fO{pgp2ƒ . A given z 2 ° n z0 version of O{.z/ lies
entirely in the M7ı� part of Y . It is homologous to Œ .z/�� Œ .z0/� and it is obtained
from the latter by first truncating the H0 portions of the curves  .z/ and  .z0/ and
then reconnecting the respective endpoints by arcs on the boundary of the radius 7ı�

coordinate balls about the index 0 and index 3 critical points of f . A given p 2 ƒ

version of O{p is disjoint from the f 2 Œ1; 2� part of M7ı� , and it intersects the rest of
M7ı� and H0 as a smooth curve that is transverse to the level sets of f in Mı and
the constant u spheres in H0 ; the orientation is such that it has intersection number 1

with the uD 0 sphere in H0 . Meanwhile, O{p intersects
S

p02ƒHp0 as the � D 0 arc
in Hp , and the orientation is such that it has intersection number �1 with each uD 0

sphere in Hp .

1E The Heegaard Floer equivalence

A three-part digression follows directly to set the notation for Theorem 1.1.

Part 1 Use (1-10) and (1-13) to write yZech;M as

(1-20) yZech;M D Zech;M �ZD ZHF �

� Y
p2ƒ

.Z� O/

�
�Z:

The principal Z–bundle action of Z acts on the right-most Z. This factor is now
moved next to the ZHF factor to write (1-20) as

(1-21) yZech;M D .ZHF �Z/�

� Y
p2ƒ

.Z� O/

�
:

The identification in (1-21) induces the tensor product decomposition

(1-22) Z. yZech;M /D Z.ZHF �Z/˝

�O
p2ƒ

Z.Z� O/

�
:

This representation of Z. yZech;M / is used implicitly by Theorem 1.1.

Geometry & Topology, Volume 24 (2020)



HFD HM , III 3033

Part 2 The factor Z.Zech;M �Z/ is the Z–module for the Heegaard Floer homology
on M. The endomorphism that supplies the differential for this homology is denoted
by @HF . Theorem 1.1 describes the differential @ech on Z. yZech;M / in terms of @HF and
certain endomorphisms that are induced on (1-22) by corresponding endomorphisms
of the various p 2 ƒ factors of Z.Z� O/. A given p 2 ƒ version is denoted by @p .
All are the same endomorphism of Z.Z� O/, this being the endomorphism @� that
acts on the generating set as follows:

(1-23) � @�.k; 0/D 0 for each k 2 Z.

� @�.k; 1/D .k; 0/C .kC 1; 0/ for each k 2 Z.

� @�.k;�1/D .k; 0/C .k � 1; 0/ for each k 2 Z.

� @�.k; f1;�1g/D .k;�1/C.kC1;�1/�.k; 1/�.k�1; 1/ for each k 2Z.

As noted by Lemma 2.5 in [8], the homology of the chain complex .Z.Z� O/; @�/ is
Z˚Z, and generators are the closed elements .0; 0/ and .0; 1/� .1;�1/.

The various versions of Heegaard Floer homology enjoy an action of the algebra
ZŒU �˝

V�
.H1.M IZ/=torsion/ whose generators can be defined by endomorphisms

of Z. yZech;M �Z/. Note in this regard that the generator of the action of ZŒU � sends
any given pair .y�; k/ 2 Zech;M �Z to .y�; k � 1/.

There is one other Heegaard Floer endomorphism that plays a role in what follows. The
latter is defined by its action on the generators, and in doing so, it acts solely on the ZHF

and ignores the Z factor. This is the endomorphism that appears in Theorem 4.1 of [13]
and Definition 8.1 of [14]. The latter is denoted here by @HF0 .

The upcoming formula for @ech and the other endomorphisms of (1-22) use the following
convention: Suppose that E and E0 are graded chain complexes and that � and �0

are respective graded endomorphisms of E and E0. The latter induce on E ˝E0

an endomorphism, �C�0, that is defined by the following action on the reducible
elements: Let e and e0 denote respective elements of E and E0. Then .�C�0/.e˝e0/

is defined to be �e˝ e0C .�1/degree.�0/ degree.e/e˝�0e0.

Part 3 Let pM 2 2Z again denote the greatest divisor of the image of H2.M IZ/

in Z via the pairing homomorphism with c1M . As noted previously, the Z–module
Z. yZech;M / has a relative Z=pM Z grading that is induced by a relative grading of its
generators. The grading difference between given generators y‚0 and y‚ is denoted in
what follows by grech.

y‚0/� grech.
y‚/.
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As explained in [13; 14], the Z–module Z.ZHF � Z/ has a relative Z=.pM Z/

grading that is induced by a relative Z=.pM Z/ grading of the set ZHF . The dif-
ference between the respective gradings of given elements y�0; y� 2 ZHF is denoted by
degHF.y�

0/� degHF.y�/. Granted this notation, the difference between the gradings of
corresponding elements .y�0; k 0/ and .y�0; k/ from ZHF�Z is degHF.y�

0/� degHF.y�/C

2.k 0� k/.

The module Z.Z� O/ has an absolute Z grading with values in the 3–element set
f0; 1; 2g. The latter grading is induced by a grading of the generators that depends only
on the factor ODf0; 1;�1; f1;�1gg: The element 0 has grading zero, the elements �1

and 1 have grading 1, and the element f�1; 1g has grading 2. The resulting grading
map from Z� O to f0; 1; 2g is denoted by grO. � /.

With the preceding as background, what follows is this paper’s central result:

Theorem 1.1 Identify Z. yZech;M / with Z.ZHF�Z/˝
�N

p2ƒZ.Z�O/
�

as in (1-22).

� The differential @ech appears as @ech D @HFC
P

p2ƒ@p .

� The U –map acts as the map ..y�; k/; .kp; Op/p2ƒ/! ..y�; k � 1/; .kp; Op/p2ƒ/.

� Use the M –adapted 1–cycle basis fŒ .z0/�; fO{.z/gz2°nz0
; fO{pgp2ƒg to define en-

domorphisms of Z. yZech;M /.
(a) The endomorphism defined by Œ z0 � acts as @HF� @HF0 .
(b) The endomorphisms defined by cycles from fO{.z/gz2°nz0

act only on the
Z.ZHF � Z/ factor. In doing so, they induce a set of generators of theV�
.H1.M IZ/=torsion/ action on the Heegaard Floer homology.

(c) The endomorphism that is defined by any given p 2ƒ version of O{p acts as
Ip˝y�p , where Ip acts as the identity on the factors

Z.ZHF �Z/˝

� O
p02ƒ�p

Z.Z� O/

�
and y�p is the degree �1 endomorphism that acts only on p’s factor of
Z.Z� O/. It acts on this factor as the endomorphism that sends .kp; Op/ to
.kp; O0p/ with coefficient either 1 or 0. The coefficient 1 appears if and only
if both Op D 1 and O0p D 0, or both Op D f1;�1g and O0p D�1.

� Let y‚0 D ..y�0; k 0/; .k0p; O0p/p2ƒ/ and y‚D ..y�; k/; .kp; Op/p2ƒ/ denote any two
elements. Then

grech.
y‚0/�grech.

y‚/D grHF.y�
0/�grHF.y�/C2.k 0�k/C

X
p2ƒ

.gr.O0p/�gr.Op//:
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The subsequent sections in this article contain the proof of Theorem 1.1. The next
subsection gives an indication of what the proof involves.

1F A look ahead at the proof

Three fundamental observations serve as the foundation for the proof of Theorem 1.1.
The first is provided by Lipshitz [10] and his theorem to the effect that the differential
for Heegaard Floer homology can be defined using certain sorts of pseudoholomorphic
subvarieties that reside in the f �1.1; 2/ part of R �Mı . These are described in
Section II.6 and their properties are summarized in the next subsection. The second
observation is supplied by Propositions II.7.2 and II.7.3. The latter assert that the
R �Mı part of any of the relevant ech-HF subvariety looks very much like a sub-
variety of the sort considered by Lipshitz. The third observation is jointly supplied by
Propositions II.4.5 and II.5.8. These two propositions jointly hint at a canonical form
for the R�

�S
p2ƒHp

�
part of any given ech-HF subvariety. The subsequent proof

of Theorem 1.1 uses this view of an ech-HF subvariety as the union of a Heegaard
Floer looking R�Mı part and a roughly canonical R�

�S
p2ƒHp

�
part to derive

the decomposition given by the first bullet of Theorem 1.1, and likewise to prove the
assertions of the remaining bullets.

A proof of Theorem 1.1 along the preceding lines must address the following funda-
mental question:

Fix a subvariety from [10]. As noted above , there is some set of ech-HF
subvarieties that look much like it on R�Mı . What can be said about this
set ; in particular , can enough be said to justify the claims of Theorem 1.1?

As it turns out, only submanifolds need be considered, and the upcoming sections study
the question just posed with regards to submanifolds. This is done by constructing
the appropriate set of ech-HF submanifolds from a given submanifold from [10]. The
construction has two parts. The following two parts of this subsection say a few things
about the two parts of the construction and how they lead to Theorem 1.1.

Part 1 The first part of the construction starts with a submanifold from [10] and
a suitably compatible pair of elements y‚0; y‚ 2 yZech;M ; it then uses this data to
build a canonical approximation to what would be an ech-HF submanifold from the
moduli space M1.y‚

0; y‚/. This approximation exploits the dichotomy between what
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is said in Propositions II.4.5 and II.5.8 and what is said in Proposition II.7.2 about the
R�

�S
p Hp

�
and R�Mı parts of an ech-HF submanifold. In particular, the approxi-

mation consists of a set C0 D fCS0
; fCp0

gp2ƒg where CS0
denotes a J –holomorphic

submanifold with boundary in R�Mı , and where any given p 2 ƒ version of Cp0

denotes a J –holomorphic submanifold with boundary in R�Hp . The submanifold
CS0

looks very much like one of the subvarieties from [10], and each p 2ƒ version
of Cp0

is described by Propositions II.4.5 and II.5.8. The submanifold CS0
has 2G

boundary components, one on a certain f 2 .1C ı2; 1C ı2
�/ level set in each p 2ƒ

version of R�Hp and the other on a certain f 2 .2�ı2
�; 2�ı

2/ level set in each p2ƒ

version of R�Hp . Meanwhile, any given p 2 ƒ version of Cp0
has two boundary

components, one on each of these same level sets of f in R �Hp . However, the
boundary components of Cp0

need not agree with the corresponding CS0
boundary

components on the relevant level sets of f .

The set of such approximations to would-be ech-HF submanifolds can be used to
define an ersatz version of M1.y‚

0; y‚/. This ersatz version can then be used to define
coefficients of endomorphisms of Z. yZech;M / using Hutchings’ rules. To say a bit
more, note that the definition of the endomorphism coefficients using honest ech-
submanifolds is along standard symplectic field theory lines in the sense that a family
of Fredholm operators and a certain tautological R action play the central roles. The
space M1.y‚

0; y‚/ parametrizes the right sort of family, and the tautological R action is
induced by the constant translations along the R factor of R�Y . Granted this remark
about the definitions, what follows is a key point: The corresponding ersatz moduli
space that is constructed from the canonical approximations to ech-HF submanifolds has
an analogous family of Fredholm operators and an analogous action of R. This being
the case, Hutchings’ rules can also be used with the ersatz moduli spaces to define
endomorphisms Z. yZech;M /. Meanwhile, the canonical nature of the construction
guarantees that the resulting versions of the endomorphisms relevant to Theorem 1.1
satisfy the conclusions of Theorem 1.1.

Section 2 describes in detail the canonical approximations to ech-HF submanifolds;
Sections 3–6 construct them.

Part 2 The second part of the construction builds a cobordism between the ersatz
version of a given M1.y‚

0; y‚/ and the version with honest ech-HF submanifolds. The
cobordism maps to the interval Œ0; 1� with the inverse image of 0 giving the ersatz
moduli space and that of 1 giving the version with honest ech-submanifolds. The
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cobordism defines a smooth manifold with boundary such that the map to Œ0; 1� is proper
and smooth. A key point here is that the relevant family of Fredholm operators extends
across the cobordism, as does the relevant R action. Given that the approximation
versions of Theorem 1.1’s endomorphisms obey Theorem 1.1’s conclusions, these last
facts are seen to imply that Theorem 1.1’s conclusions must hold with its endomorphisms
defined using honest ech-submanifolds.

To say a bit more about this cobordism, consider for a moment one of the approximation
sets, C0 D fCS0

; fCp0
gp2ƒg. As noted in Part 1, its elements are J –holomorphic

manifolds with boundary with the boundaries lying on certain level sets of f . The
boundary of CS0

is determined solely by the given subvariety from [10]. The boundary
of any given p 2ƒ version of Cp0

is constrained in part by that of CS0
. Keeping this

in mind, let � denote the parameter in Œ0; 1�. The inverse image of � in the cobordism
consists of a set of the form C D fCS ; fCpgp2ƒg where CS is a J –holomorphic
submanifold with boundary in R �Mı , and where each p 2 ƒ version of Cp is a
J –holomorphic submanifold with boundary in R�Hp . The submanifold CS has 2G

boundary components, these on the aforementioned level sets of f in
S

p2ƒ.R�Hp/.
Meanwhile, each p 2ƒ version of Cp has two, one each on the R�Hp parts of these
level sets. The parameter � indicates the extent to which the two boundary components
of any given p 2ƒ version of Cp agree with the relevant pair of boundary components
of CS . In the case when � D 1, they match up and so define an honest ech-subvariety.
This is not necessarily true for � < 1.

By way of a hint as to the nature of the family of Fredholm operators, the operator for
a given � 2 Œ0; 1� version of C D fCS ; fCpgp2ƒg is viewed as a set of GC 1 operators,
with one defined by CS and one by each p2ƒ version of Cp . Thus, each is defined on
a manifold with boundary and, as such, its definition requires the specification of some
boundary conditions. These are local (as opposed to spectral) boundary conditions that
couple the CS operator to those defined by the various p 2ƒ versions of Cp so as to
associate to C a single Fredholm operator. The parameter � determines the degree of
coupling.

Section 7 constructs the cobordism space that interpolates between the ersatz moduli
space and the space of ech-HF submanifolds.

Section 8 supplies the background needed to use the cobordism to compute the dif-
ferential and other endomorphisms that appear in Theorem 1.1. Section 9 uses the
properties of the cobordism space to complete the proof of Theorem 1.1.
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1G The subvarieties used by Lipshitz

This subsection summarizes some of what is said in Section II.6 about the subvarieties
that are used by Lipshitz in [10]. These are subvarieties in the f 2 .1; 2/ part of R�M

that are best described by viewing this part of M as .1; 2/�† via the identification
given by Lie transport with the pseudogradient vector field v.

The relevant subvarieties in R � .1; 2/ � † are pseudoholomorphic for an almost
complex structure with certain special properties. These are described in Section 1
of [10]. Let J denote an almost complex structure on R�Y that obeys the constraints
in Part 1 of Section 1C. The restriction of J to the f 2 .1; 2/ part of R�Mı can be
extended to the whole of R�.1; 2/�† so as to give an almost complex structure of the
sort considered by Lipshitz and, in particular, of the sort that is described by (II.6-1).
Conversely, a suitably generic almost complex structure on R� .1; 2/�† that obeys
(II.6-1) will serve for Lipshitz. Moreover, such an almost complex structure will restrict
to the R�Mı part of R� .1; 2/�† as the restriction of an almost complex structures
on R�Y that obeys the constraints in Section 1C. This understood, let J denote an
almost complex structure on R�Y that obeys the constraints in Part 1 of Section 1C
and let JHF denote an almost complex structure on R� .1; 2/�† that obeys (II.6-1).
To say more about JHF , note that the stable Hamiltonian 2–form w appears on the
Mı part of .1; 2/�† as the pullback via the projection of an area form on †. Denote
the latter by w† . This form extends in the obvious way to the whole of .1; 2/�†. Let
t denote the Euclidean coordinate on .1; 2/. The almost complex structure JHF maps
@s to @t , it preserves the level sets of t and it is compatible with the symplectic form
ds ^ dt Cw† . It also commutes with the @s Lie derivative and it obeys the constraint
given by the sixth bullet in Part 1 of Section 1C.

Lipshitz considers JHF –holomorphic subvarieties in R� .1; 2/�† with eight special
properties that are listed in a moment. For the purposes at hand, it is sufficient to
consider the case where the subvariety in question is a smooth submanifold. The closure
in R� Œ1; 2��† of a submanifold with these properties is said here to be a Lipshitz
submanifold. Let S0 denote the interior of a Lipshitz submanifold.

Property 1 The integral over S0 of w† is finite. This is also the case for the integral
of ds^dt over any subset of S0 with bounded image in the R factor of R�.1; 2/�†.

The second property refers to the G circles in † that form the latter’s intersection with
the ascending disks from the index 1 critical points of f , and the corresponding set of
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G circles that form †’s intersection with the descending disks from the index 2 critical
points of f . If p is a given index 1 or index 2 critical point of f , the corresponding
circle is denoted by CpC or Cp� as the case may be. The union of the index 1 critical
point versions of CpC is denoted by CC and the union of the index 2 critical point
versions is denoted by C� .

Property 2 The JHF –holomorphic submanifold S0 is the interior of a properly em-
bedded surface R� Œ1; 2��† with 2G boundary components. Half of the boundary
components are in R� f1g � CC and no two of these lie in the same component. The
other half are in R� f2g � C� and, likewise, no two are in the same component.

The surface with boundary in Property 2 is denoted by S. If p is an index 1 or index 2

critical point of f , then the corresponding boundary component of S is denoted by @pS.
It is a properly embedded copy of R in R� f1g � CpC or R� f2g � Cp� as the case
may be.

With regard to notation, Lipshitz and also Section II.6 view what is denoted here by S

as the image of a complex surface via a JHF –holomorphic map, u . What is denoted
by S here is denoted in [10] and in Section II.6 by u.S ).

The third property refers to elements from the set ZHF . By way of a reminder, an
element of ZHF consists of a set of G integral curves of v with each starting at an
index 1 critical point of f and ending at an index 2 critical point of f . Moreover,
distinct curves from such a set have distinct start points and distinct endpoints.

Property 3 The surface S is the complement of 2G points in a compact surface with
boundary. The function s on S increases with no finite limit on sequences that limit
to G of these points, and it decreases with no finite limit on sequences that limit to the
remaining G points.

This surface with boundary in question is denoted by S. The G points of S nS with
neighborhoods where s is unbounded from above are said to be positive points, and
the remaining points are said to be negative points.

The remaining properties of S are all consequences of the first three. The next two
properties restate Lemmas II.6.2 and II.6.3. They refer to the two sets of G circles, C�

and CC , in † that are described in Section 1C. They also refer to their respective annular
neighborhoods, T� and TC , and the coordinate functions .'�; h�/ and .'C; hC/ on
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these annular neighborhoods. These are also described in Section 1C. (The original
definitions are in Parts 2 and 3 of Section II.2C). By way of a reminder, the h� D 0

locus in T� is C� , and the hC D 0 locus in TC is CC .

Property 4 Let p denote either an index 1 or index 2 critical point of f . The closure
in S of the corresponding boundary component @pS adds one positive point and one
negative point from S nS. Meanwhile, @pS appears in R�CpC or R�Cp� as a graph
over R of the form x! .s D x; 'CD '

S;p.x// or x! .s D x; '�D '
S;p.x// as the

case may be. In either case, 'S;pW R!R is a smooth map with bounded derivatives to
any given order. Moreover, the x!˙1 limits of 'S;p exist and both are in CC\C� .

The next property describes the behavior of S near any given boundary component.

Property 5 There exists zS > 0 and �S > 1 with the following significance: Let p

denote either an index 1 or index 2 critical point of f . Then a neighborhood of @pS

in S appears as the image of a map from R � .0; zS / to R � .1; 1C zS / � TpC or
R� .2� zS ; 2/� Tp� as the case may be. This map has the form

� .x; z/! .s D x; t D 1C z; 'CD '.x; z/; hCD &.x; z// when p has index 1,

� .x; z/! .s D x; t D 2� z; '� D '.s ; z/; h� D &.s ; z// when p has index 2,

where '. � / and &. � / are maps from R� Œ0; zp/ to R that obey

� j&.x; z/jC z�1j'.x; z/�'S;p.x/j< �Sz ,

� j@x&.s ; z/jC z�1j.@x'/.s ; z/� .@x'
S;p/.x/j< �Sz .

In addition , the pair ' and & have bounded derivatives to any given order on R�Œ0; zS /.

The next property says more about the large js j part of S.

Property 6 There exists �S > 1 such that the s � ��S and s � �S portions of S

are disjoint unions of G half open rectangles. Those where s � ��S are properly
embedded submanifolds in .�1; �S �� Œ1; 2�� .T�\ TC/ that appear as a graph over
.�1; �S �� Œ1; 2� of a map to a component of T�\ TC with the following properties:
Let q denote the point in C�\ CC that lies in the given component and let  denote
the map. Then dist. ; q/� e�js j=�S . The derivatives of  to any given order are also
bounded by a constant times this same exponential factor. Meanwhile , the components
of the s � �S have an analogous description as a graph over Œ�S ;1/� Œ1; 2�.

This property and Property 2 lead directly to the next property.
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Property 7 The set of constant s 2 R slices of S when viewed in M converge
pointwise as s !1 to define an element in ZHF . This is also true of the s !�1
limit of the constant s slices.

These two elements in ZHF are denoted respectively by y�C and y�� .

The set of Lipshitz submanifolds is given the topology whereby an open neighborhood
of a given subvariety S has a basis of open sets labeled by the positive numbers. The
open set labeled by " 2 .0;1/ is characterized as follows: A submanifold S 0 is a
member when:

(1-24) � supz2S dist.z;S 0/C supz2S 0 dist.S; z/ < ".

� Let � denote a smooth 2–form on
�
�

1
"
; 1
"

�
�Œ1; 2��† with compact support,

with supremum norm 1 and with jr�j � 1
"

. Then
ˇ̌R

S 0 ��
R

S �
ˇ̌
� ".

The resulting topological space is denoted by AHF .

The group R acts continuously on AHF via its action on R� .1; 2/�† as the group of
constant translations along the R factor. This R action is free on the complement of
the set

˚
R�

�S
�2y� �

�	
y�2ZHF

of 1–point components AHF . Lemmas II.6.6 and II.6.7
say more about the structure of AHF . These lemmas refer to a certain R–linear,
Fredholm incarnation of the x@–operator that is canonically associated to any given
Lipshitz subvariety. The relevant operator is described in Section II.6E for the case
when the variety in question is a submanifold. The operator for a Lipshitz submanifold
S is denoted by DS . Let NS ! S denote the complex normal bundle of S, with the
complex structure defined by JHF and with the hermitian structure and thus holomorphic
structure defined by the metric w†. � ;JHF. � //. Let T 0;1S denote the .0; 1/ part of
T �S ˝C. The operator DS maps sections of NS to sections of NS ˝T 0;1S by the
rule

(1-25) �!DS�D x@�C v�C�x�;

where v denotes a certain section of T 0;1S and � denotes a section of N 2
S
˝T 0;1S.

To describe the Fredholm domain of DS , note that Property 4 can be used as in
Section II.6E to identify the bundle NS along the boundary of S with T† along CC

and C� . Then, the Fredholm domain is the L2
1

completion of the space of compactly
supported sections of NS that obey

(1-26) � � 2 T CC on the t D 1 part of the boundary of S,

� � 2 T C� on the t D 2 part of the boundary of S.
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Note in this regard that the definition of the L2
1

–norm uses the metric w†. � ;JHF. � //

to define the integration measure, inner products and covariant derivative on all tensor
bundles constructed from NS and TS. Meanwhile, the range space for this Fredholm
incarnation of DS is the space of square-integrable sections of NS ˝T 0;1S.

The final property speaks of this operator DS .

Property 8 The operator DS has trivial cokernel.

Given this last property, it follows from Lemma II.6.7 that the subspace of Lipshitz
submanifolds in AHF has the structure of a smooth manifold whose dimension near
any given submanifold S is the Fredholm index of DS .

1H Coordinates for the 1� 3 cos2 � > 0 part of R�Hp

The upcoming construction of ech-HF submanifolds exploits the parametrization of
the 1� 3 cos2 � > 0 part each p 2ƒ version of R�Hp from Part 1 of Section II.4C.
The parametrization is denoted by ‰p . The three parts of this subsection that follow
define ‰p and list some of its important features.

Part 1 Fix p 2ƒ. The upcoming description of ‰p requires introducing the coordi-
nates .u; �; �/ for Hp and the function h of the variables u and � given by

(1-27) h D f.u/ cos � sin2 �;

with f as defined in (1-4). The 1–form dh is nowhere zero where 1� 3 cos2 � > 0.
This function is also annihilated by the vector field v and so it has constant value along
v ’s integral curves in Hp .

The definition of ‰p also involves the J –holomorphic submanifolds from Proposition
II.3.2’s space M† and Proposition II.3.4’s space Mp0

. By way of a reminder, the
space M† is R–equivariantly diffeomorphic to R� .1; 2/. Each element is a compact
submanifold that is diffeomorphic to †. A given .s; t /2R� Œ1Cı2; 2�ı2� element is
the .s D s; f D t / slice of R�Mı . An element parametrized by R�.1; 1C7ı2

�/ inter-
sects the u> 0 portion of each p2ƒ version of R�Hp where 1�3 cos2 � > 0, and an
element in the R�.2�7ı2

�; 2/ part of M† intersects the u<0 and 1�3 cos2 � >0 part
of each p2ƒ version of R�Hp . In each case, the intersection is a properly embedded
annulus that can be parametrized by the functions � and h . This parametrization is
such that the range of h is symmetric with respect to multiplication by �1, and such
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that functions s and u restrict as ˙1 symmetric functions of h . Thus, each constant h
slice of the annulus is a circle in some constant .s ;u/ sphere in R�Hp . Taken together,
these annuli from M† foliate the part of R�Hp where u¤ 0 and 1� 3 cos2 � > 0.

The space Mp0
is R–equivariantly diffeomorphic to R. An element in the space Mp0

is a properly embedded annulus in the part of R�Hp where 1� 3 cos2 � > 0 and
u D 0. The pair .�; h/ restrict as coordinates to this annulus such that h defines a
proper map to

�
�.x 0 C 2e�2R/ 2

3
p

3
; .x 0 C 2e�2R/ 2

3
p

3

�
. The coordinate s on the

annulus is a symmetric function of h that is unbounded from above on both ends of
its domain. The member parametrized by 0 2R intersects the .s D 0; uD 0/ slice of
R�HCp as the � D �

2
circle in S2 . The annuli from Mp0

foliate the 1�3 cos2 � > 0

part of the uD 0 slice of R�Hp .

Part 2 Introduce HCp to denote the 1� 3 cos2 � > 0 and juj<RC ln ı� part of Hp .
The inverse of ‰p is an R–equivariant embedding of R�HCp into

(1-28) R� .�R� ln ı�;RC ln ı�/� .R=2�Z/�
�
�

4

3
p

3
ı2
�;

4

3
p

3
ı2
�

�
:

The image is denoted by R�X. The coordinate functions on the space depicted in
(1-28) and thus on R�X are denoted by .x; yu; y�; h/. The rules that follow define ‰p :

(1-29) � ‰p sends a given .x; yu¤ 0; y�; h/ point in R�X to the �D y� , h Dh point
on the subvariety from M† that intersects the � D �

2
slice of R�HCp

where s D x and uD yu.

� ‰p sends a given .x; yuD 0; y�; h/ point in R�X to the �D y� , h Dh point
on the subvariety from Mp0

that intersects the � D �
2

slice of R�HCp
where s D x and uD 0.

Formulas for the ‰p–pushforwards of the coordinate vector fields @x , @yu , @y� and @h

as given in (II.4-4) can be written as

(1-30) � ‰p�@x D @s ,

� ‰p�@yu D �.v C˛�1
p

6 x cos � @� C$@s /,

� ‰p�@y� D @� ,

� ‰p�@h D�ˇ
�1.e1� �

�1
p

6�ıf cos � sin2 � @s /.

Here, ˛ is from (1-6), both � and ˇ are certain positive functions of the pair .u; �/,
the function $ depends only on .u; �/, the function � is from the fifth bullet in Part 1
of Section 1C, and the vector field e1 is defined by (1-14).
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Part 3 The definition just given endows ‰p with the properties listed in a moment. Let
p denote the index 1 critical point of f from p and let p0 the corresponding index 2

critical point. The list refers to the annuli TpC and Tp0� in † and their respective
coordinates .'C; hC/ and .'�; h�/. These are introduced in Part 1 of Section 1C. The
list also writes the f 2 .1; 2/ part of R �Mı as a subset of R � .1; 2/ �†, and it
uses .s ; t / to denote the Euclidean coordinates on R� .1; 2/. What follows next is the
promised list:

(1-31) � The constant .x; yu/ surfaces in R�X are mapped by ‰p to J –holomorphic
submanifolds.

� The map ‰p is equivariant with respect to the R actions on R�X and
R�HCp along their R factors.

� The map ‰p is equivariant with respect to the R=2�Z action that translates
the coordinate y� on R�X and translates the coordinate � on R�HCp .

� The yu�RC ln ı part of X is

.RC ln ı;RC ln ı�/�R=2�Z�
�
�

4

3
p

3
ı2
�;

4

3
p

3
ı2
�

�
;

and ‰p maps this part of R�X diffeomorphically onto

R� Œ1C ı2; 1C ı2
�/� TpC

by the rule

.x; yu; y�; h/!
�
s D x; t D e2.yu�R/; 'C D y�; hC D h

�
:

� The yu� �R� ln ı part of X is

.�R� ln ı;�R� ln ı�/�R=2�Z�
�
�

4

3
p

3
ı2
�;

4

3
p

3
ı2
�

�
;

and ‰p maps this part of R�X diffeomorphically onto

R� .2� ı2
�; 2� ı

2/� Tp�

by the rule

.x; yu; y�; h/!
�
s D x; t D e�2.yuCR/; 'C D y�; hC D�h/:

The first three bullets of this list reproduce (II.4-3).
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2 The approximations

As noted in Part 1 of Section 1F, each Lipshitz submanifold can be used to construct a
corresponding set of approximations to ersatz ech-HF submanifolds. The set in question
is parametrized by a subset yZS � yZech;M � yZech;M which is invariant with respect
to the diagonal action of Z. Each element in yZS determines a corresponding ersatz
ech-HF subvariety, this being a collection of GC 1 submanifolds with boundary that
is denoted by C0 D fCS0

; fCp0
gp2ƒg. By way of a reminder, CS0

is a submanifold
with boundary in the f 2 .1; 2/ part of R�Mı and each p 2ƒ version of Cp0

is a
submanifold with boundary in R�HCp . The upcoming Section 2B defines yZS, and
the remaining subsections describe the ersatz ech-HF submanifold that is associated
to any given element in yZS. Section 2A describes the data needed to construct this
association.

2A The parameters .ı; x 0;R/ and a new parameter, z�

Section 1F does not mention one important point: The desired set of ersatz ech-HF
submanifolds can be constructed from a given Lipshitz submanifold only if the param-
eter ı from the data set .ı; x 0;R/ that defines Y and its stable Hamiltonian geometry
is sufficiently small. In particular, the chosen almost complex structure JHF and the
orbit in AHF=R of the chosen Lipshitz submanifold jointly determine an upper bound
on ı . As noted in Section 1A, the latter determines an upper bound for x 0 , and then
x 0 determines an upper bound for R.

The construction of the ersatz set of ech-HF submanifolds requires the specification
of an additional parameter, this denoted by z� . This z� is a positive number whose
maximum allowed value is determined by the orbit in AHF=R of the chosen Lipshitz
submanifold. In any event, z� is less than e�32ı2

� . The choice of z� must be made
prior to choosing ı since the constructions that follow require the maximum allowed
value for ı be less than e�16z1=2

� .

Additional refinements for allowed maximum of z� and ı are stated as they are needed
in the constructions to come. In any event, both are determined solely by the R–orbit
of the chosen Lipshitz surface. What follows are further comments on this issue that
are of specific concern with regards to the proof of Theorem 1.1.

The first point is perhaps self-evident: a given finite set in AHF=R determines maximum
values for z� and ı such that the constructions to follow can be made using any Lipshitz
surface from this chosen set of R–orbits if z� and ı are less than their allowed maxima.
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As it turns out, the set of R–orbits need not be finite to obtain this same conclusion.
Saying more requires a digression to introduce the notion of a weakly compact set. Let
K � AHF denote an R–invariant set of submanifolds. This set is said to be weakly
compact when the following two requirements are met: First, integration of the 2–
form w† over the Lipshitz surfaces maps K to a bounded subset in R. Here is the
second requirement: Fix any sequence from K and there exists a surface S 2 K and
subsequence of the given sequence which, after renumbering as fSngnD1;2;::: , obeys

� sup
z2S\.Œ� 1

n
; 1

n
��Œ1;2��†/ dist.z;Sn/Csup

z2Sn\.Œ� 1
n
; 1

n
��Œ1;2��†/ dist.S; z/< 1

n
.

� Let � denote a smooth 2–form on
�
�

1
n
; 1

n

�
� Œ1; 2��† with compact support,

with supremum norm 1 and with jr�j � 1
n

. Then
ˇ̌R

S ��
R

Sn
�
ˇ̌
�

1
n

.

Suppose K is a given weakly compact subset of Lipshitz submanifolds. As it turns
out, maximum values of z� and ı can be chosen so that the constructions to come
can be done using any surface from K and values for z� and ı that are less than
these K–dependent maxima. A data set D D .z�; ı; x 0;R/ that can be used for all
Lipshitz submanifolds in K is said in what follows to be K–compatible. Note that the
applications to the proof of Theorem 1.1 require only finite sets of R–orbits of Lipshitz
submanifolds.

The proof that K–compatible data sets exist is a straightforward affair given how the
maxima for z� and ı are subsequently determined from any given Lipshitz submanifold.
The proof is left to the reader save for what is said in the two parts that follow.

Part 1 Fix a Lipshitz submanifold S. The upper bounds for z� and ı are determined
by certain data that can be associated to S. The first two elements of this data set come
from Property 5 of Section 1G. These are the constants zS and �S . In particular, z� is
constrained to be less than e�32zS . The third element also comes via Property 5 of
Section 1G. This is a bound for the C 6 –norm over any length 1 interval in R of any
index 1 and index 2 critical point version of the map 'S;p . The data set also contains
the C 6 –norms of the intrinsic and extrinsic curvatures of S, and a maximum for the
allowed diameter of a tubular neighborhood of S in R� Œ1; 2��†.

The final element in the data set is a norm for a certain inverse of the operator DS . To
say more about what this means, recall from Section II.6E that DS defines an R–linear,
Fredholm map from a certain Hilbert subspace of L2

1
sections of the complex normal

bundle of S to the L2 Hilbert space of sections of the tensor product of this normal
bundle with the .0; 1/ cotangent bundle of S. Property 5 of Section 1G implies that
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this map is surjective. As a consequence, the operator DS has an inverse that maps the
range Hilbert space to the L2 –orthogonal complement in the domain Hilbert space
of the kernel of DS . The latter map is continuous and so bounded; it is the desired
inverse.

Part 2 The a priori bound on the integral of w† over the submanifolds that form K
implies that all of the data listed in Part 1 lie in a compact set. The point being that
the convergence criteria for membership in K and the bound on the integral of w†

implies that the subsequence fSngnD1;2;::: converges to the submanifold S in the C1

topology on compact subsets of R� Œ1; 2��†. Note in this regard that the constraint
on JHF given by the sixth bullet in Part 1 of Section 1C has the following consequence:
when written as in the proof of Lemma II.6.3, the equations that define a Lipshitz
subvariety in R� .1; 2/�† are C–linear equations on neighborhoods of R�f1g� TC

and R� f2g � T� . This linearity is exploited in Part 3 of Section II.6B. In particular,
only slight modifications to the arguments used in the proof of Lemma II.6.3 establish
C1 convergence for the parts of fSng near the boundary of R� Œ1; 2��†. Meanwhile,
the C1 convergence in the interior of R�Œ1; 2��† is proved using standard arguments
about sequences of pseudoholomorphic curves. See for example [11].

The C1 convergence on compact subsets of R� .1; 2/�† to a surface in K implies
the desired a priori bound on all but one element of any S 2 K version of the data
set given in Part 1. The one element missing is the norm of the inverse of DS . The
needed bound on this norm can be derived using (II.6-15)–(II.6-17) to deal with the
case when fSngnD1;2;::: does not converge pointwise on the whole of R� Œ1; 2��†

to its limit. In the latter case the large n versions of Sn will have long, nearly R–
invariant cylinders (a consequence of Lemma II.5.6). Even so, (II.6-15)–(II.6-17)
supply an S 2 K–independent constant c0 such that kDS�kL2 � c�1

0
k�kL2

1
if � is in

the domain of DS and has compact support on such a cylinder. This sort of bound
plus the C1 convergence on compact subsets of R� Œ1; 2��† implies the desired
S 2 K–independent bound on the norm of the inverse of DS .

2B The set yZS

Fix a Lipshitz submanifold, S. As noted at the outset, the set of ersatz ech-HF
submanifolds that are constructed from S is indexed by a subset yZS � yZech;M� yZech;M.
The two parts of this subsection describe the set yZS.
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Part 1 The diagonal action of Z on yZech;M � yZech;M preserves yZS and gives it
the structure of a principal Z–bundle over its image in ZHF � ZHF . The image is
described in the upcoming Part 2 of this subsection. To say more about the fiber
over this image, first write yZech;M using (1-13) as Zech;M �Z. Introduce next nS

to denote the intersection number between S and the JHF –holomorphic subvariety
R� .1; 2/� z0 . This is a nonnegative integer. A given element ..‚�; k�/; .‚C; kC//
from yZech;M � yZech;M sits in yZS only if kC D k�C nS .

Part 2 Let y�� and y�C 2ZHF denote the elements that are defined by S as described in
Property 6 of Section 1G. These sets define via (1-10) a corresponding set of elements
in Zech;M, thus a subset in ZHF �ZHF of the form

(2-1)
�
y�� �

� Y
p2ƒ

.Z� O/

��
�

�
y�C �

� Y
p2ƒ

.Z� O/

��
:

The set yZS will sit over a subset in (2-1). The latter is denoted in what follows by ZS.

The elements in (2-1) that lie in ZS are characterized by G conditions, one for each p2ƒ.
As explained in a moment, a given pair .y��; .kp� ; Op�/p2ƒ/ and .y�C; .kpC ; OpC/p2ƒ/

from (2-1) defines a corresponding set of integers, this denoted by fmpgp2ƒ . The given
pair defines an element in ZS if and only if each p 2ƒ version of mp , Op� and OpC

obeys one of

(2-2) � mp D 0 and one of

(a) Op� D OpC D f0g, or

(b) Op� D f0g and OpC D f�1; 1g;

� mp D�1 and Op� D f0g and OpC D f1g;

� mp D 1 and Op� D f0g and OpC D f�1g.

Fix pD .p;p0/2ƒ. To say more about mp , let pC and p� denote the respective seg-
ments of the integral curves of v in HCp that are defined by the data .y��; .kp� ; Op�/p2ƒ/

and .y�C; .kpC ; OpC/p2ƒ/. Fix r 2
�

1
2
ı�; ı�

�
so that projection map from R�.1; 2/�†

to .1; 2/ � † restricts to S so as to define a map that is transverse to surfaces in
.1; 2/ � † that correspond to the f 2 .1; 2/ part of the boundary of the radius r

coordinate balls centered at p and p0. These respective intersections define a pair of
embedded arcs, one in the boundary of the radius r coordinate ball centered at p and
the other in the boundary of the radius r coordinate ball centered at p0. The former
starts at the point where the relevant integral curve of v from y�C intersects the radius r
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coordinate ball centered at p and ends at the point where the relevant integral curve of
v from y�� intersects this radius r coordinate ball. Denote this arc by �p1

. The second
arc starts from the point where the relevant integral curve of v from y�� intersects
the radius r coordinate ball centered on p0 and it ends where the relevant integral
curve of v from y�C intersects the radius r coordinate ball centered on p2 . Denote
this second arc by �p2

.

As noted by Corollary II.2.6, the start point of �p1
has distance no greater than c0ı

from the point where pC intersects the boundary of the radius r coordinate ball
centered at p and its endpoint has distance no greater than c0ı from the point where
p� intersects the boundary of the radius r coordinate ball centered at p . There is an
analogous observation about the start and endpoints of �p2

.

Granted these observations, what follows defines a 1–cycle in HCp . Start where pC
intersects the boundary of the radius r coordinate ball centered on p0 and proceed
along pC until it intersects the boundary of the radius r coordinate ball centered on p .
Then proceed along a geodesic arc in this sphere of length c0ı or less to the start point
of �p1

. Proceed along �p1
to its endpoint and then along the geodesic arc in the sphere

to the its intersection point with p� . Return to the boundary of the radius r coordinate
ball centered on p0 by traversing backwards along p� . Then proceed along the short
geodesic in this sphere to the start point of �p2

, follow �p2
to its end, and then follow

the short geodesic in this sphere to the nearby intersection point pC . Figure 3 shows
the part of this 1–cycle in Hp .

Hp

pC

p�

�p2
�p1

y�C y�� y�� y�C

@.Br .p
0// @.Br .p//

S S

Figure 3
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This closed 1–cycle defines a class in H1.HCp IZ/. The latter group is isomorphic to Z

with generator the equatorial circle in the uD 0 slice with the orientation given by @
@�

.
This understood, the closed 1–cycle defines an integer. This integer is mp .

2C The submanifold CS0

Fix a Lipshitz submanifold S ; or if needed, take S from some chosen weakly compact
subset K � AHF of Lipshitz submanifolds. In any event, with S chosen, fix a pair
.y‚�; y‚C/2 yZS. This data labels an ersatz ech-HF submanifold, C0DfCS0

; fCp0
gp2ƒg.

This subsection describes CS0
. The description is given in the first four parts of this

subsection. An existence/uniqueness assertion is stated in Part 6 as Proposition 2.1.
This proposition gives an indication of the role played by S. Part 5 of the subsection
sets some background for Proposition 2.1.

Part 1 Use Lemmas II.6.3 and II.6.4 to find a constant zS < e�32ı2
� such that the

conclusions of Lemma II.6.3 holds and such that Lemma II.6.4 holds when z�zS . With
regards to Lemma II.6.4, choose zS so as to guarantee the following: the composition
of first projection from R� .1; 2/�† to .1; 2/�† and then the identification of the
latter with the f 2 .1; 2/ part of M sends the f � 1C zS portion of S into the union
of the radius e�16ı� coordinate balls centered on the index 1 critical points of f , and
it sends the pmrtion where f � 2� zS into the union of the radius e�16ı� coordinate
balls centered on the index 2 critical points of f . Note that zS can be taken to be
K–compatible when K is specified.

Fix z� 2 .0; e�64zS / and then ı < e�16z1=2
� . Some additional purely S –dependent

(K–compatible) constraints on the upper bounds for z� and ı are given subsequently.

Part 2 The element CS0
from C0 is a properly embedded, J –holomorphic sub-

manifold with boundary in R� Œ1C z�; 2� z���†. This surface has 2G boundary
components, with G on R� f1g �† and G on R� f2g �†. These former sets are
mapped via the projection to † into pairwise distinct components of TC , and the latter
are mapped via this projection into pairwise distinct components of T� . In any event,
each boundary component is an embedded copy of R.

Part 3 This part describes the large js j part of CS0
. To this end, let ‚� and ‚C

denote the respective basepoints in Zech;M for the chosen elements y‚�; y‚C 2 yZS.
What follows first describes the s ��1 behavior.
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There exists s1 � 1 which is such that the s � �s1 part of CS0
is a disjoint union of

G graphs over .�1;�s1�� Œ1C z�; 2� z��. Each such graph has the form

(2-3) .s ; t /! .s ; t ;  .s ; t //;

where  is a map from .�1;�s1�� Œ1Cz�; 2�z�� to TC\ T� . The images of these
G maps are in distinct components, and each such component contains the intersection
with † of an integral curve of v from ‚� . Let q� now denote such an intersection
point and let  � denote the map from (2-3) with image in the q� component of TC\T� .
Then

(2-4) dist. �.s ; � /; q�/� c e�js j=c ;

where c � 1 is a purely S –dependent (or K–compatible) constant. Finally, if the given
component of TC\T� is parametrized using the relevant index 1 critical point versions
of the functions .'C; hC/, and if  is written with respect to these coordinates in
terms of functions .'C D '�.s ; t /, hC D &�.s ; t //, then the pair .'�; &�/ obey the
Cauchy–Riemann equations @s'�� @t&� D 0 and @s&�C @t'� D 0.

The s � s1 part of CS0
has the analogous description with ‚C replacing ‚� .

Part 4 This part describes the boundary behavior of CS0
near any given boundary

component. This involves a purely S –dependent (or K–compatible) constant, �S� ,
which is greater than 100. If zS is chosen less than ��2

S�
then what follows holds

is true. Let p denote either an index 1 or index 2 critical point of f . When p has
index 1, use .'C; hC/ to parametrize TpC , and when p has index 2, use .'�; h�/
to parametrize Tp� . Then the part of CS0

in R � Œ1 C z�; 1 C zS � � TpC or in
R� Œ2�zS ; 2�z��� Tp� is diffeomorphic to R� Œz�; zS � and parametrized via a map
of the form

(2-5) � .x; z/! .s D x; t D 1C z; 'C D '
S0.x; z/; hC D &S0.x; z// when p has

index 1,

� .x; z/! .s D x; t D 2� z; '� D '
S0.s; z/; h� D &S0.s; z// when p has

index 2.

The functions 'S0 and &S0 that appear here are R–valued functions that obey the
Cauchy–Riemann equations @x'

S0�@z&
S0 D 0 and @x&

S0C@z'
S0 D 0. In addition,

the first and higher derivatives of these functions to any given order are bounded
uniformly on R� Œz�; zS � by a constant that depends only on the given order and S

(it is K–compatible when K is given). Finally j&S0. � ; z�/j � �S�z� .
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Part 5 The upcoming Proposition 2.1 states an existence/uniqueness assertion for CS0
.

This part of the subsection supplies some background for this proposition.

Proposition 2.1 views the f 2 .1; 2/ part of M as .1; 2/�† so as to describe CS0
as

a submanifold with boundary in R� Œ1Cz�; 2�z���†. The submanifold CS0
in this

guise is the t 2 Œ1C z�; 2� z�� portion of a properly embedded, JHF –holomorphic
submanifold in R � Œ1; 2� � †, this denoted by S� . The submanifold S� has 2G

boundary components, one in each index 1 critical point version of R� f1g � TpC ,
and, likewise, one in each index 2 critical point version of R� f2g � Tp� .

The submanifold S� is isotopic to S in a small radius tubular neighborhood of S. The
description in Proposition 2.1 identifies this tubular neighborhood with a disk bundle
in the normal bundle of S using an exponential map of the sort that is described in
Section II.6E. What follows reviews some aspects of this sort of exponential map.

To start, recall from Section II.6E that S has a complex normal bundle, NS ! S,
and an exponential map that embeds a disk subbundle as a tubular neighborhood of S.
The exponential map is denoted by eS and the disk subbundle by N0 . The latter has
radius �S and its image in R� Œ1; 2��† is a tubular neighborhood that contains the
set of points with distance c�1�S from S. The map eS embeds each fiber disk as a
JHF –holomorphic disk. If K is a previously specified, weakly compact set of Lipshitz
submanifolds, then �S and c can be taken to be K–compatible, as can the derivatives
to any given order of the exponential map eS .

Although not stated as such in Section II.6E, the map eS can be chosen so as to respect
the graph structure described in Section II.6C and Property 5 of Section 1G near the
boundaries of S. In particular, eS can be chosen so that it maps any given fiber of N0

over the t 2 .1; 1C zS / and t 2 .2� zS ; zS / portions of S as follows: The graph
structure indicated by Property 5 of Section 1G identifies the bundle NS over this part
of S with the restriction to S of T†. In particular, the 1–forms .d'C; dhC/ when
t 2 .1; 1CzS / and .d'�;�dh�/ when t 2 .2�zS ; 2/ with the underlying real bundle
define an orientation-preserving isomorphism to the product R2 –bundle. Given this
isomorphism, eS on these parts of S can and should be chosen so as to send any point
in S parametrized by .x; z/ and a pair .a; b/ in the R2 factor of the product bundle
to the point given by one of

(2-6) � .s D x; t D 1C z; 'C D '.x; z/C a; hC D &.x; z/C b/,

� .s D x; t D 2� z; '� D '.x; z/C a; h� D &.x; z/� b/.
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The pair .d'C; dhC/ as defined by any given index 1 critical point of f are also used
to write NS as the product bundle over the corresponding s ��1 and s � 1 parts
of S. By way of a reminder, the s��1 part of S has G components, each projecting
to a distinct component of Œ1; 2�� .TC\ T�/, and these G components can be labeled
by the index 1 critical points of f . The same can be said for the s � 1 part of S. In
any event, the exponential map eS can and should be chosen so that it acts as in the
top bullet of (2-6) on these large js j parts of S.

The construction of a map eS of this sort can be made using the techniques that are
used to prove Lemma 5.4 in [19].

Proposition 2.1 refers to the Fredholm operator, DS , that is described in Section II.6E;
it is depicted in (1-25). By way of a reminder, this operator maps a certain Hilbert
space of sections of NS to the space of square-integrable sections of NS˝T 0;1S. The
Hilbert space for the domain is the Sobolev L2

1
–norm completion of the subspace of

sections that obeys the constraints in (II.6-12). The kernel of DS refers to the sections
of NS in the domain Hilbert space that are annihilated by DS . The L2 inner product
on sections of NS is defined using the fiber metric on NS and the integration measure
on S that comes from the metric induced by its embedding in R� Œ1; 2��†.

Write the pair y‚� and y‚C from the chosen element in yZS as .‚�; k�/ and .‚C; kC/.
Proposition 2.1 refers to a number that is associated to each index 1 and each index 2

critical point of f by ‚C and another that is determined by ‚� . When p is used
to denote the critical point in question, the corresponding two numbers are denoted
respectively by hpC and hp� . When p is an index 1 critical point of f , the numbers
hpC and hp� denote the respective hC coordinates of the TpC intersection point of an
integral curve of v from ‚C and ‚� with the t D 1Cz� slice of .1; 2/�†. When p

is an index 2 critical point of f , the numbers hpC and hp� denote the respective h�
coordinates of the Tp� intersection point of an integral curve of v from ‚C and ‚�
with the t D 2� z� slice of .1; 2/�†. By way of a parenthetical remark, it follows
from what is said in Section II.2 that jhpC j and jhp� j are both bounded by c0ı

2 .

With regards to ‚� and ‚C , Proposition 2.1 uses y�� and y�C to denote the respective
HF-cycles that are used in (2-1) for their definition. Let q2† denote a given intersection
point with an integral curve of v from either y�� or y�C . Let q� denote the corresponding,
nearby intersection point of the corresponding segment of an integral curve of v from
‚� or ‚C as the case may be. Note that q� has distance at most c0ı from q . The
point q is an element in CC\C� and therefore in some index 1 critical point component
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of CC . This critical point labels a corresponding s ��1 or s � 1 component of S.
The latter component is denoted by ESq

. Proposition 2.1 writes the exponential map eS

over ESq
as in the top line of (2-6) so as to view q� as a section of NS over ESq

.

Here is one final item of notation: the function x ! �.x/ maps R to Œ0; 1�; it is
nonincreasing, equal to 1 where x � 0 and equal to zero where x � 1.

Part 6 This final part of the subsection first states and then proves the existence/unique-
ness proposition about CS0

.

Proposition 2.1 Fix a Lipshitz submanifold S or one from some specified weakly
compact subset K � AHF of Lipshitz submanifolds. There exist �S� � 100 and
zS 2 .0; �

�2
S�
/ that depend only on S (and are K–compatible if relevant) such that

what follows is true. Fix z� 2 .0; e�32zS / and then ı 2 .0; e�16z1=2
� / and x 0 and R.

There exists a unique section �� of N0 that is characterized by:

� The C 4 –norm of �� is bounded by �S�ı .

� The restriction of �� to the t 2 Œ1C z�; 2� z�� part of S is L2 –orthogonal to
the corresponding restriction of the elements in the kernel of the operator DS .

� Let p denote either an index 1 or index 2 critical point of f . The pairing of the
section �� along the corresponding boundary component of S with the relevant
1–form dhC or dh� is the function on R given by hpC.1��/C hp��.

� Let q 2† denote an intersection point with an integral curve of v from either
y�� or y�C and let q� denote the corresponding section of NS over ESq

. The
pointwise norm of �� � q� converges to zero as js j !1 on ESq

. Moreover,
given k � 0, there exists a purely S –dependent (or K–compatible) constant c
such that the derivatives to order k on ESq

are bounded by c e�js j=c .

� With .1; 2/�† viewed now as the f 2 .1; 2/ part of M, use CS0
�R�Mı to

denote the t 2 Œ1C z�; 2� z�� part of S� D eS ı ��.S/. This version of CS0

obeys the properties listed in the preceding Parts 1–4 of this subsection.

Proof The proof that follows has three steps.

Step 1 Suppose that �1 is a smooth section of N0 that has the same large js j asymp-
totics and boundary behavior as the desired �� . Assume that the pointwise norm of �1

and those of its derivatives to sixth order are bounded by c0ı . In addition, require
that the surface eS ı �1 be JHF –holomorphic where js j � c , where c > 1 is a purely
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S –dependent (or K–compatible) constant. A section �1 satisfying these requirements
is given in Step 2.

What follows constructs a section, �2 , of N0 in the Fredholm domain of the operator DS

such that �� D �1C �2 obeys all of the bullets of the proposition. To this end, keep
in mind what is said by Part 2 of Section II.6E and by (II.6-10): If �D �1C �2 is a
section of NS , then eS ı � is JHF –holomorphic if and only if �2 obeys an equation
that has the schematic form

(2-7) x@�2C r1�.�2/ � @�2C r0�.�2/D r�;

where the notation is as follows: First, r� is a smooth section of NS ˝T 0;1S with
compact support where js j � c and C 5 –norm and L2 –norm bounded by cı . Here,
c > 1 again denotes a purely S dependent (or K–compatible) constant. This term r�
is determined by �1 . Second, r1� and r0� are analogous to their counterparts (II.6-10).
They differ from the latter by virtue of a dependence on �1 , but even so, this differ-
ence has C 5 –norm bounded by cı with c as just described. In particular, they obey
jr1�.b/j � c jbj and jr2�.b/� �b��xbj � c jbj2 , where � and � are from (1-25) and
c is as described above. In addition, their derivatives to any given order are bounded
by purely S –dependent (or K–compatible) constants.

Granted these last remarks, the equation for �2 can be written as

(2-8) DS�2C z.�2/D r�;

where jz.�2/j � c.j�2j
2Cj�2jjr�2j/. Here again, c � 1 is a purely S –dependent (or

K–compatible) constant. With this last fact understood, and given the aforementioned
bounds on the higher derivatives of r0� , r1� and r� , the existence and uniqueness of
the desired solution to (2-8) follows via a standard application of the implicit function
theorem.

Step 2 Consider now �1 . What follows here describes �1 on a component of the
s ��1 part of S. To do this, return to the notation used in Part 3. Let q 2 CC\ C�

denote the relevant point. As noted in Property 6 of Section 1G, the end ESq
can be

viewed as a graph of a map from the s � �c part of R� Œ1; 2� into q ’s component
of TC \ T� . Use the coordinates .'C; hC/ to write q as the origin in R2 and the
corresponding map  to TC\T� as a map to R2 . With the normal bundle NS identified
with R2 as in the top line of (2-6), the section �1 where s ��c.s1Cjln ıj/ is q�� .
Note that this formula is such that eSı�1 is the JHF –holomorphic surface R�.1; 2/�q�
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on this part of S. There is an analogous formula for �1 where s � c.s1Cjln ıj/. The
desired behavior of �1 near the boundary of S can be obtained in a straightforward
fashion using the description of S given in Property 5 of Section 1G. A similarly
straightforward use of “cutoff” functions will extend the section of NS that is defined
by the resulting formula for �1 near the boundary of S and that given above on the
js j � c on S so as to define the desired version of �1 over the whole of S.

Step 3 The demands of the fifth bullet follow directly given the third and fourth bullets
and given that �2 obeys (2-8). As �2 is in the Fredholm domain of DS , the third
bullet follows if �2 is smooth up to the boundary. This can be proved using slightly
modified versions of the arguments that are used to prove Lemma II.6.3. Meanwhile,
the assertion made by the fourth bullet is proved using arguments that are little different
from those used in Section II.6C.

2D The submanifolds fCp0
gp2ƒ

The subsequent three parts of this subsection describe the salient features of the sub-
manifolds that form the subset fCp0

gp2ƒ from C0 . To this end, fix p2ƒ so as to focus
on the corresponding element Cp0

. The subsequent description uses HCp� to denote
the e�2.R�juj/.1� 3 cos2 �/� z� part of HCp . Part 4 of the subsection states and then
proves the existence/uniqueness assertion about Cp0

.

Part 1 What is denoted by Cp0
is a properly embedded submanifold with boundary

in R�HCp� with J –holomorphic interior. There are two boundary components, one
on the u > 0 component of the boundary of R �HCp� and the other on the u < 0

component. Define �p 2 f0; 1; 2g as follows: If mp D 0 and item (a) of the first bullet
of (2-2) is relevant, then �p D 0. If item (b) is relevant, than �p D 2. If mp D 1 or
mp D �1, then �p D 1. In the case �p D 0, the submanifold Cp0

is diffeomorphic
to the product of R with a closed interval. When �p D 1, the submanifold Cp0

is
diffeomorphic to the complement of a single interior point in the product of R with a
closed interval. When �p D 2, it is diffeomorphic to the complement of two interior
points in such a product.

To describe the large js j behavior of Cp0
, introduce p� and pC to denote the

respective integral curve segments in HCp that come from ‚� and ‚C , and introduce
yCp and y�p to denote the respective closed integral curves of v in the u D 0 slice
of Hp that form the loci where cos � D 1p

3
and cos � D� 1p

3
.
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(2-9) � Each constant s ��1 slice of Cp0
is a properly embedded arc in HCp , and

these arcs converge pointwise as s !�1 to p� .

� If �p D 0, then each constant s � 1 slice of Cp0
is a properly embedded

arc in HCp , and these arcs converge in an isotopic fashion in Hp as s !1
to pC .

� If �p D 1, then each constant s � 1 slice of Cp0
has two components.

(a) One component is a properly embedded arc in HCp , and these arcs con-
verge in an isotopic fashion in Hp as s !1 to pC .

(b) The other component is an embedded circle, and these circles converge
pointwise in Hp as s!1 to yCp when mp D�1, and they converge in
an isotopic fashion in Hp� as s !1 to y�p when mp D 1.

� If �p D 2, then each constant s � 1 slice of Cp0
has three components.

One component is a properly embedded arc in HCp , and these arcs converge
in an isotopic fashion in Hp as s !1 to pC . The other two components
are embedded circles. One s –parametrized set of these circles converges
pointwise in an isotopic fashion in Hp as s ! 1 to yCp ; the other set
converges in an isotopic fashion in Hp� as s !1 to y�p .

Part 2 This part says more about how Cp0
sits in R�HCp� . To this end, reintroduce

from Section 1H the parametrization of HCp by the map ‰p . The domain of this map
‰p is an open subset in R� .�R� ln ı�;RC ln ı�/� .R=2�Z/�

�
�

4

3
p

3
ı2
�;

4

3
p

3
ı2
�

�
.

As in Section 1H, the coordinates for the latter are written as .x; yu; y�; h/. By way of a
reminder, the domain of ‰p is an open subset of the form R�X. The ‰p–inverse image
of R�HCp� is the subset of the domain R�X where jyuj �RC 1

2
ln z� . This being the

case, it proves useful to introduce I� to denote the interval
�
�R� 1

2
ln z�;RC 1

2
ln z�

�
and restrict ‰p to the yu 2 I� part of its domain.

The ‰p–inverse image of Cp is given as the image of a proper map from a certain
domain in R� I� to R�X. This map has the form

(2-10) .x; yu/! .x; yu; y� D 'p0.x; yu/; hD &p0.x; yu//;

where .'p0 ; &p0/ is a map from a domain in R�I� to R=.2�Z/�
�
�

4

3
p

3
ı2
�;

4

3
p

3
ı2
�

�
.

The domain of this map is R� I� if �p D 0, it is the complement of a single point
in the yuD 0 slice of R� I� if �p D 1, and it is the complement of two points in the
yuD 0 slice if �p D 2.
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Part 3 This part describes the behavior of Cp0
near its boundaries. Consider first the

boundary on the u> 0 component of the e�2.R�juj/.1� 3 cos2 �/D z� locus. To set
the notation, note that the f � 1C ı2 part of Mı \HCp can be parametrized using
the coordinates .t ; 'C; hC/ from the relevant component of the .1C ı2; 1C ı2

�/� TC

portion of .1; 2/�†.

The inverse image via ‰p of the f 2 .ı2; z�� part of R�HCp corresponds to the part
of R�X where yu 2

�
RC ln ı;RC 1

2
ln z�

�
. The coordinate functions .x; yu; y�; h/ on

the yu 2
�
RC ln ı;RC 1

2
ln z�

�
part of R�X are related to the coordinate functions

.s ; t ; 'C; hC/ using the rule .s D x; t D 1C e�2.R�jyuj/; 'C D y�; hC D h/.

Granted the preceding, it follows that the functions .'p0 ; &p0/ that appear in (2-10)
can be viewed as functions of the coordinates .s ; z/. Doing so writes the part of Cp0

in
the f 2 .1C ı2; 1C z�� part of R� .Mı \HCp / as the graph over R� .ı2; z�� given
by the rule

(2-11) .x; z/! .s D x; t D 1C z; 'C D '
p0 ; hC D &p0/:

The fact that Cp0
is J –holomorphic implies that the pair .'p0 ; &p0/ obey the Cauchy–

Riemann equations: @x'
p0 � @z&

p0 D 0 and @x&
p0 C @z'

p0 D 0.

There is a corresponding picture of Cp0
on the t 2 Œ2 � z�; 2 � ı2/ portion of

R� .Mı \HCp�/. This part of R�HCp� corresponds via ‰p to the

yu 2
�
�R� 1

2
ln z�;�R� ln ı

�
part of R�X. It is parametrized by coordinates .x; z; '�; h�/ with z 2 .ı2; z�� related
to the coordinate t by the rule t D 2�z and z related to yu by the rule zD e�2.RCjyuj/ .
The part of Cp0

here is parametrized by viewing .'p0 ; &p0/ as functions of .x; z/ and
writing '�D'p0 and h�D�&p0 . The pair .'p0 ; &p0/ obey here the Cauchy–Riemann
equations when written as functions of .x;�z/.

What follows is now a crucial point: The functions 'p0 is constrained on both boundary
components of Cp0

as follows: Write 'p0 on either boundary as a function of the
coordinate x 2R. Meanwhile, write 'S0 from (2-5) on the relevant R�f1Cz�g�TC

or R� f2� z�g � T� part of the boundary of CS0
as a function of x also. Then

(2-12) 'p0.x; z�/D 'S0.x; z�/:

There is no a priori constraint on the value of &p0 on the boundaries of @Cp0
but for

what is implied by (2-9).
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Part 4 The proposition given below states the fundamental existence/uniqueness
theorem for Cp0

. The proposition refers to the preceding Parts 1–3.

Proposition 2.2 There exists a purely S –dependent (or K–compatible) constant
� > 1 with the following significance: Define the geometry of Y with z� < ��1

and ı < ��1z� . Fix an element .y‚�; y‚C/ 2 yZS. In the case �p D 1, fix a yu D 0

point in R� I� ; and in the case �p D 2, fix a pair of yuD 0 points in R� I� . There
exists a unique pair .'p0 ; &p0/ that are described by Parts 2 and 3 and are such that the
‰p–image of the surface given by (2-9) obeys the conditions stated for Cp0

in Part 1.

The proof of Proposition 2.2 in the case when all p2ƒ versions of �p are zero is given
separately in Section 4 because it has fewer components than the proof for the �p > 1

cases. The proof for general case is given in Section 6. The next section introduces
certain analytic tools that are used in Section 4. Section 5 introduces some additional
tools to handle the general case.

3 Cauchy–Riemann equations on R�X

The ‰p–image of a graph of the form

(3-1) .x; yu/! .x; yu; y� D '.x; yu/; hD &.x; yu//

defines a J –holomorphic subvariety if and only if the pair of functions .'; &/ satisfy
a certain nonlinear Cauchy–Riemann equation as functions of the coordinates .x; yu/.
The purpose of this section is to describe this equation and to supply various tools that
will be used subsequently to construct desired solutions.

3A Almost complex structures on R�X

Suppose that Jp is a given almost complex structure on R�HCp� with the property
that the R�HCp� part of any surface from Proposition II.3.2’s moduli space M† and
Proposition II.3.4’s moduli space Mp0

are Jp–holomorphic. Use ‰p to view Jp as an
almost complex structure on R�X.

The ‰p–inverse images of the surfaces from M† and those from Mp0
are the constant

.x; yu/ slices of R�X. This understood, the fact that they are Jp–holomorphic has the
following implication: the Jp version of T 1;0.R�X / must contain a form that can be
written as

(3-2) dxC iq0 d yu;
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where q0 is a C–valued function with strictly positive real part. A second linearly
independent 1–form for Jp ’s version of T 1;0.R�X / can always be written as

(3-3) d y�C iq1 dhC i�0.dx� ixq0 d yu/;

where q1 is a C–valued function with strictly positive real part, and �0 is a C–valued
function.

Lemma 3.1 Suppose that Jp obeys the R�HCp� versions of the first five bullets in
Part 1 of Section 1C. Then q0 , q1 and �0 depend only on the coordinates yu and h,
and both q1 and �0 are real-valued.

Proof Whether real or not, the functions q0 , q1 and �0 are invariant with respect to
constant translations along the R and R=2�Z factors in R�X if J0 is invariant with
respect to the respective translations along the R and R=2�Z factors of R�HCp� .

To see about the imaginary parts of q1 and �0 define the adjoint action of Jp on the
cotangent bundle by the following rule: Let h ; i denote the pairing between covectors
and vectors and let e and w denote respective covectors and vectors over the same base-
point. Then hJ T

p e; wiDhe;Jpwi. Note that J T
p acts on (3-2) and on (3-3) as multiplica-

tion by i . With this in mind, use the identity Jp@s Dv with the second bullet in (1-30) to
see that Jp acts as multiplication by �i on @xC i.��1@yu�˛

�1
p

6 x cos � @y��$@x/.
This vector is therefore sent to zero when paired via h ; i with (3-2). Such is the
case if and only if .1 � i$/ � q0�

�1 D 0 so q0 D �.1 � i$/. This same vector
is also sent to zero when paired via h ; i with (3-3), and this happens if and only if
2�0 D ˛

�1
p

6 x cos � . To see about q1 , use the fourth bullet in (1-30) and (II.3-9) to
see that ‰p�Jp@h is proportional to @� , and so it follows from the third bullet of (1-30)
that Jp@h is proportional to @y� . Now use (3-3) to see that q1 is real if and only if
hdh;Jp@hi D 0.

Assume in what follows that Jp obeys the assumptions of Lemma 3.1. With it under-
stood that q1 and �0 are real, (3-2) and (3-3) imply the following: A submanifold in
R�HCp� given by the ‰p–image of the surface given by (3-1) is Jp–holomorphic if
and only if the functions .'; &/ that appear in (3-1) obey a system of Cauchy–Riemann
equations that can be written as

(3-4) a1@x' � @yu& D 0 and a2@x& C @yu 'C b D 0;

where a1 , a2 and b constitute a set of R–valued functions with a1 and a2 strictly
positive. Their respective values at any given point .x; yu/ are obtained from an
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eponymous set of the functions of the variables .yu; h/ by setting hD &.x; yu/. This
eponymous set is a1 D q0R

=q1 , a2 D q0R
q1 and b D�q0R

�0 , where q0R
denotes

the real part of q0 .

Keep in mind that the expressions that appear on the left-hand sides of the two equations
in (3-4) are only defined in the case that the map ‰p is defined on the graph in (3-1).
This is to say that the graph must define a surface in R�X. This requirement constitutes
an implicit constraint on the absolute value of & at any given point .x; yu/. In particular,
an assertion in the subsequent discussions that a given pair .'; &/ solves (3-4) in all
cases implies that & obeys this implicit constraint.

3B Maps from R� I� to R2 and linear operators

The central concern for the rest of this section are first-order linear operators on
C1.R�I�IR2/ that are described next. Let D denote the operator in question and let
.'0; & 0/W R�I�!R2 denote a given map. The respective first and second components
of the map D.'0; & 0/ are

(3-5) a1@x'
0
� @yu&

0
C b1&

0 and a2@x&
0
C @yu&

0
C b2&

0;

where a1 , a2 , b1 and b2 are smooth functions of .x; yu/ with the following four
properties:

(3-6) � a1 and a2 are everywhere positive and they both have uniform limits as
x!˙1 to positive functions of yu.

� The function on R given by the rule x! supfxg�I�
.j@xa1jCj@xa2jCjb1j/

limits uniformly as jxj !1 with limit zero.

� b2 limits uniformly as x!�1 to a function of yu. By the same token, b2

limits uniformly as x!1 to a function of yu.

� The respective integrals over I� of the x!1 and x!�1 limits of b2

are nonzero and have the same sign.

Of interest in what follows is a Fredholm incarnation of the operator D given by (3-5)
and (3-6) whose domain and range are certain Hilbert spaces of maps from R�I� to R2

that is characterized as follows: The domain Hilbert space for D is the L2
1

completion
of the subspace of smooth maps from R� I� to R2 whose elements are as follows: A
given pair .'0; & 0/ is in this subspace if and only if the following conditions are met:

(3-7) � The pair has compact support on R� I� .

� The function '0 vanishes on the jyuj DRC 1
2

ln z� boundaries of R� I� .
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The square of the L2
1

–norm in question assigns to .'0; & 0 ) the value

(3-8)
Z

R�I�

�
j.@x'

0; @x&
0/j2Cj.@yu'

0; @yu&
0/j2Cj.'0; & 0/j2

�
:

Here, j � j2 denotes the Euclidean inner product on R2 . The Hilbert space so defined
is denoted in what follows by H . The range space for this Fredholm version of D

is the L2 Hilbert space completion of the space of compactly supported elements
in C1.R � I�IR2/; this is the completion that is defined using the inner product
on R� I� whose square is the integral of j.'0; & 0/j2 D j'0j2Cj& 0j2 . This L2 Hilbert
space is denoted by L.

The next proposition asserts the central fact about this Fredholm version of D.

Proposition 3.2 The operator D as described by (3-5) and (3-6) with domain space H

and range space L is Fredholm with index 0 and trivial kernel.

Section 3C proves that D is Fredholm and Section 3D computes the index of D and
proves that the kernel is trivial. The remainder of this subsection describes the relevant
examples.

Let hD .'; &/W R�I�!R2 denote a pair of functions with a graph given by (3-1) that
lies in R�X. The pair h and the almost complex structure Jp can be used to define a
version of (3-5), this denoted by Dh . The definition is as follows: Let .'0; & 0/ denote a
given bounded map from R�I� to R2 . Take t 2R near zero and write the expressions
on the right-hand sides of the two equations in (3-4) using pair .'Ct'0; &Ct& 0/ in lieu
of .'; &/. View the result as a map from a neighborhood of 0 in R to C1.R�I�IR2/.
The derivative of this map at t D 0 is Dh.'

0; & 0/.

A more explicit description of Dh is given in a moment. To this end, recall that
the functions .a1; a2; b/ that appear in (3-4) are obtained from an eponymous set of
functions, .a1; a2; b/, of the coordinates .yu; h/ for X. Let .a1h; a2h; bh/ denote the
functions on R� I� whose respective values at any given point .x; yu/ 2 R� I� are
those of the partial derivative with respect to h at the point .x; yu; h D &.x; yu// of
.a1; a2; b/. The respective first and second components of the R2 –valued function
Dh.'

0; & 0/ can be written in terms of these partial derivatives as

(3-9) � a1@x'
0� @yu&

0C .a1h@x'/&
0,

� a2@x&
0C @yu'

0C .a2h@x& C b2h/&
0.

This observedly has the form depicted in (3-5).
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What follows gives sufficient conditions on & for (3-6) to hold:

Lemma 3.3 Suppose that & 2C1.R�I�/ is a function with the following properties:

� The norm of & at any given .x; yu/ 2R� I� is such that .yu; y�; hD &.x; yu// is
in X.

� j& j has respective limits as x!˙1, and both limits are less than x 0C4e�2R .

� The function on R given by the rule x ! supfxg�I�
.j@x& j C j@yu& j/ limits

uniformly to zero as jxj !1.

Use & with a given bounded function ' to define the operator in (3-7). Then the
corresponding version of .a1; a2; b1; b2/ obey the conditions in (3-6). In particular,
this occurs if & comes from a pair whose corresponding graph in R�X is the ‰p–
inverse image of a surface in R�HCp� that is Jp–holomorphic where js j � 1 and also
obeys the conditions in the first and second bullets of (2-9).

Proof The condition in the first bullet is required for defining Dh . Granted that Dh

is well defined, the fact that a1 and a2 in (3-5) are positive follows from (3-9) since
the functions a1 and a2 that appear in (3-4) are positive. The conditions in the second
and third bullets imply that the x!˙1 limits of & exist and both are independent
of yu. Moreover, the bound on these limits given by the second bullet imply that these
respective values for h with a given value for .yu; y�/ define a point in X. It follows
from the top bullet in (1-30) that the functions .a1; a2; b/ are independent of x where
jxj � 1 and so depend only on the coordinates yu and h where jxj � 1. This and the
fact that & limits to a constant implies that a1 and a2 have uniform x!˙1 limits
that are positive functions of yu. This also implies that b2 has uniform x!˙1 limits
that are functions of yu. The condition stated in the second bullet of (3-6) follows from
the second bullet of Lemma 3.1 via the chain rule.

To prove the fourth bullet in (3-6), use the third bullet of Lemma 3.1 to see that the
x!˙1 limits of b2 are those of bh , and so given by the function yu! b2h.yu; h˙/,
where h˙ are the corresponding x ! ˙1 limits of & . Meanwhile, the value
of h in (1-27) is constant along any given integral curve of v in HCp and therefore
fb2h.yu; hC/gyu2I� and fb2.yu; h�/gyu2I� are the values of bh along the ‰p–inverse
image of integral curves of v . To say more, let  denote the yu 2 I� part of an integral
curve of v in HCp� . The constant value of h on  and the � coordinate of the yuD 0

point on  determines  . If  is parametrized by the coordinate u on HCp , then the
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coordinate � on  changes via the rule in (II.2-5). With  parametrized by yu, the
change in � along  is given by

(3-10)
d�

d yu
D�

p
6 x cos �

f .1� 3 cos2 �/

@u

@yu
;

where f is the function of u given in (1-4). Here, it is understood that � is determined
by u given the constant value of h on  , and so it is determined by yu and the constant
value of h. This understood, it follows that  ’s version of b2 is given by

(3-11) b2 D
@2�

@h @yu
D�

@

@h

� p
6 x cos �

f .1� 3 cos2 �/

@u

@yu

�
:

Let �� D �. j
yuDRC 1

2
ln z�/� �. jyuD�R� 1

2
ln z�/. This number depends on  and

so defines a function of the parameter h. The integral of b2 over the domain I� is
d
dh
.��/. To compute the latter, use (3-10) to write

(3-12) �� D�
p

6

Z RC 1
2

ln z�

�R� 1
2

ln z�

x cos �
f .1� 3 cos2 �/

du:

To compute the h–derivative of (3-12), introduce �0 to denote the value of � at the uD0

point along  . This is determined by h by solving hj D .x 0C 4e�2R/ cos �0 sin2 �0

with the constraint that the solution �0 is such that 1� 3 cos2 �0 > 0. Lemma II.2.2
guarantees a unique solution. Meanwhile, � along  is determined at any given value
of u by �0 via the rule f .u/ cos � sin2 � D f .0/ cos �0 sin2 �0 . This understood, it
follows from (3-12) using the chain rule that

(3-13) d

dh
.��/D�

p
6

Z RC 1
2

ln z�

�R� 1
2

ln z�

x .1C 3 cos2 �/

f 2.1� 3 cos2 �/3
du:

As can be seen, the expression on the right-hand side is negative in all cases.

Consider now the final assertion of the lemma, which concerns the case where & comes
from a pair .'; &/ whose large jxj values define, via ‰p and the graph in (3-1), a
surface in R �HCp that is J –holomorphic and has the asserted large js j behavior.
The convergence condition implies that & limits uniformly as x!1 to a constant,
and likewise as x!�1. By the same token, the function yu! '.x; yu/ also limits
uniformly as x !1 to a function of yu, and likewise as x !�1. Granted these
uniform limits, and given that .'; &/ obey (3-4) at large jxj, the standard elliptic
regularity theorems of the sort that can be found in Chapter 6 of Morrey’s book [12]
will prove that @x& and @yu& converge uniformly to zero as jxj !1.
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3C Proof of Proposition 3.2: the Fredholm assertion

The proof that D is Fredholm has five steps.

Step 1 Let k � k denote the norm for L. An operator such as D from H to L has
finite-dimensional kernel and closed range if there exists c � 1 such that the following
holds for all elements � in H:

(3-14) � kD�k2 � c�1kd�k2� ck�k2 .

� If � has support only where jxj> c , then kD�k2 � c�1k�k2 .

A standard argument using the Rellich lemma uses (3-14) to deduce that D has closed
range and finite-dimensional kernel. The cokernel of D is isomorphic to the kernel
of a certain formal L2 adjoint which is also a bounded operator from H to L. The
upcoming Step 5 explains why (3-14) holds for this formal adjoint, and so the cokernel
of D is finite-dimensional.

Step 2 To prove what is asserted by the top bullet in (3-14), multiply the square of the
left-most expression in (3-5) by a�1

1
and the square of the right-most by a�1

2
. Integrate

the resulting expressions over R�I� . Use M.�/ to denote the result of this integration.
This number M.�/ is relevant because M.�/ > c�1

0
kD�k2 . This understood, the

bound that is asserted in the first bullet of the lemma is obtained with the help of an
integration by parts to eliminate the term .@x'

0@yu&
0� @u'

0@x&
0/ that appears in the

integrand that defines M.�/. There are no boundary terms from the integration by
parts because of the second bullet in (3-7). With this term absent, the desired bound
follows directly using the triangle inequality.

Step 3 To see about the second bullet in (3-14), introduce a1� , a2� and b2� to
denote the respective x!�1 limits of a1 , a2 and b2 . Let Q� denote the quadratic
function on C1.I�IR2/ that is given by the rule

(3-15) .'0; & 0/!

Z
I�

.a�1
1� j@yu&

0
j
2
C a�1

2� j@yu'
0
C b2�&

0
j
2/:

Restrict this form to the subspace of pairs .'0; & 0/ with '0 D 0 at the boundary of the
interval. On this restricted domain, the function Q� is such that

(3-16) Q�.'0; & 0/� c0R�2

Z
I�

.j'0j2Cj& 0j2/:

Indeed, this follows directly given that there is no pair .'0; & 0/ with ' D 0 on the
boundary of I� and with Q�.'0; & 0/D 0. To see why no such pair exists, note that if
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Q�.'0; & 0/D 0, then & 0 is constant and

(3-17) '0.yu/D & 0
Z yu
�R� 1

2
ln z�

b2�:

Since the integral over I� of b2� is nonzero, the right-hand side is not zero at yuD
RC 1

2
ln z� unless both & 0 and '0 are zero.

There is the analogous quadratic function, QC , on C1.I�IR2/ that is defined by the
x !1 limits of a1 , a2 and b2 . The latter also dominates what is written on the
right-hand side of (3-16) when '0 is zero where jyuj DRC 1

2
ln z� .

Hold on to the Q� and QC versions of (3-16) for use in a moment.

Step 4 Suppose that x1 > 1 and that � D .'0; & 0/ has compact support that lies
where x < �x1 . Integrate by parts as instructed in Step 3, but now write the resulting
expression for M.�/ as

(3-18)
Z

x<�x1

Q�1.'0; & 0/C

Z
R�I�

.a1 j@x '
0
j
2
Ca2 j@2 &

0
j
2/C2

Z
R�I�

b2�&
0@x &

0
Ce;

where jej ��.kd�k2Ck�k2/ with � such that limx1!1�D 0. Integrate by parts on
the right-most integral in (3-18) to see that it is zero. Meanwhile, the left-most integral
in (3-18) is no less than c�1

0
R�2.k'0k2Ck& 0k2/. Thus, what is written in (3-18) is

greater than

(3-19) k@x�k
2
C c�1

0 R�2
k�0k2 if x1 > c:

This last bound implies what is asserted by the second bullet in (3-14) for the case
when � is supported where x < �x1 . But for notation, the same argument using QC

proves the second bullet of (3-14) for the case when � is supported where x > x1 .

Step 5 Up to a sign, the formal adjoint in question is defined by using integration by
parts to rewrite inner products with D� using the inner product on L. To be explicit, the
operator sends any given �D .'#; &#/ to the element in L with respective components

(3-20) � �a1@x'
#� @yu&

#� .@xa1/ '
# ,

� �a2@x&
#C @yu'

#C b1'
#C .b2� @xa2/&

# .

Use D# to denote the operator in (3-20). What follows explains why D# obeys the
assertions made by the two bullets in (3-14).

An argument much like that used in Step 2 proves that kD#�k2 � c�1kd�k2� ck�k2 .
Meanwhile, the assumptions that j@xa1j and j@xa2j limit to zero as jxj !1 imply

Geometry & Topology, Volume 24 (2020)



HFD HM , III 3067

that D# has the same form as that of D at large jxj but for the sign changes in the
derivative terms. As a consequence, the argument that proves the second bullet of (3-14)
for D proves it for D# as well.

3D Proof of Proposition 3.2: the kernel and cokernel

This subsection computes the Fredholm index of D and then its kernel dimension.
Both are found equal to zero. The cokernel dimension is therefore zero as well. These
computations are done in five steps.

Step 1 This step computes the index of D. This is done by deforming D to an operator
whose index is readily computable. The discussion that follows concerns the case when
the integral that is described in the fourth bullet of (3-6) is negative. A very much
analogous discussion holds when the integral in question is positive.

The deformation is through a family of operators from H to L that all have the same
schematic form as D. The family is parametrized by Œ0; 1�. Fix r 2 Œ0; 1�, then the
member parametrized by r sends any given � D .'0; & 0/ 2 H to the element in L

whose respective components are

(3-21) � ..1� r/a1C r/@x'
0� @yu&

0C .1� r/b1&
0,

� ..1� r/a2C r/@x&
0C @yu'

0C ..1� r/b2� r/& 0.

The r D 0 member is D and the r D 1 member sends � to the element in L with
respective components

(3-22) @x'
0
� @yu&

0 and @x&
0
C @yu'

0
� & 0:

The index of D is the same as this r D 1 version. To see that the latter has index
equal to 0, suppose first that � is such that what is written in (3-22) vanishes. Then
'0 obeys the second-order equation @2

yu
'0C @2

x'
0 � @yu'

0 D 0. Keeping in mind that
'0 D 0 where jyuj DRC 1

2
ln z� , and that j'0j2 is integrable, the maximum principle

demands that '0 vanish identically, This the case, then & 0 must be constant, and hence
zero because j& 0j2 is also integrable.

As noted in Step 5 of the preceding subsection, the cokernel of the operator defined
by (3-22) is isomorphic to the kernel of latter’s version of what is depicted in (3-20). This
is the operator that sends any given � to the element in L with respective components

(3-23) �@x'
0
� @yu&

0 and � @x&
0
C @yu'

0
� & 0:
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Granted this form for D# , the same maximum principle argument applies to prove that
it lacks a nontrivial square-integrable kernel.

Step 2 This step proves that the kernel of D is trivial given a certain claim whose
proof occupies the remaining steps. To this end, suppose that �D .'0; & 0/ 2H is such
that D� D 0. Let � � R� I� denote the locus where & 0 D 0. As explained in the
subsequent steps, this set is nonempty, and it is either R� I� or it has the structure of
a graph with the following properties:

(3-24) � The interiors of the edges are the components of the locus in � where
d& 0 ¤ 0, and each vertex is a critical point of the map to R2 defined
by .'0; & 0/.

� Each edge is a C 1 –embedded, closed interval.

� Each vertex has but a finite number of incident edges. No pair of distinct
incident edges have the same outward pointing tangent vector at any given
vertex.

� Each interior vertex has an even number of incident edges; this number is
at least 4.

� Each edge is oriented by the restriction of d' , and this is the orientation
that is induced on the edge by viewing it as a boundary component of the
& 0 < 0 locus.

These last facts are not compatible with the fact that '0 D 0 where jyuj DRC 1
2

ln z�
and has limit zero as jxj !1 unless � D R� I� , in which case & 0 is everywhere
zero and thus so is '0. To see why � cannot be a graph, suppose to the contrary that �
is described by (3-24). Let U �R� I� denote a component of the complement of � .
Bullets 2–5 of (3-24) imply that @U is piecewise smooth, and so any given differential
form can be integrated between points on @U. Meanwhile, either & 0 > 0 in U or
& 0 < 0. In either case, the final bullet implies that d'0 is positive on the smooth part
of @U given a suitable orientation. As a consequence, '0 increases monotonically
along @U. This is not possible for it precludes an endpoint of any component of @U
where jyuj D RC 1

2
ln z� , and it precludes a noncompact component of @U, and it

precludes a component with no boundary. The fact that � ¤ ∅ precludes the case
U DR� I� .

Step 3 This step explains why (3-24) describes � given that � ¤∅ and � ¤R� I� .
To this end, let � 0 � � denote the subset where d& 0 ¤ 0. This is a smooth, 1–
dimensional submanifold in R� I� . It follows from (3-5) that d'0 > 0 on the tangent
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line of � 0 if the latter is oriented so that d& 0 points towards the side where & 0 > 0. It
also follows that d'0 D 0 at the points in � n� 0. Thus � �� 0 is a subset of the set of
singular points of the map � to R2 . Let p 2 � n� 0 and set �D .'0 � '0.p//C i& 0.
This C–valued function vanishes at p . In addition, equation (3-5) when written for �
has the form x@�Cv�C�x�D 0 where v and � are smooth C–valued functions. Here,
x@D 1

2
.@xC i@yu/.

To exploit this equation for �, introduce w D x � x.p/C i.yu� yu.p//, this being a
C–valued coordinate function for R� I� . It follows from the equation for � using
Taylor’s theorem with remainder that � near p must have the form � D mwq C e

where m is a nonzero complex number, q � 2 is an integer and jej � c0 jwj
qC1 . Note

that the unique continuation principle implies that q is finite. This depiction of �
implies what is asserted by (3-24) about the interior vertices of � . The argument for
the boundary vertices is very much the same after using the Schwarz reflection trick
from Theorem 24 in [2] to view any given boundary point as an interior point of a
domain to which .'0; & 0/ extend so as to solve a corresponding extension of (3-5).

Step 4 This step and Step 5 constitute a digression that is needed to explain why
� ¤ ∅. To start, let .a1� ; a2� ; b�/ denote either the x !1 or x ! �1 limit of
.a1; a2; b2/. Introduce the operator LW C1.I�IR2/! C1.I�IR2/ that is defined so
as to send �D .�; �/ to

(3-25) L�D .�@yu�; @yu�C b��/:

The relevant domain for L is the subspace in C1.I�IR2/ that consists of the pairs
.�; �/ with �D 0 at the boundary points of I� . A pair .�; �/ in this domain is said to
be a weighted eigenfunction for L if

(3-26) �@yu�DEa1� � and @yu�C b��DEa2��;

with E 2 R. The number E is said to be a weighted eigenvalue. Straightforward
variations of standard arguments show the following: The set of weighted eigenvectors
is discrete, has no accumulation points and is unbounded in both directions. What is said
in Step 3 implies that 0 is not a weighted eigenvector. Moreover, at most a finite number
of weighted eigenvectors share the same weighted eigenvalue. Third, if �D .�; �/ and
�0 D .�0; �0/ are weighted eigenvectors with different weighted eigenvalues, then

(3-27)
Z

I�

.a1� ��
0
C a2���

0/D 0:
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Finally, the L2 completion of the domain of L is spanned by the set of weighted
eigenvectors.

Let # denote a minimal spanning set of weighted eigenvectors, here chosen so that if
�D .�; �/ 2 # , then

(3-28)
Z

I�

.a1� �
2
C a2��

2/D 1:

Step 5 To see that � ¤∅, first integrate the right-most equation in (3-5) on each slice
of the form fxg � I� to obtain

(3-29) @x

�Z
fxg�I�

a2&
0

�
�

Z
fxg�I�

.@xa2/&
0
D�

Z
fxg�I�

b2&
0:

To exploit this identity, suppose now that & 0 is nowhere zero. No generality is lost
by assuming that & 0 > 0. If the integrals of the x!˙1 limits of b2 are negative,
then (3-29) is used at points where x � 1. If the integrals of the x !˙1 limits
of b2 are positive, then (3-29) is used at points where x��1. Except for cosmetics,
the argument for the latter case is identical to that for the former. Granted this, only
the case where the integrals of these limits of b2 are negative is considered in what
follows.

To make something of (3-29), use arguments much like those in Section 2.3 of [7] to
see that .'0; & 0/ can be written for x� 1 as

(3-30) .'0; & 0/D c.eEx.�; �/C e/;

where the notation is as follows: First, c 2 .0;1/. Second, .�; �/ 2 # is an element
with negative, weighted eigenvalue, this being E. Third, e is such that the function
x! eExjej has limit zero as x!1. Use (3-26) to see that if .�; �/ is a weighted
eigenvector, then � has transversal zero locus. This understood, it follows from (3-30)
that & 0 is positive where x� 1 if and only if .�; �/ is such that � > 0 at all interior
points of I� .

Granted the preceding, it follows from (3-26) and (3-30) that the weighted eigenvector
that appears in (3-30) has �� 0. It also follows from these equations that

(3-31)
Z
fxg�I�

b2&
0 < �r jEj.1� c�1/

Z
fxg�I�

a2&
0 where x� 1:

Use this last bound in (3-29) with the fact that j@xa2j ! 0 as x!1 to deduce that

(3-32) @x

�Z
fxg�I�

a2&
0

�
> c�1

Z
fxg�I�

a2&
0 for x� 1:
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This inequality cannot hold if j& 0j2 is integrable. As a consequence, the assumption
that & 0 > 0 is untenable.

3E The Banach spaces H� and L�

The norm that defines the Hilbert space H does not control the supremum norm of
its elements. This being the case, the inverse function theorem that is used in what
follows employs a slightly stronger norm. The author learned the latter from Morrey’s
book [12]. The definition requires the choice of a positive number that is less than 1

100
.

Use � in what follows to denote this number. This Banach space is denoted by H� . It
is the closure of the space of pairs that obey (3-7) using a norm that is the sum of the
L2

1
–norm used for H and a norm that is defined in a moment. The extra term in the

norm for H� is the square root of the function that assigns to a given pair �0D .'0; & 0/
the number

(3-33) sup
.x;yu/2R�I�

sup
�2.0;1/

���
Z

dist. � ;.x;yu//<�
jd�0j2:

Here, dist. � ; � / denotes the Euclidean distance function. The norm on H� is denoted
by k � kH� . The lemma below in part justifies the introduction of this space.

Lemma 3.4 Elements in H� are Hölder continuous with exponent 1
2
� and the in-

clusion map from H� into the corresponding Hölder Banach space is continuous. In
particular , there exists a constant � > 1 that depends only on � and has the following
significance: If f 2H� , then jfj � �kfkH� . In addition, limjxj!1jfj exists and it is
zero; thus , elements in H� have pointwise uniform limit zero as jxj !1.

Proof These assertions follow directly from Theorem 3.5.2 in Morrey’s book [12].

A corresponding L2 version of H� is defined to be the closure of the space of compactly
supported elements in C1.R� I�IR2/ using the norm given by the sum of the L2 –
norm and that defined by replacing d�0 in (3-33) by �0. This last Banach space is
denoted in what follows by L� . The norm on L� when needed is denoted by k � kL� .

Lemma 3.5 An operator DW H! L of the sort described by (3-5) and (3-7) maps
H� to L� , and its inverse restricts to L� so as to define a bounded linear operator from
L� to H� .

Proof Given Proposition 3.2, the assertion follows from Theorems 3.5.2 and 5.4.1 of
Morrey’s book [12].

Geometry & Topology, Volume 24 (2020)
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By way of some parenthetical remarks about Lemmas 3.4 and 3.5: The spaces H�
and L� are examples of what are now called Morrey spaces. Theorem 3.5.2 in Morrey’s
book [12] is an analog of a Sobolev embedding theorem concerning the regularity (with
regards to a Hölder norm) of elements in a Morrey space. (It is now sometimes called
“Morrey’s lemma”.) Theorem 5.4.1 in Morrey’s book is an “elliptic regularity” theorem.
In the present context, it says that if D of an L2

1
element is in the Morrey space L� ,

then the element has more regularity than the typical L2
1

element. In particular, it
is H� and is, therefore, Hölder continuous. As Morrey’s book is, by many accounts,
not an easy read (due to the dense notation for the most part), some other references to
Morrey spaces are [16; 1].

4 Proof of Proposition 2.2 when �p D 0

The first four subsections prove that there exists at least one pair .'p0 ; &p0/ that
satisfies the requirements of Proposition 2.2. By way of a look ahead, the existence
proof uses an open/closed argument for a certain 1–parameter family of jxj ! 1
asymptotic conditions and jyuj D RC 1

2
ln z� boundary conditions for (3-4). The

parameter space is the interval Œ0; 1�; the parameter f1g boundary conditions are those
required by Proposition 2.2. Meanwhile, the parameter f0g case is designed so as to
have an obvious solution. Use I to denote the subset of parameter values in Œ0; 1� for
which (3-4) has a solution with the corresponding asymptotic conditions and boundary
conditions. The set I is proved to be both open and closed. This being the case, and as
f0g 2 I , it follows that I D Œ0; 1� and there is at least one pair .'p0 ; &p0/ that satisfies
the requirements of Proposition 2.2.

The final subsection proves that this is the only pair of functions that satisfies all
of Proposition 2.2’s criteria. This uniqueness proof uses a nonlinear version of the
argument that is used Section 3D to prove that the operator D in Proposition 3.2 has
trivial kernel.

4A The 1–parameter family

The definition of the family of asymptotic/boundary conditions has three parts.

Part 1 Reintroduce p� and pC from Part 1 of Section 2D. By way of a reminder,
these are the respective segments of integral curves of v in HCp� that come from ‚�

and ‚C . Each parameter value � 2 Œ0; 1� also labels a segment of an integral curve of v
that crosses HCp� . The corresponding segment is denoted � . The upcoming definition
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uses 'S0

C and 'S0
� to denote the respective yu D RC 1

2
ln z� and yu D �R� 1

2
ln z�

versions of the function 'S0. � ; z�/ that appears in (2-11). The segment � is the
unique integral curve of v in HCp� that obeys the following three constraints:

(4-1) � The segment � starts on the surface where e�2.uCR/.1� 3 cos2 �/D z�
and it ends on the surface where e2.u�R/.1� 3 cos2 �/D z� .

� If � 2 .0; 1/, the � coordinate of � at its start point is 'S0
�

�
xD 2��1

�.1��/
; z�

�
and the � coordinate of � at its endpoint is 'S0

C

�
x D 2��1

�.1��/
; z�

�
.

� The segment �D0 is p� and the segment �D1 is pC .

Lemma II.2.2 supplies the desired segment � .

The next lemma addresses the continuity and differentiability of the family f�g�2Œ0;1� .
This lemma views each integral curve from the family f�g�2Œ0;1� as a map from Œ0; 1�

into HCp� that pulls a back as a constant multiple of the Euclidean differential.

Lemma 4.1 The assignment of the point � .�/ to any given pair .�; �/2 Œ0; 1�� Œ0; 1�
defines a smooth map from Œ0; 1�� Œ0; 1� into HCp� .

Proof By construction, the map is continuous on Œ0; 1/ � Œ0; 1� and smooth on
.0; 1/� Œ0; 1�. It follows from the fourth bullet of Proposition 2.1 using the chain rule
that the map is smooth on Œ0; 1/� Œ0; 1�. By the same token, if the map is continuous up
to and along the f1g� Œ0; 1� boundary, then it is also smooth up to and along f1g� Œ0; 1�.
To see about continuity along this boundary, note that lim�D1 � exists, and this limit is
a segment of an integral curve of v that crosses HCp� . Let  denote this limit. The issue
is whether  is pC . As explained next, such is the case because mpD 0. To prove this,
note that p� and pC concatenate with the Œ0; 1�–parametrized paths � ! � .0/ and
�! � .1/ to define a piecewise smooth, closed 1–cycle in HCp� . The mpD 0 condition
implies that this 1–cycle is null-homotopic. Let � denote this 1–cycle. Meanwhile,
the paths p� ,  and the Œ0; 1�–parametrized paths � ! � .0/ and  ! � .1/ also
concatenate to define a closed 1–cycle in HCp� . Use �0 to denote the latter. The 1–cycle �0

is also null-homotopic as it bounds the surface given by the closure of the image of the
map from Œ0; 1/� Œ0; 1� that sends .�; �/ to � .�/. Keeping this in mind, note that 
and pC have the same endpoints, and so the change, �� , of the angle � along  must
differ from that along pC by an integer multiple of 2� . This integer is zero if and only if
� and �0 are homotopic. This being the case, it follows by Lemma II.2.2 that  DpC .

Part 2 Reintroduce the nonincreasing function, �W R! Œ0; 1� which has value 1 on
.�1; 0� and value 0 on Œ1;1/. Given � 2 Œ0; 1�, introduce x� to denote 2��1

�.1��/
and
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then define the function yx� W R! .�1;x� / by the rule

(4-2) x! yx� .x/D x�.x�x� C 3/Cx� .1��.x�x� C 3//:

This definition is such that yx� D x for x < x� � 3 and yx� D x� for x > x� C 1.
The derivative of this function yx� is nonnegative and bounded from above by 4. Its
derivatives to any given order greater than 1 also enjoy � –independent bounds.

Part 3 What follows are the parameter � 2 Œ0; 1� asymptotic/boundary conditions
for (3-4):

(4-3) � limx!�1.'; &/jx D .�; h/jp� and limx!1.'; &/jx D .�; h/j� .
� '

�
� ; yu D �R� 1

2
ln z�

�
D 'S0
� .yx� . � /; z�/ and '

�
� ; yu D RC 1

2
ln z�

�
D

'
S0

C .yx� . � /; z�/.

To say more about these conditions, note that the � D 1 version of the top bullet in (4-3)
reproduces the first two bullets in (2-9), and the � D 1 version of the bottom bullet
in (4-3) reproduces (2-12). Meanwhile, the � D 0 version of (4-3) demands that

(4-4) � limx!�1.'; &/jx D .�; h/jp� and limx!1.'; &/jx D .�; h/jp� ,
� '

�
x; yuD�R�1

2
ln z�

�
D�.p� jyuD�R� 1

2
ln z�/ and '

�
x; yuDRC1

2
ln z�

�
D

�.p� jyuD�R� 1
2

ln z�/.

Note in particular that the equations in (3-4) with the boundary conditions in (4-4) are
solved by the x–independent pair .'; &/ with '.yu/D '.p� jyu/ and & the constant
function & D h.p�/. This is to say that the ‰p–image of the corresponding image
of (3-1) is the J –holomorphic surface R� p� .

4B Proof that I is open

Let I � Œ0; 1� denote the set of parameters for which (3-4) has a solution that obeys the
given parameter’s version of (4-3). As noted at the end of the previous subsection, the
set I contains 0, and so it is not empty. This subsection proves that I is open. The
argument for this has four parts.

Part 1 For � 2 Œ0; 1�, define the pair of functions .'� ; &� / on R� I� using the rule

(4-5) � '� .x; yu/D �
�
RC1

2
ln z�Cyu

�
'S0
� .yx� .x/; z�/

C�
�
RC1

2
ln z��yu

�
'

S0

C .yu� .x/; z�/
C
�
1��

�
RC1

2
ln z�Cyu

��
�.x/�.p� jyu/

C
�
1��

�
RC1

2
ln z��yu

��
.�.�x/�.� jyu/:

� &� .x; yu/D �.x/ h.p�/C�.�x/ h.� /.
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Here, the notation has �. jyu/ with  D p� or  D � denoting the lift to R of the
coordinate � on  ’s intersection with the ‰p–image of the yu 2 I� slice of R�X.
Note in this regard that  has transversal intersection with this slice, this being a
consequence of what is said by the second bullet in (1-30). The lift �. jyu/ is chosen
so that its value at the yuD�R� 1

2
ln z� start point of  is that of the function 'S0

� .
With this choice, the value of this lift at the yu D RC 1

2
ln z� endpoint of  is that

of 'S0

C . Note also that the function h is constant on the integral curves of v in HCp� ;
what is written as h. / in the lower bullet of (4-5) is the constant value of h on  .

The pair .'� ; &� / obeys the parameter � boundary condition given by (4-3).

Part 2 Reintroduce the Banach space H� from Section 3E. Let B� � H� denote
a small radius ball about the origin, chosen so that elements in B� have pointwise
norm bounded by c�1

0
x 0 . The norm is chosen so that any given .'0; & 0/ in B� has

j& 0j � c�1
0

x 0 at all points in R�X. Lemma 3.4 supplies such a ball. Reintroduce the
Banach space L� from Section 3E as well.

The rule that follows defines a map Œ0; 1� � B� to L� if B� has small radius. The
desired map sends any given element .�; .'0; & 0// to the pair of functions in L� with
respective components

(4-6) � a1@x.y'C'� /� @yu.y& C &� /,

� a2@x.y& C'� /C @yu.y'C'� /C b .

To say more about the notation, the functions .a1; a2; b/ are viewed as functions on
R� I� that depend implicitly on & D y& C &� . As in (3-4), their values at any given
.x; yu/ 2 R � I� are obtained from an eponymous set of y�–independent functions
on X by evaluating the latter at the point .yu; hD &.x; yu//. The size constraint on the
radius B� is needed to guarantee that the .y'C'� ; y& C &� / version of (3-1) defines a
point in R�X.

The map defined by (4-6) is denoted in what follows by F. This map is designed so that
any given .�; .y'; y&// 2 Œ0; 1��B� version of .' D y'C '� ; & D y& C &� / obeys (3-4)
and the parameter � version of (4-3) if and only F.�; .y'; y&//D 0.

Part 3 The next lemma summarizes the contents of this step.

Lemma 4.2 Fix � 2 I and let .'; &/ denote a corresponding solution to (3-4) with
boundary values given by the parameter � version of (4-3). There exists a neighborhood
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I� � Œ0; 1� of � and a continuous map from I� to B� of the following sort : Given
� 0 2 I� , use .y'; y&/ 2 B� to denote the corresponding element. Then:

� F.� 0; .y'C'� 0 ; & 0/D 0 and so .y'C'� y&C&� / solves (3-4) with the parameter �
asymptotic/boundary conditions from (4-3).

� This solution for � 0 D � is the given pair .'; &/.

Proof It follows from Lemma 3.4 with the fourth bullet of Proposition 2.1 that F
defines a smooth map from Œ0; 1��B� to L� and that any � 2 Œ0; 1� version of F.�; � /
defines a smooth map from B� to L� whose derivatives to any given order are bounded
uniformly as � varies in Œ0; 1�. The proof that F is smooth on Œ0; 1��B� invokes the
fourth bullet of Proposition 2.1 to establish that the maps � ! 'S0

� .yx� . � /; z�/ and
�! '

S0

C .yx� . � /; z�/ from Œ0; 1� to C1.R/ are smooth on the interval Œ0; 1�. It follows
from Lemma 3.5 that the differential along the B� component of Œ0; 1� � B� is an
isomorphism from H� to L� . These last facts with the inverse function theorem prove
the lemma.

Part 4 Granted that the solutions given by Lemma 3.5 are smooth, it then follows
that the set I is an open subset of Œ0; 1�. Meanwhile, the fact that these solutions are
smooth follows using elliptic regularity arguments of the sort that can be found in
Chapter 6 of [12]. Note in this regard that the equations in (3-4) are linear with constant
coefficients on the part of R� I� where jyuj>RC 1

2
ln z�C ln ı . This being the case,

standard boundary regularity arguments for the Laplace equation can be employed to
prove that the solutions are smooth along the boundary of R� I� .

4C Proof that I is closed

The assertion that the set I � Œ0; 1� is a closed set is a consequence of the upcoming
Lemma 4.3.

Lemma 4.3 uses the following notation: given a positive integer k and a function ˛ on
R�I� , the lemma has r.k/˛ denoting the tensor of k th –order partial derivatives of ˛ .

Lemma 4.3 There exists a purely S –dependent (or K–compatible) constant � > 1

with the following significance: Define the geometry of Y with ı � ��1z� . Then
the space of solutions to (3-4) with asymptotic and boundary conditions given by
versions of (4-3) is sequentially compact in the strong C1 sense. To elaborate,
let f.�n; .'n; &n//gnD1;2;::: denote a sequence such that �n 2 Œ0; 1� and such that

Geometry & Topology, Volume 24 (2020)



HFD HM , III 3077

.'n; &n/ is a solution to (3-4) with asymptotic/boundary conditions given by the
�n –version of (4-3). There exists � 2 Œ0; 1� and a solution, .'; &/, to (3-4) with
asymptotic/boundary conditions given by the � version of (4-3). Moreover, there
exists a subsequence from the sequence (hence renumbered consecutively) such that
f�ngnD1;2;::: converges to � , and such that

lim
n!1

sup
.x;yu/2R�I�

�
jr
.k/.' �'n/jC jr

.k/.& � &n/j
�
D 0

for any given positive integer k .

Proof Suppose to start that the conditions stated in the subsequent equation are
satisfied if ı < �z� for some purely S –dependent (or K–compatible) � > 1.

(4-7) � There exists �� > 1 such that 1 � 3 cos2 � > ��1
� on the ‰p–image of

any the graph that is defined via (3-1) by any given solution to (3-4) with
asymptotic/boundary conditions given by any given � 2 Œ0; 1� version of (4-3).

� Given " > 0, there exists �" > 1 such that the following is true: Let .'; &/
denote a solution to (3-4) with asymptotic/boundary conditions given by
some � 2 Œ0; 1� version of (4-3). Then .'; &/jx defines a pair of functions
on I� that differs by less than " from its respective x!�1 and x!1

limit when x < ��" and x > �" .

If (4-7) holds, then by-now standard elliptic regularity arguments as can be found
in Chapter 6 of [12] prove Lemma 4.3. Note in this regard that the original set of
three y�–independent functions on X that are used to define the .x; yu/–dependent
coefficient functions .a1; a2; b2/ in (3-4) have uniformly bounded derivatives to any
given order on the ‰p–inverse of any subset of R �HCp� where there is a positive
lower bound for 1� 3 cos2 � . Note also that (3-4) is a linear equation with constant
coefficients on the jyuj > RC 1

2
ln z� C ln ı part of R � I� when written using the

variables .x; z D e�2.R�yu// on the positive yu part and .�x; z D e�2.RCyu// on the
negative yu part. This being the case, standard boundary regularity arguments for the
Cauchy–Riemann equations can be employed to prove that the solutions are smooth
along the boundary of R� I� .

Given what was just said, it remains to prove that (4-7) holds. This is done in five steps.

Step 1 A key input is a bound for the integral of the 2–form w over the ‰p–image
in R�HCp� of the graph of a solution to (3-4) with boundary values given by some
parameter � 2 Œ0; 1� version of (4-3). The next lemma is used to derive such a bound.
It has a second use in a subsequent step.
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Lemma 4.4 There exists a purely S –dependent (or K–compatible) constant � � 1

with the following significance: Fix c 2
�
2ı2; 4

3
p

3
ı2
�

�
and z�� 2 .ı2; z��. Suppose that

.'; &/ solves (3-4), obeys a given � 2 Œ0; 1� version of (4-3), and is such that j& j � c
on the slice of R� I� where jyuj DRC 1

2
ln z�� . Then j& j � cC �.z�� z��/ where

RC 1
2

ln z�� � jyuj �RC 1
2

ln z� .

It is important to keep in mind for the subsequent applications of Lemma 4.4 that the
constant � from this lemma depends neither on ı� nor on z� when the latter are small.

Proof of Lemma 4.4 The argument that follows establishes the asserted upper bound
for the yu D RC 1

2
ln z� boundary given that j& j � c where yu D RC 1

2
ln z�� . A

completely analogous argument does the trick for the other boundary component
of R � I� . To start, write .'; &/ in terms of the coordinate x and a coordinate
z D e�2.R�yu/ . The C–valued function 'C i& is a holomorphic function of xC iz

where z 2 Œz��; z�� and, as a consequence, the function & is annihilated by the operator
@2

xC @
2
z . Keep this fact in mind. Now define

(4-8) RD 100 sup
R
j@x'

S0

C . � ; z�/j:

This constant is purely S –dependent (or K–compatible). With R in hand, use w
to denote x–independent function on R � Œz��; z�� given by the rule z ! w .z/ D
c CR.z � z��/. This function is also harmonic. Its value where z D z�� is greater
than that of j& j and its x!˙1 limits are greater than those of j& j. Meanwhile, its
z–derivative where z D z� is greater than j@z& j where z D z� because the Cauchy–
Riemann equations identify @z& with @x' , and ' where z D z� is given by 'S0

C

via (4-3). These various upper bounds with the maximum principle imply that w � j& j
on the whole strip R� Œz��; z��.

Step 2 This step states and then proves the desired bound on the integral of w .

Lemma 4.5 There exists a purely S –dependent (or K–compatible) � � 1, and
there exists �‚ � 1 that depends only on S and ‚˙ , and these have the following
significance: Suppose that � 2 Œ0; 1� and that .'; &/ is a solution to the corresponding
version of (3-4). Let C�R�HCp� denote the ‰p–image of the graph of .'; &/. Then

�
R

C w � �ı2
� ,

�
R

C\.Œs0;s0C1��HCp� /
ds ^ ya � �‚ for all s0 2R.

As in the case of Lemma 4.4, the constant � supplied by Lemma 4.5 depends neither
on ı nor on z� when the latter are small.
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Proof of Lemma 4.5 The fact that the integral of w over the s ��1 part of C is
finite is proved in the next paragraph. But for obvious notational changes, the same
argument proves the finiteness of the integral over the s � 1 part of C.

Let yu! .'p� ; &p� /jyu denote the pair whose graph is the ‰p–inverse image of the
J –holomorphic cylinder R� p� . Note in this regard that &p� is the constant value
of the function h on p� . Standard elliptic regularity theorems of the sort found in
Chapter 6 of [12] in conjunction with (4-3) and (3-4) prove the following: fix " > 0,
then there exists s" � 1 such that any s � s" version of .'; &/js has C 1 distance at
most " from .'p� ; &p� /. This fact with (1-6), the fact that w is nonnegative onV2

T C and Stokes’ theorem imply the finiteness claim.

What follows next explains why the bound given by Lemma 4.5’s first bullet holds. To
start, use the just-described application of Stokes’ theorem to identify the integral of w
over C with the sum of the following two expressions:

(4-9) �
R
�

h d� �
R
p�

h d�C
R

R�fyuDRC 1
2

ln z�g & d' �
R

R�fyuD�R� 1
2

ln z�g & d' .

�
R
�

x .1� 3 cos2 �/ du�
R
p�

x .1� 3 cos2 �/ du.

To bound the left-most two terms in the top bullet, note first that the function & is
constant on the integral curves of v in HCp� , its value being that of the function h
depicted in (1-27). As a consequence, the difference between these two terms can be
written as

(4-10) h.� /��� � h.p�/��p� ;

where ��. � / is the change in the coordinate � along the indicated integral curve. It
follows from (1-4) that the two values of h are bounded in absolute value by c0x 0 .
Meanwhile, the two values of ��. � / are determined by S and the �p D 0 constraint.
It follows as a consequence that the two left-most terms in (4-9) are bounded by a
purely S –dependent (or K–compatible) multiple of x 0 .

To bound the two right-most terms in the top bullet, keep in mind that j& j � 4

3
p

3
ı2
� in

any event. This the case, the two right-most terms are bounded in absolute value by
c0ı

2
� times the integral over R of the function x! j@x'

S0
� .x; z�/jC j@x'

S0

C .x; z�/j.
The latter integrals are bounded by a purely S –dependent (or K–compatible) constant,
this by virtue of the fourth bullet in Proposition 2.1.

Turn now to the second bullet in (4-9). Since each of the two integrals that appear have
size on the order of ı2

�R, the task at hand is to explain why the magnitude of their
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difference has an R–independent bound. To start this task, let  denote for the moment
a closed integral curve of v in the jyuj �RC 1

2
ln z� part of HCp� . With the function u

on HCp viewed as an affine parameter along  , the restriction of the function � to 
becomes a function of u, to be denoted by � . For the family f�g, the corresponding
family of functions of u depends smoothly on � . This � –dependence can be exploited
(using the fundamental theorem of calculus) to bound the absolute value of what is
written in the second bullet of (4-9) to be at most

(4-11) 6

Z 1

0

�Z RCln z�

�R�ln z�
x
ˇ̌̌̌
cos.�� .u// sin.�� .u//

d�� .u/

d�

ˇ̌̌̌
du

�
d�:

The goal now is to bound the absolute value of the d�� .u/=d� term in (4-11) by a
number that is O

�
1
R

�
so as to offset the O.R/ length of the range of integration of the

variable u in (4-11).

To do this, first use the third bullet of (1-9) to see that �� at any given value of
u is determined by its value at u D 0. In particular, the chain rule can be in-
voked to write d�� .u/=d� D

�
d� .u/=d� .0/

ˇ̌
D�

�
d�� .0/=d� . The factor of

d� .u/=d� .0/
ˇ̌
D�

is given below:

(4-12) sin.�� .u//
d� .u/

d� .0/

ˇ̌̌̌
D�

D sin.�� .0//
f .0/

f .u/

1� 3 cos2.�� .0//

1� 3 cos2.�� .u//
:

(This formula is a consequence of the third bullet in (1-9).) Noting that jcos �� j has its
maximum at uD0 (due to the third bullet of (1-9)), and that f has its minimum at uD0

(see (1-4)), it follows as a consequence that jd�� .u/=d�� .0/j has an R–independent
upper bound.

Granted what is said in the preceding paragraph, a bound for (4-11) can be had given a
bound for factor jd�� .0/=d� j. To obtain a suitable bound for this, let  again denote
a closed integral curve of v in the jyuj �RC 1

2
ln z� part of HCp� . It follows from the

last three bullets of (1-9) that  is determined up to a �! �C constant rotation of the
S2 factor of HCp by the change in � between its endpoints. This change is denoted
by �� . Thus, � .0/ is determined by �� , and therefore, by the chain rule,

d�� .0/

d�
D

�
d� .0/

d.�� /

ˇ̌̌̌
D�

�
d.��� /

d�
:

Since ��� is determined directly by S and the �pD 0 constraint, so is d.��� /=d� .
In particular, the norm of d.��� /=d� is bounded by a purely S –dependent (or K–
compatible) constant. The other factor in the chain rule formula for d�� .0/=d� is
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d� .0/=d.�� /
ˇ̌
D�

. This is the inverse of d.�� /=d� .0/
ˇ̌
D�

, which is

(4-13)
d.�� /

d� .0/

ˇ̌̌̌
D�

D�
p

6 f .0/
�
1� 3 cos2.�� .0// sin.�� .0//

�
�

Z
Œ�R�ln ı;RCln ı

x .u/
f .u/2

1C 3 cos.�� .u//
.1� 3 cos2.�� .u///

3
du:

By way of an explanation, this formula is computed from the formula for �� in the
fourth bullet of Lemma II.2.2 (which is obtained by integrating the formula in the fifth
bullet of (1-9)) by differentiating with respect to � .0/ and then using (4-12) after
exchanging the order of integration with respect to u and differentiation.

The important takeaway from (4-13) is that the integral that appears on the right-hand
side of (4-13) no smaller than c�1

0
R. Therefore, the norm of d� .0/=d.�� /

ˇ̌
D�

is no greater than c0
1
R

. Granted this c0
1
R

upper bound, it follows from what was
said about the other factors in the chain rule decomposition of d�� .u/=d� that the
norm of d�� .u/=d� is bounded by c�

1
R

with c� being purely S –dependent (or K–
compatible.) Because of this, the expression in (4-11) and thus the expression in (4-9)’s
second bullet is at most c0c�x 0 .

Minor cosmetic changes to the arguments from Step 4 of the proof of Proposition II.5.1
in Section II.5B give the bound on the integral of ds ^ ya . Note in this regard that the
integration by parts used in these arguments has no boundary contributions from the
jyuj DRC 1

2
ln z� boundary of C because ya near the boundary is the 1–form df .

Step 3 This step states and then proves a refined bound on j& j when .'; &/ obey
(3-4) with boundary values given by (4-3).

Lemma 4.6 There exists a purely S –dependent (or K–compatible) constant � � 1

such that if ı2 < ��1z� , then the following is true: Let .'; &/ denote a solution
to (3-4) that obeys a given � 2 Œ0; 1� version of (4-3). Then j& j is bounded by �z�
where jyuj>RC 1

2
ln z�� 8.

It is important to keep in mind that the version of � from Lemma 4.6 does not depend
on ı nor on z� .

Proof of Lemma 4.6 Suppose that the lemma is false so as to derive some nonsense.
Then there exists a sequence fDn; .y‚n�; y‚nC/; .�n; .'n; &n//gnD1;2;::: of the following
sort: Each index n version of Dn is a data set of the form .ın; x 0n;Rn;Jn/ suitable for
defining the geometry of Y and (3-4), and such that ın< 1

n
z� . It is assumed here that all

n2 f1; 2; : : : ; g versions of Dn use the same data from M ; in particular, they define the
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same almost complex structure and pseudogradient vector field v on the complement
of the their attaching handles. The pair .y‚n�; y‚nC/ is an fmp D 0gp2ƒ element
from yZS. Meanwhile, the pair .'n; &n/ obeys the Dn version of (3-4) with the asymp-
totic/boundary conditions determined via (4-3) by the data .‚� D‚n�; ‚C D‚nC/

and � D �n . In addition, there are points where jyuj > R C 1
2

ln z� � 8 at which
j&nj> 4��z� with �� here denoting the version of � given by Lemma 4.4. Note that
any such point lies in the radius e�4z1=2

� coordinate ball centered at one or the other of
the critical points from p. By passing to a subsequence and renumbering, arrange that
this occurs for each n in the radius e�4z1=2

� ball about a fixed critical point from p.
The argument that follows discusses the case when the critical point in question has
index 1. But for some sign changes, the same argument works for the index 2 critical
point. Let p denote the index 1 critical point in question.

Let fCp0ngnD1;2;::: denote the corresponding sequence of submanifolds. Note that
various index n version different data sets to define the geometry of Y and almost
complex structure on R� Y . Even so, the following is true: Fix an integer N, and
then all n > N versions of the almost complex structure agree on the part of the
radius ı� coordinate ball centered at p where the radius is greater than .N�1z�/1=2 .
This almost complex structure is denoted by J. Let z denote the function e�2.R�jyuj/

and let U denote the part of the radius ı� coordinate ball centered on p where the
radius is greater than e�100z1=2

� and less than z� . Granted what was just said, each
n � c0 version of Cp0n intersects R�U as a properly embedded, J –holomorphic
submanifold. Let Cn denote this part of Cp0n .

For each n, let sn denote a value for s of a point in Cn that corresponds to a point
where j&nj> 4��z� . Translate Cn along the R factor of R�U by �sn so that such
a point in Cn sits where s D 0 in the new submanifold. Let C 0n denote this new
submanifold.

Let s0 2R. Then the integral of ds^ya over the s 2 Œs0; s0C1� part of C 0n is bounded by
z� since ya D df here and C 0n has intersection number 1 or 0 with each constant .s ; f /
level set with f 2 .1; 1C z�/. This understood, use Lemma 4.5 with Proposition II.5.5
to obtain a subsequence of fC 0ngnD1;2;::: that converges on compact subsets in R�U

in the manner described by Proposition II.5.5. Let # denote the resulting set of pairs
consisting of an irreducible, J –holomorphic subvariety and positive integer weight.

As explained in a moment, the set # must contain a pair whose subvariety component
sits entirely in the 1� 3 cos2 � D 0 locus and is therefore the intersection of U with
some element from Proposition II.3.3’s moduli space M1 . Granted for the moment
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that # contains such a subvariety, it then follows from the manner of convergence
described in Proposition II.5.5 that all large n versions of Cp0n must contain a loop that
represents a nonzero multiple of the generator of H1.R�HCp� IZ/. To elaborate, recall
that such a generator can be taken to be any circle in U on which the coordinate s ,
the distance from p and the angle � are constant. Such a circle is given by pushing
a 1� 3 cos2 � D 0 circle where s and the distance from p are constant to the part of
R�HCp� where 1�3 cos2 � is slightly positive. Meanwhile, a 1�3 cos2 � D 0 circle of
this sort is a constant radius slice of U ’s intersection with any submanifold from M1 .

As just noted, if # contains U ’s intersection with a submanifold from M1 , then there
is a circle in each large n version of Cp0n that represents a nonzero multiple of the
generator of the first homology of R�HCp� . But this conclusion is nonsense by virtue
of the fact that Cp0n is diffeomorphic to R�I� and thus is contractible. This nonsense
is what is required to prove the lemma.

What follows is the promised explanation for why # contains U ’s intersection with
a submanifold from M1 . Lemma 4.4 is the key to the argument, for it implies that
j&nj> ��z� where z D 2ı2

n <
2
n

z� . Keeping this in mind, write z and h in terms of
the variables .r; �; �/ where r is the distance to p . By way of reminder, the coordinate
z D r2.1� 3 cos2 �/ and hD r2 cos � sin2 � . Thus,

(4-14) h=z D
cos � sin2 �

1� 3 cos2 �
and z2

C 6
h2

sin2 �
D r4.1C 3 cos4 �/:

As a consequence, a z < 2
n

z� point where j&nj> ��z� is a point where

(4-15) 1� 3 cos2 � <
1

n

1

3
p

3
and r > z1=2

� :

This implies that # contains a subvariety with a 1�3 cos � D 0 point. Such a subvariety
cannot have points where 1�3 cos2 � < 0 as there are no such points in Cp0n . Thus, it
must sit entirely in the 1�3 cos2 � D 0 locus and so constitute the intersection between
U and a submanifold from M1 .

Step 4 Assume that the parameters .ı; x 0;R/ are such that Lemma 4.6 can be invoked.
Let ��� denote the version of � from Lemma 4.6. Take z� so that 100���z� is less
than 10�6ı2

� .

Lemma 4.7 There exists � � 1 with the following significance: Let .'; &/ denote a
solution to (3-4) that obeys a given version of (4-3). Then 1� 3 cos2 � > ��1 on the
‰p–image of the graph .x; yu/! .x; yu; y� D '.x; yu/; hD &.x; yu// in R�X.

Geometry & Topology, Volume 24 (2020)
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The preceding lemma asserts the condition in the top bullet of (4-7).

Proof of Lemma 4.7 It follows from Lemma 4.6 and (4-14) that 1� 3 cos2 � > c�1
0

on the ‰p–image of the jyuj DRC 1
2

ln z� boundary of the graph where c0 � 1 is a
purely S –dependent (or K–compatible) constant. Thus, if 1� 3 cos2 � � c�1

0
on the

‰p–image of the graph, then this must occur in the interior. This requires that cos �
take its maximum on the interior. Lemma II.4.8 asserts that this maximum can occur
only where yuD 0.

With the preceding understood, suppose that the lemma is false so as to generate some
nonsense. Granted this assumption, there exists a sequence f.�n; .'n; &n//gnD1;2;:::

of the following sort: Each index n version of .'n; &n/ is a solution to (3-4) with
asymptotic/boundary conditions given by the �D�n version of (4-3). Furthermore, there
is some uD 0 point on the ‰p–image of the graph of .'n; &n/ where 1�3 cos2 � < 1

n
.

Given what is said in Lemma 4.5, an application of Proposition II.5.5 analogous to that
used to prove Lemma 4.6 generates the same sort of conclusion: there is a loop in the
‰p–image of every large n graph that generates the first homology of R�HCp� . As
noted in the proof of Lemma 4.6, this is a nonsensical conclusion.

Step 5 The next lemma asserts the condition in the lower bullet of (4-7).

Lemma 4.8 Given "> 0, there exists �"> 1 with the following significance: Suppose
that � 2 Œ0; 1� and that .'; &/ is a solution to (3-4) with boundary values given by the
parameter � version of (4-3). There are R–valued lifts of '.x; yu/, �.p�/ and �.� /
such that

�
ˇ̌
'.x; yu/��.p� jyu/

ˇ̌
Cj&.x; yu/� h.p�/j< " where x < ��" ,

�
ˇ̌
'.x; yu/��.� jyu/

ˇ̌
Cj&.x; yu/� h.� /j< " where x > �" .

Proof Suppose to the contrary that no such �" exists so as to derive some nonsense.
If this is the case, then there exists "� > 0 and a sequence f.�n; .'n; &n//gnD1;2;::: with
�n 2 Œ0; 1� and with .'n; &n/ a solution to (3-4) with asymptotic/boundary conditions
given by the �n version of (4-3). Moreover, .'n; &n/ violates the "D "� conclusions
of the lemma at all points where x < �n or x > n. This said, no generality is lost by
assuming that the sequence violates the conclusions where x < �n.

Construct a new solution to (3-4) by translating .'n; &n/ by the constant amount along
the R factor of R� I� so that the resulting pair violates the "D "� version of what
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is asserted by the top bullet of the lemma at some point where x D 0. Let .'0n; &
0
n/

denote this new solution. The conditions given by the first bullet of (4-7) hold for the
sequence f.'0n; &

0
n/gnD1;2;::: . This being the case, standard elliptic regularity arguments

(see again Chapter 6 of [12]) prove that there is a subsequence that converges in the
C1–Fréchet topology on compact subsets of R � I� . Let .'; &/ denote the limit.
This pair obeys (3-4) and it obeys the � D 0 version of the condition given by the
second bullet in (4-3). This is to say that the function ' on the boundary of R� I� is
independent of the R coordinate and its respective values on the two boundaries are
those of �.p�/ on the relevant boundary of I� .

The pair .'; &/ also satisfies the conditions given by the � D 0 version of the top bullet
in (4-3). To see this, note that the integral of w over the ‰p–image of the graph given
by this .'; &/ version of (3-1) is finite. As the image of the graph is J –holomorphic,
it follows using Lemma II.5.6 that any given sufficiently large, constant js j slice of
the ‰p–image of the graph must be everywhere very close to the yu 2 I� segment of
an integral curve of v in HCp� . Given the constant jyuj DRC 1

2
ln z� value for ' , this

segment must be from p� .

Note next that the translation that defined f.'0n; &
0
n/gnD1;2::: guarantees that the solution

.'; &/ is not the solution to (3-4) and with boundary values the � D 0 version of (4-3)
that is given by the x–independent map yu! .�.p� jyu/; h.p�//.

The conclusion of the previous paragraph is nonsensical given the assertion that there
is at most one solution to any given version of (3-4) with a given � 2 Œ0; 1� asymp-
totic/boundary conditions from (4-3). This assertion is proved in the next subsection; it
is the latter’s Lemma 4.9.

This concludes the proof of Lemma 4.3.

4D Uniqueness

The next lemma completes the proof of Lemma 4.8. It also proves the uniqueness
assertion of Proposition 2.2.

Lemma 4.9 Equation (3-4) has at most one solution whose boundary values are
described by a given � 2 Œ0; 1� version of (4-3).

Proof Suppose that � 2 Œ0; 1� and that .'.0/; & .0// and .'.1/; & .1// are two solutions
to (3-4) with asymptotic/boundary conditions that are given by the parameter � version
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of (4-3). Introduce '0 to denote '.1/ � '.0/ . This function is zero on the boundary
of R � I� and it has limit 0 as jxj ! 1 on R � I� . Let & 0 D & .1/ � & .0/ . The
pair .'0; & 0/ obeys an equation that can be written as Dh.'

0; & 0/ D 0, where Dh

is described by a version of (3-5) and (3-6). Indeed, just such an equation arises by
subtracting the .'.0/; & .0// version of (3-4) from the corresponding .'.1/; & .1//, where
it is understood that R–valued lifts of '.0/ and '.1/ are chosen so their boundary
values agree. The functions a1 and a2 that appear in this version of (3-5) are the
functions .x; yu/! a1.x; yu; &

.1/j.x;yu// and .x; yu/! a2.x; yu; &
.1/j.x;yu// that appear

in the .'.1/; & .1// version of (3-4). Meanwhile, b1 and b2 are given by

(4-16) � b1.x; yu/D
�R 1

0 a1h. � ; &
.1/C s.& .0/� & .1/// ds

�
@x'

.0/

C
�R 1

0 a0
1h
. � ; & .1/C s.& .0/� & .1/// ds

�
@yu'

.0/;

� b2.x; yu/D b.x; yu/C
�R 1

0 a2h. � ; &
.1/C s.& .0/� & .1/// ds

�
@x'

.0/

C
�R 1

0 a0
1h
. � ; & .1/C s.& .0/� & .1/// ds

�
@yu'

.0/:

Given that .'.1/; & .1// converges uniformly as jxj ! 1, and given that this pair
solves (3-4), standard elliptic regularity theorems as in Chapter 6 of [12] prove that the
corresponding pair .@x'

.1/; @x&
.1// converges uniformly to zero as jxj !1. This

implies that the version of .a1; a2; b1; b2/ just defined obeys the conditions in (3-6).
Thus, Proposition 3.2 can be invoked to see that the just-defined version of Dh has
trivial kernel and so .'0; & 0/D 0.

5 Analytic background for the �p > 0 cases

This section prepares some analytic tools that are used in Section 6 to prove Proposition
2.2 when �p > 0. The analysis concerns two related issues that owe allegiance to
item (b) in the third bullet of (2-9). This third bullet of (2-9) changes the domain
of .'; &/ so as to be the complement of either one or two yu D 0 points in R� I� .
The first issue is of import with regards to the behavior of the pairs .'; &/ that arise
in the �p > 0 versions of (2-10) near the missing yuD 0 points. Sections 5A and 5B
are devoted to this topic. The second issue concerns the versions the operator D of
of (3-5) that arise in the �p > 0 versions of (2-10). The domain and range spaces for
the �p > 0 versions of D change to reflect the changed domain for the corresponding
pair in (2-10) and the behavior of this pair near the missing yuD 0 point or points. The
remaining subsections use what is said in Sections 5A and 5B to first define the new
domain and range spaces for D, and then prove an analog of Proposition 3.2.
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5A J –holomorphic ends and the uD 0, 1� 3 cos2 � D 0 locus

This subsection describes the ends of J –holomorphic submanifolds whose constant s
slices converge as s !1 in an isotopic fashion to one or the other of the curves yCp
and y�p . This is precisely the sort of end that appears �p > 0 cases of (2-9). What
is said here concerns specifically the yCp story as the story for the other curve can be
obtained from the one told here by replacing � with ��� and changing some ˙ signs
at various points. The story here is told in four parts.

Part 1 Introduce by way of notation .sC; �C/ as coordinates for R�R=2�Z so as
to distinguish the latter from the eponymous factor in R�Hp . A differential operator
mapping C1.R�.R=2�Z/IR2/ to itself is defined by the rule that sends a pair .a; b/
to the pair with respective first and second components

(5-1) � @sCaC
�
�0

3

2x 0

�
@�CbC

�
3�0

x 0C4e�2R

x 2
0

�
a,

� @sCb�
�

3

4x 0�0

�
@�Ca�

�
4

x 0�0
e�2R

�
b .

Here, �0 is the value at uD 0 and � D �0 of the function � that is used for the fifth
bullet of Part 1 in Section 1C. This operator is denoted by D0 .

Pairs in the kernel of D0 describe deformations of the J –holomorphic submanifold
R � yCp that are J –holomorphic to first order in the distance from R � yCp . In
particular, pairs .a; b/ with limit zero as sC!1 describe the ends of J –holomorphic
submanifolds whose constant s –slices converge as sC !1 in an isotopic fashion
to yCp . More is said about this in Parts 2–4. What follows directly talks about the
kernel of D0 .

The operator depicted in (5-1) has constant coefficients, and so the kernel has a basis
whose elements are irreducible representations of the R=2�Z action on the space
of maps from R � .R=2�Z/ to R2 generated by @�C . Using this Fourier mode
decomposition makes an easy task of writing the kernel of (5-1). To say what this leads
to, introduce

(5-2) �1 D 3�0

x 0C 4e�2R

x 2
0

and �2 D
4

x 0�0

e�2R:

A basis for the kernel of D0 is given by the �C–independent elements

(5-3) y0C D .e
��1sC ; 0/ and y0� D .0; e

�2sC/;
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3088 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

and then, for each n 2 f1; 2; : : : g, elements that have the form

(5-4)
ynC D e��1nsC.cos n.�C��n/; r1n sin n.�C��n//;

yn� D e�2nsC.cos n.�C��n/;�r2n sin n.�C��n//;

where

�1n D
1

2

��
.�1C�2/

2
C

9n2

2x 2
0

�1=2

C�1��2

�
;

�2n D
1

2

��
.�1C�2/

2
C

9n2

2x 2
0

�1=2

C�2��1

�
;

and r1n and r2n are certain specific positive constants. Meanwhile, �n 2R=2�Z can
be any chosen angle.

Let SC denote the linear span of fynCgnD0;1;::: from (5-3) and (5-4). Let S� denote
the linear span of fyn�gnD0;1;::: from (5-3) and (5-4). The elements from SC limit to
zero as sC!1 and those from S� limit to zero as sC!�1.

Part 2 The upcoming description of the ends of J –holomorphic submanifolds invokes
some geometric constructions that are described next. To start, note that the restrictions
of the coordinate functions s and � parametrize R�yCp . These functions on R�yCp are
denoted by .sC; �C/. These coordinates with an auxiliary set of Euclidean coordinates
.�C;uC/ for a small radius disk in R2 can be used as coordinates for an R�.R=2�Z/–
invariant, tubular neighborhood in R�Hp of R� yCp . This parametrization can be
chosen so as to have the properties that are listed in the upcoming (5-5). The list uses
UC � HCp� to denote the constant s slices of this tubular neighborhood, this being
an R=2�Z–invariant tubular neighborhood of yCp . The list also refers to respective
R�R=2�Z actions on the .sC; �C; �C;uC/ coordinate domain and on R�UC . The
action on the former are the constant translations of sC and �C , and the action on
the latter are the constant translations along the R factor and the constant translations
of the coordinate � for the UC factor. The notation also uses �� to denote the angle
with cos �� D 1p

3
, it being the value of � on yCp . Granted this notation, here are the

parametrization’s properties:

(5-5) � The constant .sC; �C/ disks are J –holomorphic.

� The parametrization has � D ��C �C and uD uC

� The parametrization is equivariant with respect to the R� .R=2�Z/ actions.

� The coordinates .sC; �C/ equal .s ; �/ on the �C D 0, uC D 0 cylinder.
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A parametrization of this sort can be constructed using Lemma 5.4 from [19] with a
little help from the inverse function theorem to arrange the condition in the second
bullet.

Part 3 Granted these coordinates, a deformation of R� yCp can be parametrized as a
graph via functions .a; b/W R�R=2�Z!R2 as

(5-6) .sC; �C/! .sC; �C; �C D a.sC; �C/; uC D b.sC; �C//:

If y D .a; b/ is defined on a given open set in R � S1 and if jyj � c�1
0

, then the
resulting graph over the given open set defines a J –holomorphic surface if and only if
y obeys a nonlinear equation with the schematic form

(5-7) D0yC r1 dyC r0;

where r1 is a smooth map from a certain small radius disk about the origin in R2 to
Hom.T �R2;R2/, and where r0 is a smooth map from this same disk to R2 . These
are such that jr1j � c0 jyj and jr0j � c0 jyj

2 .

By way of an example, the J –holomorphic cylinders that form Proposition II.3.4’s
moduli space Mp0

foliate the uD 0 slice of R�HCp0
. These cylinders are �–invariant.

Each such cylinder has two ends; their constant s slices converge isotopically as s!1
to the respective integral curves yCp and y�p . The very large s parts of the end whose
slices converge to yCp appears as a �C–independent solutions to (5-7) that are defined
for sC� 1 with pairs .a; b/ such that a> 0 and b D 0. In particular, integrating the
uD 0 version of the vector field in (II.3-10), or using arguments much like those in
Section 2 of [7], finds that the relevant version of y can be written as

(5-8) yD ˛.e��1sC C e1; 0/; where ˛ 2 .0;1/ and je1j � c0 j˛je
�.�1C1=c0/sC :

Meanwhile, the large s part of the end of any given submanifold from Proposition
II.3.4’s moduli space MpC is described by (5-8) with ˛ < 0.

By way of a second example, the end in R�HCp from Proposition II.3.3’s moduli
spaces M1 and M2 whose constant s slices converge as s!1 to yCp are described
where s��1 by a �C–invariant solution to (5-7) that is defined where sC��1 and
has the form

(5-9) yD ˛.0; e�2sC C e2/; where ˛ 2R n 0 and je2j � c0 j˛j
2e�.�2C1=c0/jsCj:

The ˛ > 0 cases describe the end of the submanifolds from M1 and the ˛ < 0 cases
describe the end of the submanifolds from M2 .

Geometry & Topology, Volume 24 (2020)
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A third example involves the submanifolds from Proposition II.3.2’s moduli space M† .
Those parametrized as in the second bullet of Proposition II.3.2 by a pair .x;y/ with y

near 1 can be written using (5-5)–(5-7) as

(5-10) yD .˛Ce��1sC C eC; ˛�e�2sC C e�/;

where ˛C > 0 and ˛� > 0. Here, eC and e� are both �C–invariant. In addi-
tion, their norms are such that jeCj � c0 j˛Cj.j˛Cj C j˛�j/e

�.�1C1=c0/sC and je�j �
c0 j˛�j.j˛CjC j˛�j/e

�.�2C1=c0/sC . Note that this representation is valid only over a
domain I � .R=2�Z/�R�R=2�Z, where I is a bounded interval whose endpoints
are determined by ˛C and ˛� . The left endpoint diverges as ˛�! 0 and the right
endpoint diverges as ˛C! 0. Meanwhile, a surface from M† parametrized by .x;y/
with y � 2 appears as in (5-10) but with ˛� < 0.

Part 4 This part of the subsection directly addresses the issue of describing ends
of J –holomorphic submanifolds using the kernel of D0 . As just noted, any such
end whose large s � 1 slices sit in UC and converge to yCp in an isotopic fashion
as s !1 is described by a solution to (5-7) that is defined where sC� 1 and has
sC!1 limit equal to zero. By the same token, any such end whose s ��1 slices
sit in UC and converge to yCp in an isotopic fashion is described by a solution to (5-7)
defined where sC��1 and converging to 0 as sC!�1. The following proposition
describes all such solutions to (5-7). By way of a reminder, what are denoted in the
proposition by ynC and yn� are defined in (5-4).

Proposition 5.1 There exists � � 1 with the following significance: Fix s� � 1.

� Suppose that y is a solution to (5-7) with domain Œs�;1/�R=2�Z that con-
verges to 0 as sC!1 and has pointwise norm bounded by ��2 . There exists
n� 1 such that y can be written as

yD c0.e
��1sC C e1; 0/C cnynCC en;

with c0; cn 2 .��
�1; ��1/, with e1 as given by (5-8), and with

jenj � � jcnj.jcnjC jc0j/e
�.�1nC1=�/sC :

Conversely, given n 2 f1; 2; : : : g and constants c0; cn 2 .��
�1; ��1/, there

exists a solution to (5-7) that can be written in this way.
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� Suppose that y is a solution to (5-7) with domain .�1;�s�� �R=2�Z that
converges to 0 as sC!�1 and has pointwise norm bounded by ��2 . There
exists n� 1 such that y can be written as

yD c0.0; e
�2sC C e2/C cnynCC en;

with c0 , cn 2 .��
�1; ��1/, with e2 given by (5-9), and with

jenj � � jcnj.jcnjC jc0j/e
�.�2nC1=�/jsCj:

Conversely, given n 2 f1; 2; : : : g and constants c0; cn 2 .��
�1; ��1/, there

exists a solution to (5-7) that can be written in this way.

Moreover , in either case , the derivatives of y to any given order are square-integrable
where jsCj> 2s� .

Proof The analysis from Section 2 and specifically Section 2.3 of [7] can be used but
for one added comment to prove that any given solution to (5-7) with sC!1 limit
zero can be written as described. The extra comment concerns the derivation of the
bounds on the norms for e0 and e1 . These bounds are obtained by projection y and
the expression in (5-7) onto R=2�Z–invariant subspace of maps from R�R=2�Z

to R2 . To elaborate, this projection is given by the map

(5-11) q!…qD
1

2�

Z
R=2�Z

q. � ; �C/ d�C :

The use of such a projection is not discussed in Section 2 of [7]. Even so, the latter’s
arguments can be applied separately to the R=2�Z–invariant part of (5-7) and the
remainder with what are little more than notational changes to obtained the distinct
bounds for the norms of e0 and on e1 .

The proof of the converse assertion in the first bullet is given below in two steps. The
proof of the converse assertion in the second bullet is identical but for straightforward
notational and cosmetic changes and so is not given. The proof that the derivatives to
any given order are square-integrable invokes standard elliptic regularity theorems of
the sort that can be found in Chapter 6 of [12].

Step 1 Use H to denote now the L2
1

completion of the space of smooth, R2 –valued
functions on Œ0;1/ �R=2�Z with compact support and which lie in Part 1’s sub-
space S� on the boundary, f0g �R=2�Z. Let L denote the L2 completion of the
space of smooth, R2 –valued functions on Œ0;1/�R=2�Z. It is a straightforward
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task using integration by parts to prove that D0 defines a Fredholm operator from H

to L with trivial kernel and cokernel. As such, it has a bounded inverse. There is also
a version here of the Hilbert spaces H� and L� that are defined in Section 3E. These
are defined by completing the respective dense domains for H and L using for H�
the Œ0;1/ �R=2�Z analog of (3-33), and using for L� the analog that integrates
the square of the norm of �0 rather than that of its derivatives. The operator D0 also
defines a bounded, linear map from H� to L� . The analog of Lemmas 3.4 and 3.5
holds in this case: The inverse of D0 maps L� �L to H� �H as a bounded operator.
As D0 commutes with …, the inverse also commutes with ….

Step 2 Fix T � 100 and let ˇT denote the function on Œ0;1/ given by ˇ.s � T /.
Fix n 2 f1; 2; : : : g. Given the R�R=2�Z version of Lemma 3.4, there exists c0 > 1

and T � 1 such that following is true: Suppose that jc0j C jcnj � c�2
0

. Let B �H�
denote the ball about the origin of radius c�1

0
. Reintroduce r0 and r1 from (5-7). Let

yC D .e
��1sCC e1; 0/. A smooth map from

�Q
2.�c�1

0
; c�1

0
/
�
�B to L is defined so

as to send any given ..c0; cn/; q/ to

(5-12) D0qCˇT r1.c0yCCcnynCCq/d.c0yCCcnnnCCq/CˇT r0.c0yCCcnynCCq/:

The differential of this map at ..c0; 0/; 0/ along the H� factor is an isomorphism if
T � c�1

0
. This being the case, the inverse function theorem finds c0 and, for T > c0 , a

smooth map enW
Q

2.�c�1
0
; c�1

0
/! B such that the triple ..c0; cn/; qD en.c0; cn// is

mapped to 0 by (5-12). Moreover, this map is such that jenj � c0 jcnj.jc0jCjcnj/e
��1T .

The techniques from Section 2.3 in [7] can be used to see that en has the asserted norm
bound.

5B The kernel of D0 and graphs over R� I�

Some of the J –holomorphic cylinders given by Proposition 5.1 via (5-5)–(5-7) will
intersect R�HCp� and so intersect the image of ‰p . This subsection says something
about the ‰p–inverse image of these intersections. Of particular interest are the
cylinders where s is unbounded from above. There are five parts to what follows.
Lemma 5.6 in Part 5 gives some indication as to why these cylinders are relevant.

Part 1 Fix n� 1 and a pair .c0; cn/ 2R2 n0 whose absolute value is small enough to
apply the first bullet of Proposition 5.1 to obtain a corresponding solution, y, to (5-7).
Write y as .a; b/ and use the latter in (5-5) and (5-6) to define a J –holomorphic
cylinder in the s � 1 part of R�UC � R�Hp . It follows from the second bullet
of (5-5) that c0 must be positive for this to occur.
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Assume henceforth that c0 > 0 and that cn¤ 0. If this is so, then the large s part of the
cylinder in question has algebraic intersection n with the large s parts of submanifolds
from Mp0

and from submanifolds from Proposition II.3.2’s moduli space M† that
come very near the uD 0 locus in R�Hp at large s . Indeed, this last point is a direct
consequence of three facts: First, each such subvariety from Mp0

appears as in (5-8),
and those from M† appear as in (5-10). Second, the c0y0C C e0 contribution to y

has the form .c0e��1sC C e0; 0/ with e0 being �–invariant and having the asserted
norm bound. Third, the uC component of y1n has 2n zeros on each large, constant sC
circle in R�R=2�Z and each such zero is transverse.

Part 2 The large s part of a cylinder in R�HCp parametrized via (5-5)–(5-7) and the
first bullet of Proposition 5.1 with c0 > 0 has yD c0.e

��1sC ; 0/CO.e�.�1C1=c0/sC/

and so looks to leading order like what is written in (5-8). By way of a reminder, the
latter depicts a cylinder from Proposition II.3.2’s moduli space Mp0

. This being the
case, what follows says more about the Mp0

case of (5-8) in preparation for what is
said in the next parts of the subsection about the cn ¤ 0 cases.

To set the stage, keep in mind that a cylinder from Proposition II.3.3’s moduli space Mp0

is �–invariant and invariant with respect to the involution � ! � � � . Such a cylinder
has two ends, and the constant s slices of these ends converge in an isotopic fashion
as s !1 to the respective integral curves yCp and y�p . The ‰p–inverse images of
these cylinders from Mp0

are the constant x slices of the yuD 0 locus in R�X. The
association of the value of x to the corresponding cylinder gives an R–equivariant
diffeomorphism between R and Mp0

. This diffeomorphism from R to Mp0
sends

any given y 2R to the cylinder in Mp0
whose s D y slice is the .uD 0; � D 0/ circle

in HCp .

Fix y 2R and let †y 2Mp0
denote the corresponding cylinder. The function s on †y

has one critical value, this the s D y locus. It restricts to both components of the
complement of this locus as a proper map to .y;1/. The function cos � increases
monotonically as a function of s with s !1 limit 1p

3
on one of these components.

Meanwhile, cos � decreases monotonically on the other component with s !1 limit
equal to � 1p

3
. Let E0;y �†y denote the former component, this being the end whose

constant s slices converge to yCp and is given via (5-5)–(5-7) by using y as depicted
in (5-8) for a suitable choice of ˛ . Denote the E0;y version of ˛ by ˛y .

Lemma 5.2 Fix a pair x;y 2R and let †x and †y denote the corresponding surfaces
from Mp0

. Then x�y D 1
�1

ln.˛x=˛y/.

Geometry & Topology, Volume 24 (2020)
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Proof This follows from (5-5)–(5-8) given the fact that †x is obtained from †y by
translating the latter by x�y along the R factor of R�HCp .

Part 3 Fix n 2 f1; 2; : : : g and y 2 R. Introduce by way of notation En;y to denote
the large s part of a cylinder that is described via (5-5)–(5-7) and the first bullet of
Proposition 5.1 with c0 D ˛y and cn ¤ 0. The next lemma describes the ‰p–inverse
image of these sorts of cylinders.

Lemma 5.3 There exists a constant � � 1 with the following significance: Fix
a positive integer n and �n 2 R=2�Z so as to specify a particular version of ynC

from (5-4). Choose a real number y and set c0D˛y ; then choose cn¤ 0 so as to define
En;y �R�HCp via (5-5)–(5-7) using y as in Proposition 5.1. Fix .sC; �C/ 2R�S1

with sC� 1.

� The y� and h coordinates of the ‰�1
p –image of the corresponding point in En;y

are y� D .�C��n/ and

hD .x 0C 4e�2R/

�
2

3
p

3

�
1� 3˛2

y e�2�1sC � 6˛2
ycn e�.�1C�1n/sC cos.n.�C��n//C � � �

�
;

where the unwritten term has two parts. The �C–invariant part is bounded in
absolute value by e�.2�1C1=�/sC . The remainder is bounded in absolute value
by e�.�1C�1nC1=�/sC .

� The yu coordinate is

yu.sC; �C/D
3

2x 0�0

��
.�1C�2/

2
C

9n2

2x 2
0

�1=2

C�1C�2

�
.1C � � � /

� cne��
0
1n

sC sin.n.�C��n//C � � � ;

where �0
1n
D �1n C 12e�2R.�0x 0/

�1 and where the first unwritten factor is
bounded in absolute value by �e�2R and the second by e�.�

0
1n
C1=�/sC . The abso-

lute values of their derivatives are also bounded by these same respective factors.
� The x coordinate is

x.sC; �C/D yC��1
1 cne�.�1n��1/sC cos.n.�C��n//C � � � ;

where the unwritten term is bounded in absolute value by e�.�1n��1C1=�/sC .
The absolute value of its derivatives is also bounded by this same factor.

A proof is given in a moment. What follows directly is a corollary of what is said by
the second and third bullets of Lemma 5.3.
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Corollary 5.4 Fix s� 1 and there is an open , contractible neighborhood Vs �R�I�

of the point .y; 0/ with the following significance: The projection to R� I� of the
‰p–inverse image of where s > s in En;y defines a proper , n-to-1 covering map onto
Vs n .y; 0/.

The rest of this part of the subsection is occupied with the:

Proof of Lemma 5.3 The claim in the first bullet follows from what is said in
Proposition 5.1 and the fact that y� and h are the respective pullbacks of � and
f .u/ cos � sin2 � . Use the identification � D ��C a.sC; �C/ and u D b.sC; �C/ in
the latter function with Taylor’s theorem to obtain the given expression for h.

The formulas for yu and x are derived in the four steps that follow. The arguments
given take �n D 0. The assertion in the general case follows directly from this case by
applying a constant R=2�Z translation.

Step 1 The uD 0 slice En;y is parametrized by sC via the rule

(5-13) �.sC/D ��C˛y.e
��1sC C e0˙ cne��1nsC C en;

with e0 and en as given by Proposition 5.1. The plus sign occurs at an angle �CD0CeC
and the minus sign occurs at � D � C e� , where jeCj and je�j are both bounded by
c0e�.�1nC1=c0/sC . From the vantage of R�X, the � � 0 intersection locus correspond
to points with

(5-14) yuD 0; y� D 0C eC and hD .x 0C4e�2R/ 2

3
p

3
.1�3˛2

ye�2�1sC/C� � � ;

where the unwritten term in the expression for h is bounded in absolute value by
e�.2�1C1=c0/sC . The uD 0 locus in En;y with � � � has y� coordinate �C e� and h

coordinate also given by (5-14).

Step 2 It follows from the definition given in (1-29) that the x and yu coordinates
of the point in En;y can be determined from (5-5)–(5-7) by integrating the vector
field given in (II.3-10) starting at the point .s D sC; � D ��C a.sC; �C/; b.sC; �C//.
The values of x and yu of this point on En;y are the respective s coordinates and u

coordinates of the point on the relevant integral curve where � D �
2

.

To see what results, let � ! .s.�/, �.�/, u.�// denote for the moment a certain
parametrization of this integral curve. Take � D 0 to be the start point. As � increases
along the curve, (II.3-9) implies that juj decreases from its initially small value as �
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increases. Now, define the parametrization of the curve by � so that Taylor’s theorem
applied to (II.3-9) writes the � –derivative of u as

(5-15) du

d�
D�2

p
3 e�2R u.1C � � � / cos � sin �;

where the unwritten term has absolute value bounded by c0e�2�1ns . A second applica-
tion of Taylor’s theorem writes

(5-16) d�

d�
D

1

2
p

2
.x 0C 4e�2R

C � � � /.1� 3 cos2 �/;

where the unwritten terms are also bounded by c0e�2�1s . Given the very small � D 0

value for � � �� at the start, it follows from (5-16) that the value of � where � D �
2

is
given by

(5-17) � D
3

x 0
�0sCC � � � ;

where the unwritten term has absolute value bounded by c0 . Granted this, use Taylor’s
theorem to approximate cos � sin � in (5-15) by cos �� sin �0n� D

2p
3

. Integration
produces the formula given for yu in the second bullet of the lemma.

Step 3 To get an expression for the x coordinate of a given uD 0 point on En;y , note
that the value of � on the end Ey in Mp0

’s cylinder †y is described at large sC by
the cn D 0 version of (5-13). For any given x 2 R, use Lemma 5.2 to see that the
value of � on the end Ex in the corresponding †x is described at large sC by the
version of (5-13) that sets cn D 0 and replaces sC by sC� .x�y/. Granted this last
observation, use a first-order Taylor’s approximation to see that the value of x on En;y

at a given very large sC and where uD 0 is obtained by solving

(5-18) ˛y.e
��1sCC e1/.1C�1.x�y/ � � � /D ˛y

�
.e��1sCC e1/˙ cne��1nsC

�
C� � � ;

where the unwritten term on the left-hand side involve higher powers of .x�y/ and
a term with absolute value bounded by e�sC=c0 jx � yj. Meanwhile, the unwritten
term on the right-hand side has absolute value bounded by e�.�1nC1=c0/sC . This last
equation implies that the x coordinate of a given sC� 1 point on the uD 0 locus
in En;y is given by

(5-19) x.sC/�y D˙��1
1 cn e�.�1n��1/sC C � � � ;

where the unwritten term has absolute value bounded by e�.�1n��1C1=c0/sC .

Step 4 Granted that juj decreases from its initially small value, it also follows from
(II.3-9) that the value of x is very nearly the R–parameter of the � D �

2
point on the
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unique †. � / surface that contains .sC; � D ��C a.sC; �C//. Given this observation,
what is said the preceding steps implies directly the formula for x in the third bullet of
the lemma.

Part 4 This part of the subsection concerns specifically the case where nD 1. The
discussion here concerns the normal bundle to the large s part of the surface E1;y

when viewed using (5-5)–(5-7) and Proposition 5.1, and when viewed via ‰p as a
submanifold in R�X.

To start, use the almost complex structure J and the 2–form y! D ds ^ yaCw to define
the Riemannian metric y!. � ;J. � //. Let N ! E1;y denote the normal bundle to the
submanifold E1;y , this being the orthogonal complement in T .R �Hp/ of T E1;y .
View the large s part of E1;y using (5-5)–(5-7) and Proposition 5.1 to see that pairing
with the 1–forms .d�C; duC/ define an isomorphism between N and the product
R2 –bundle. Meanwhile, this same part of E1;y can be viewed as the ‰p–image of a
surface in R�X, and Corollary 5.4 implies that the 1–forms .d y�; dh/ also define an
isomorphism between N and the product R2 –bundle.

These two product structures are related in the following way: Let y denote a map from
the sC� 1 part of R�S1 to R2 . Use the product structure defined by .d�C; duC/ to
view y as a section of N over this part of E1;y . Meanwhile, use the nD 1 version of
Corollary 5.4 to view this part of E1;y as the ‰p–image of a graph of the sort depicted
in (3-1) with the domain of the relevant version of the pair .'; &/ being the complement
of .y; 0/ in an R� I� neighborhood of .y; 0/. With E1;y viewed this way, the image
via .d y�; dh/ of the section defined by y defines a map, �, from the domain of .'; &/
to R2 . The maps y and � are related via a rule given by

(5-20) yj.sC;�C/ D U � .�j.x.sC;�C/;yu.sC;�C///;

where U is a smooth map from the large sC part of R�S1 to GL.2IR/ with positive
determinant. Note that the latter component of GL.2IR/ deformation retracts on to
the SO.2/ subgroup, and so the restriction of U to any given constant, large sC circle
in R�S1 has an integer degree that is independent of the chosen value for sC .

Lemma 5.5 The map U just defined has degree 1.

Proof The constant map from the domain of .'; &/ to R2 given by the element
.1; 0/ corresponds via .d y�; dh/ to a section of N over E1;y , this being the orthogonal
projection to N of the vector field @y� . The latter generates the deformations of E1;y
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that are given by the constant rotations of the y� coordinate. Granted this, use Lemma 5.3
with (5-5) and (5-7) to see that these deformations are generated along the large sC part
of the graph in (5-5) by the section of N that is defined by the orthogonal projection
of the vector field

(5-21) r e��1nsC
�
�sin.�C��n/ @�CC

3

2x 0�0

��
.�1C�2/

2
C

9

2x 2
0

�1=2

C�1C�2

�
� cos.�C��n/ @uC

�
C � � � ;

where unwritten terms are bounded in absolute value by c0r e�.�1nC1=c0/sC . This last
vector rotates once, counterclockwise in R2 as �C changes from 0 to 2� . This implies
that U has degree 1, as claimed.

Part 5 The following lemma gives some hint as to the relevance of the cylinders that
are described by the first bullet of Proposition 5.1.

Lemma 5.6 Let C � R�HCp� denote a properly embedded , J –holomorphic sub-
manifold , and let E � C denote an end where s is unbounded from above and whose
constant s slices converge in an isotopic fashion to yCp as s !1. Then the s � 1

part of E can be parametrized via (5-5)–(5-7) by a map of the sort that is described by
the first bullet in Proposition 5.1.

Proof There exists s� > 1 such that the s � s� part of E is a proper submanifold
with boundary in Œs�;1/�UC . Use (5-5)–(5-6) to view this submanifold using the
coordinates .sC; �C; �C;uC/. The function s restricts to the s� s� part of E as a proper
function with no critical points. Granted that this is so, it follows that the projection
to the .�C;uC/D .0; 0/ cylinder restricts to the large sC part of E as a covering map.
This covering map must have degree 1 because the constant s slices of E are isotopic
to yCp . This understood, the large sC part of E has intersection number 1 with any
given sufficiently large sC fiber of the projection to the .�C;uC/D .0; 0/ cylinder. This
implies that the large sC part of E can be written as the graph of a map from the large
sC part of R�R=2�Z to R2 that is described by the first bullet of Proposition 5.1.

5C Fredholm operators

This subsection introduces some new Fredholm domain and range spaces for certain
operators of the sort that are described by (3-5) and (3-6). The upcoming Proposition 5.7
supplies the analog of Proposition 3.2 for the new Fredholm incarnations of these
operators.
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To set the stage, let Q 2R� I� denote either the complement of a single yuD 0 point
or two yuD 0 points. Suppose that hD .'; &/ maps the complement of Q in R� I�

to R2 so as to define a graph in R�X via (3-1). Let Ch denote the ‰p–image of
this graph. Assume in what follows that the large js j part of Ch is J –holomorphic,
that it obeys the first bullet in (2-9), and that it obeys the �p D 1 or �p D 2 bullets
of (2-9). The pair h has an associated version of the operator that is depicted in (3-9),
this denoted by Dh . In what follows, D is used to denote an operator that is given
by (3-5) and (3-6) with the extra condition

(5-22) D DDh on the complement of a compact set in .R� I�/ n Q:

Operators of this sort play a central role in the upcoming proof of the �p > 0 version
of Proposition 2.2. Part 1 of what follows defines the new domain and range spaces.
This first part of the subsection ends with Proposition 5.7. The subsequent parts of the
subsection supply the proof of Proposition 5.7.

Part 1 Let N ! Ch denote the normal bundle, this being the orthogonal complement
to T Ch in T .R�Hp/ with orthogonality defined by the metric y!. � ;J. � //. Here again,
y! D ds ^ yaCw . Identify Ch with its inverse image via ‰p in R�X. Having done
so, use .d y�; dh/ to write a section of N as a map from .R� I�/ n Q to R2 . Granted
this identification, a map from .R� I�/ n Q to R2 can be viewed as a section of N

over Ch . A map with compact support defines a section of N with compact support,
and vice versa. The aforementioned Riemannian metric defines a fiber metric for N

and an associated metric compatible, covariant derivative for sections of N. It also
defines a Riemannian metric on T Ch and thus an area form. Use the fiber metric on N

and T Ch , the covariant derivative on N , and integration with respect to this area form
to define the L2

1
inner product on the space of sections of N with compact support.

This L2
1

inner product gives an inner product on the space of compactly supported
maps from .R� I�/ n Q to R2 . Use H to denote the completion using this L2

1
inner

product of the subspace of compactly supported maps from .R� I�/ n Q to R2 whose
first component is zero along the boundary of R� I� . This Hilbert space H will be
the domain space for the desired Fredholm incarnation of D.

The range Hilbert space for the new incarnation of D is a certain L2 inner product
space. To set the stage for the definition of this inner product, introduce e0 to denote
the denote the pullback of the C–valued 1–form in (3-2) via ‰�1

p . The pullback of
the latter to the graph of h defines a section, eh , of T �CCh and this section defines a
polarization of T �CCh since eh^xeh ¤ 0. Define T 0;1Ch to be the span of xeh . By way
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of comparison, let E � Ch denote a J –holomorphic end whose constant s � 1 slices
are circles, this an end whose large s slices converge in Hp to either y�p or yCp . As J

defines a complex structure on E, so it defines a polarization of T �CE as T 1;0E˚T 0;1E.
This polarization is the same as that given by feh; xehg.

Use the metric defined by J and y! to define a hermitian metric on T �C.R�HCp /, and
use the latter to define the norm of eh . This norm is denoted by jehj. Let j � jN denote
the fiber norm described above on N . Reintroduce the functions a1 and a2 from (3-4).
Use these functions and jehj to define a norm on the space of maps from .R� I�/ n Q

to R2 as follows: Let � D .�; o/ denote a given map. View the map .a�1
1
�; a�1

2
o/ as a

section of N over Ch . Set the norm of � to be j.a�1
1
�; a�1

2
o/jN jehj. Use this pointwise

norm and integration with respect to the area form on Ch to define an L2 inner product
on the space of compactly supported maps from .R� I�/ n Q to R2 . The resulting
Hilbert space is denoted by L. This space L is the new range Hilbert space.

By way of an explanation, the trivialization of the normal bundle of Ch given by the
1–forms .d y�; dh/ identifies the latter with the span of the vector fields f@y� ; @hg. The
almost complex structure J preserves this span, and so endows N with the structure of
a complex line bundle. The C–valued 1–form .a�1

1
�C ia�1

2
o/ xeh defines a section of

N ˝T 0;1Ch . The norm of this section as defined using the induced hermitian metric
is the norm defined above for � .

Keep in mind for what follows that the norms that define H and L depend on the
chosen pair h. Even so, the spaces H and L do not depend on h. This is so because
the respective norms defined by pairs h and h0 are commensurate.

Proposition 5.7 Suppose that D is described by (3-5), (3-6) and (5-22). Then D

extends as a Fredholm operator from H to L with index �p and trivial cokernel.

Proof The proof is contained in the subsequent parts of this subsection. Part 2 explains
why D is Fredholm, Part 3 computes the index and Part 4 proves that the cokernel is
trivial.

Part 2 Use k � kL to denote the L2 –norm that defined L. Meanwhile, use k � k to
define the L2 –norm on sections of N and on sections of N ˝T �Ch . The covariant
derivative on sections of N is denoted by r . The operator D has closed range and
finite-dimensional kernel if and only if there exists c � 1 such that if � 2H , then:

(5-23) � kD�k2L � c�1kr�k2� ck�k2 .

� If � has support only where j‰�p s j> c , then kD�k2L � c�1k�k2 .
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As in the case with Proposition 3.2, the finite-dimensionality of the cokernel follows
if the formal, L2 adjoint of D also obeys (5-23). Here, the L2 –norm is that used to
define L. The proof that this is so differs only in notation for the proof that (5-23)
holds for D and so will not be given.

To see about (5-23), it is sufficient to restrict attention to two sorts of compactly
supported sections of N. With s1 > 1 fixed, the first sort are those with no support
where s > 4s1 on an end E � Ch whose constant s slices are circles. The second sort
are the sections with support only in the s > 2s1 portion of such an end. The arguments
in Section 3C establish the existence of an s1 –dependent constant c that makes (5-23)
true for all sections of the first sort. The proof that (5-23) for the sections with support
where s > 2s1 on an end E as just described has three steps. These steps consider the
case where the constant s slices of E converge as s !1 to yCp . The argument for
the other case is identical but for some sign changes.

Step 1 Let y 2 Q denote the point that corresponds to the end E. Use what is said in
Proposition 5.1, Lemma 5.3 and Corollary 5.4 to view the large s part of the end of E
via (5-5)–(5-7) with y in Proposition 5.1 defined using nD 1 and c0 D ˛y , and with
an appropriate choice for c1 2Rn0 and �1 2R=2�Z. Take s1 so that the s � s1 part
of E appears in this way. Nothing is lost by assuming that D DDh on the ‰p–inverse
image of this part of E.

Use .d�C; duC/ to identify N over the s � s1 part of E with the product bundle
and so write a section of N with support on the s > 2s1 part of E as a map from
the large sC part of R�R=2�Z to R2 . Let x denote such a map, but viewed as a
section over E of N. Multiply this section by dsC and use the parametrization of E
by .sC; �C/ and the complex line bundle structure on N defined by J to write the
latter as a section of N ˝C .T

�
CE/. Use .x/0;1 to denote the N ˝T 0;1E part of this

section of N ˝T 0;1E.

Let � denote a map from .R � I�/ n Q to R2 with support only on the part of the
domain that parametrizes the s > 2s1 part of E. Write the two components of Dh�

as .�; o/ and then view .a�1
1
�; a�1

2
o/ as a section of N over E. With N viewed as a

complex line bundle, multiply the latter by xeh to define a section of N ˝ TCE. Denote
this last section by .Dh�/0;1 .

Step 2 The lemma below is used in Step 3 to write Dh near the point .y; 0/ in terms
of the operator D0 from (5-1).
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3102 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

Lemma 5.8 There exists a first-order differential operator, d, on the space of maps
from Œs1;1/�R=2�Z to R2 , a map V W Œs1;1/�R=2�Z!C n 0 and � > 1 with
the following properties:

� The coefficients of d bounded in absolute value by �e�s=�

� The norms of both V and V �1 are bounded by � .

� Let � 2C1..R� I�/ n QIR2/ with support only on the part of the domain that
parametrizes the s > 2s1 part of E. Let U denote E ’s version of the map to
GL.2IR/ that appears in Lemma 5.5. Then ..D0C d/.U�//0;1 D V .Dh�/0;1 .

Proof Introduce U � .R� I�/ n Q to denote the domain that parametrizes the s > s1

part of E. Let �D .'0; & 0/ denote a map from U to R2 that is annihilated by Dh . Let
U 0 �U denote an open set with compact closure. For t near zero in R, the ‰p–image
of the graph of the map .'C t'0; &C t& 0/ defines a deformation of ‰p.U

0/� E that is
J –holomorphic to first order in t . Let .ah; bh/ denote the map to R2 from the s � 1

portion of R�R=2�Z whose graph parametrizes E via (5-6). Write U� as .a0; b0/.
The pair given by .ahC ta0; bhC tb0/ defines via (5-6) a deformation of ‰p.U

0/ that
is J –holomorphic to first order in t if and only if .a0; b0/ obeys an equation of the
form .D0CdE/.a

0; b0/D 0 where dE is a certain first-order differential operator whose
coefficients are bounded by c0e�s=c0 . It follows from this that there exists a map V

from Œs1;1/�R=2�Z! C n 0 such that the assertion given by the third bullet of
the lemma holds using d D dE and for any smooth map � with support on U. The
uniform bounds on V and V�1 can be derived using the chain rule from the formulas
in Lemma 5.3.

Step 3 Granted what is said in Lemma 5.8, it is sufficient to prove that there exists
c0 � 1 such that

(5-24) kD0ykL2 � c�1
0 .kdykL2 CkykL2/

for all maps y with compact support on the sC > 1 part of R�R=2�Z. That this is
so follows from the fact that the symmetric operator

(5-25) .a; b/!

�
@�bC 2

x 0C 4e�2R

x 0

a;�@�a� 1
3
e�2Rb

�
on C1.S1IR2/ has trivial kernel.

Part 3 This part of the subsection computes the Fredholm index of D. The computation
has three steps.

Geometry & Topology, Volume 24 (2020)



HFD HM , III 3103

Step 1 This step first defines from Ch a closed manifold with empty boundary that is
diffeomorphic to the complement of a point in R�S1 . This manifold is denoted by Z

in what follows. An oriented R2 –bundle is then defined over Z and D is shown to
extend over Z as an operator that acts on sections of this bundle.

The manifold Z is defined by a suitable identification of the boundary components. To
set the stage, note that any given version of D that obeys (3-5), (3-6) and (5-22) can
be continuously deformed through a 1–parameter family of operators obeying (3-5),
(3-6) and (5-22) to Dh . This deformation won’t change the index. Granted that such is
the case, assume that D DDh .

Use (3-1) and the map ‰p to identify Ch with .R�I�/nQ . Fix "2
�
0; 1

8

�
and introduce

I 0 to denote the interval
�
�R� 1

2
ln..1C "/z�/;RC 1

2
ln..1C "/z�/

�
. Granted the

aforementioned identification, extend Ch as .R� I 0/ n Q . Having done so, introduce
the function tC D e�2.R�yu/ where yu > RC ln ı on I 0 and use the pair .x; tC/ to
parametrize the part of .R�I 0/nQ where yu2

�
RC 1

2
ln..1�"/z�/;RC 1

2
ln..1C"/z�/

�
.

Likewise introduce the function t� D�e�2.RCyu/ and use .x; t�/ to parametrize the
yu< �R� 1

2
ln..1� "/z�/ portion of the domain .R� I 0/ n Q . Use these coordinates

to identify the tC 2 Œ.1� "/z�; .1C "/z�� portion of .R� I 0/ n Q with the portion of
.R�I�/nQ where t� 2 Œ�.1C"/z�;�.1�"/z�� using the rule t�D�2z�C tC . The
slice of Z where tC D z� and so t� D �z� in Z is said in what follows to be the
z�–locus. The complement of this z�–locus in Z is the interior of .R� I 0/ n Q .

Define an oriented, R2 –bundle over Z as follows: the bundle is obtained from the
product R2 –bundle over .R� I 0/ n Q by identifying the point ..x; tC/; .�1; �2// with
the point ..x; t� D�2z�C tC/; .�2; ��1//. Use NZ to denote this R2 –bundle.

As explained next, the operator Dh extends over the whole of Z as a differential
operator on the space of sections of E. This is because Dh when written in terms
of the coordinates .x; tC/ on the yu 2

�
RC ln ı;RC 1

2
ln z�

�
part of .R� I 0/ n Q is

the standard Cauchy–Riemann operator, and this is also the case for Dh when written
in terms of the coordinates .x; t�/ on the yu D

�
�R � 1

2
ln z�;�R � ln ı

�
part of

.R� I 0/ n Q . This extension of Dh to Z is denoted in what follows by DZ .

Step 2 This step defines a 1–parameter family of “matching conditions” for sections
of NZ with discontinuity on the z�–locus in Z . The family is parametrized by the
interval Œ0; 1�. A given parameter value is denoted by � .

Fix � 2 Œ0; 1� and suppose that .'0; & 0/ is a map from .R�I�/n.y; 0/ to R2 . This map
is said to satisfy the � –matching condition when the following is true: Let .'0�; &

0
�/ and
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.'C; &C/ denote the respective R2 –valued functions that are defined by .'0; & 0/ where
the coordinate t� is in

�
�z�;�1

2
z�
�

and where the coordinate tC is in
�

1
2

z�; z�
�
.

Then

(5-26) '0CjtCDz� D��&
0
� and '0�jt�D�z� D �&

0
CjtCDz� :

For each � 2 Œ0; 1�, define the Hilbert space H� by copying the definition of the Hilbert
space H in Part 3 of this subsection but with the jyujDRC 1

2
ln z� boundary conditions

used in Part 1 replaced by those in (5-26). Define the Hilbert space L as in Part 1. The
� D 0 version of H� is the Hilbert space H . The � D 1 version is a Hilbert space of
sections of NZ . Meanwhile, L can be viewed as the closure of the space of sections
of NZ with respect to the L2 –norm that is defined as in Part 1. Thus, H1 and L can
be viewed as respective L2

1
and L2 Hilbert spaces of sections of NZ .

Lemma 5.9 For each � 2 Œ0; 1�, the operator Dh defines a Fredholm map from H�

to L.

Proof The conditions in (5-23) must be established for Dh on the dense domain
of smooth, compactly supported maps from .R � I 0/ n Q that obey (5-26). By the
same token, these same conditions must be established for the formal L2 adjoint. The
argument that proves the analog of (5-23) for the formal L2 adjoint of a given � 2 Œ0; 1�
version of Dh is identical to that just given but for cosmetics. Note in this regard that
this adjoint has dense domain given by the compactly supported maps from .R�I 0/nQ

that obeys (5-26).

The new issues with regards to (5-23) for Dh do not concern Dh near the points
in Q ; they concern only the part of the argument that comes from Section 3C. This
understood, consider the top line in (5-23). The top line is established in Section 3C
using an integration by parts with the observation that the boundary terms are separately
zero. The same integration by parts for � ¤ 0 now yields respective tC D z� and
t� D�z� boundary terms that are not identically zero, but are opposite in sign. As a
consequence, these terms add to zero and so make no contribution.

Consider next the lower line in (5-23). The key issue is whether (3-16) holds with
� ¤ 0. If this is so, then the argument used in Step 4 of Section 3C can be used here
with only notational modifications to establish the desired result. To see about (3-16),
use (3-17) to see that an element .'0; & 0/ in the kernel of Q� must be such that & 0 is
constant and

(5-27) '0jtCDz� D '
0
jt�D�z� C &

0c;
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where c¤ 0 is the integral of b2� over I� . As can be seen using (3-13), this constant c
is less than �x 0ı

�2R and so significantly less than �2. What with (5-26), this requires
that

(5-28) ��& 0 D .� C c/& 0;

and so c D�2� . Thus, (5-28) cannot hold.

Step 3 The family of Hilbert spaces fH�g�2Œ0;1� defines a smooth, Hilbert space
bundle H ! Œ0; 1�. Indeed, a nonisometric isomorphism from H� to H0 can be
defined as follows: Fix a compactly supported function �W

�
1
2

z�; z�
�
! Œ0; 1� that is

equal to 1 near z� . Let .'0; & 0/ denote a given element in H� . Let .�0; o0/ denote the
image of this element in H0 . Then .�0; o0/ D .'0; & 0/ except where tC > 1

2
z� and

where t� > �1
2

z� . The pair .�0; o0/ where tC > 1
2

z� is

(5-29) .�0; o0/j.x;tC/ D .'
0
C; &

0
C/j.x;tC/C

�
��.tC/.& 0�j.x;t�D�2z�CtC//; 0

�
:

A similar formula defines .�0; o0/ where t� < �1
2

z� .

The family of Fredholm operators fDhW H� ! Lg�2Œ0;1� defines a smooth section of
the Fredholm homomorphisms from H to the product Hilbert space bundle Œ0; 1��L.
This being the case, all members of this family have the same Fredholm index. In
particular, the Fredholm index of Dh needed for Proposition 5.7 is that of DZ .

Given the latter observation, the arguments used in Sections 3d and 4b,d of [20] can be
applied with only cosmetic changes to see that the Fredholm index of DZ on H1 is
equal to �p .

Part 4 This part of the subsection explains why D has trivial cokernel. This will
follow with a proof that the kernel of D has dimension �p . The proof that such is the
case has five steps.

Step 1 With N viewed as the product bundle over the complement of Q in R2 , the
operator D has the schematic form that is depicted in (3-5). Suppose that .'0; & 0/ is in
the kernel of D. Let � denote the locus in .R� I�/ n Q where & 0 D 0. The argument
used in Step 2 of Section 3D can be repeated here to see that � is described by (3-24)
if it is not empty and not all of .R� I�/ n Q .

The argument used in Step 5 of Section 3D can be repeated to see that � is not empty.
This understood, assume that � is not all of .R�I�/nQ . The argument from this same
step in Section 3D proves somewhat more about � . It proves, in particular, that � has
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a nonzero, even number of edges with the following property: either x is unbounded
on the edge, or the edge has an endpoint on the boundary of R� I� , or the closure of
the edge in R� I� is a point of Q .

Step 2 Fix T � 1 and define a closed, rectangular path in the interior R� I� with
sides parallel to the axis such that the constant yu edges obey jyuj DRC 1

2
ln z�� 1

T

and the constant x edges obey jxj D T . Orient this path so that a circumnavigation in
the positive direction travels in the positive yu direction on the xD T edge. Use RT to
denote this oriented rectangular path. If T is sufficiently large, then the restriction of
.'0; & 0/ to RT defines a nowhere-zero map from RT to R2 . Indeed, this can be seen
for the constant yu edges by using the fact that .'0; & 0/ obeys the Cauchy–Riemann
equation where yu > RC ln ı when written as function of .x; tC D e�2.R�yu//, and
that it also obeys these equations where yu < �R � ln ı when written as functions
of .x; t� D �e�2.RCyu//. Meanwhile, arguments much like those used to prove
Proposition 2.4 in [7] prove that there are no zeros of .'0; & 0/ where jxj � 1. Granted
what was just said, the pair .'0; & 0/ defines a map from RT to R2 n f0g for all T

sufficiently large. Each such large T map has a degree; they are all the same. As
explained next, this degree is negative. To see this, note that the degree is equal to
the intersection number between the image of RT and any given outward directed ray
in R2 , for example the positive x–axis. The path RT intersects the positive x–axis
where & 0 D 0 and '0 > 0. These are all edges of � , and it follows from Step 1 that
this set is nonempty when T is large. Meanwhile, (3-5) implies directly that each
intersection point between the image of RT and the positive x–axis has negative local
intersection number.

Step 3 Suppose that q is a zero of .'0; & 0/ in the interior of .R� I�/ n Q . It follows
from (3-5) that there are no zeros of .'0; & 0/ save q in some small radius disk centered
at q , and that .'0; & 0/ has positive degree as a map from the boundary of this disk
to R2 n f0g.

Step 4 Let U �R2 � I� denote a very small radius disk centered at .y; 0/ 2 Q with
the radius such that D DDh on U and such that the graph of .'0; & 0/ over U n .y; 0/

maps via ‰p to the very large s part of the corresponding end. Denote the latter by E.
It follows from the upcoming (5-29) that are no zeros in .'0; & 0/ in U n .y; 0/ if U has
small radius. Granted that U has such a small radius, the pair .'0; & 0/ defines a map
from the boundary of any concentric disk in U to R2 nf0g. This map has a degree, this
denoted by ny . This degree is negative if Q has a single point. Indeed, this follows
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from what is said in Steps 2 and 3. By the same token, if Q has two points, then the
sum of the degrees of the maps at the two points is negative.

The pair .'0; & 0/ on U n f0g defines a section of the bundle N over the large s part
of E. This section can be written with respect to the product structure for N on E
given by the basis fd�; dug. The resulting map to R2 n f0g from the large s part of E
is denoted in what follows by .a; b/. It follows from Lemma 5.5 that the pair .a; b/
define a map with degree ny C 1.

Step 5 As noted in Lemma 5.8, the operator Dh on E0 can be decomposed as the
sum Dh DD0C d where D0 is as given in (5-1) and where d is a first-order operator
whose symbol and zeroth-order terms have norm bounded by c0e�s=c0 . The arguments
for Proposition 2.4 in [7] prove that any given element in the kernel of Dh at large s
on E appear as follows for some n 2 f0; 1; 2; : : : g:

(5-30) e��1ns .cos n.� ��n/; r1n sin n.� ��n//C en;

where each n � 1 version of �1n , r1n and �n are as defined in (5-4) and where
�10 D �1 . Meanwhile, en is such that jenj � e�.�1nC1=c0/s . Note that each version
of (5-30) defines a map from any constant and sufficiently large s circle in R�S1

to R2 n f0g. The nD 0 version has degree zero and all n� 1 versions have positive
degree, this being n.

Suppose now that Q has a single point. Given that the nyC1� 0 and ny < 0, the pair
.a; b/ defined in Step 4 has nonpositive degree; it follows that it has degree zero. This
must be true for any such pair arising from the kernel of Dh . If .a0; b0/ is a second
such pair, then a linear combination of the latter with .a; b/ can be found such that the
result defines an n> 0 version of (5-30). This is impossible if the linear combination
is not identically zero. The preceding conclusion implies that the kernel of Dh has
dimension 1.

Suppose next that Q has two points. Denote these points as .y; 0/ and .y0; 0/. Given
that the degree in (5-30) is nonnegative, and given that ny C ny0 < 0, it follows that
only the cases .ny D 0; ny0 D �1/, .ny0 D 0; ny D �1/ and .ny D �1; ny0 D �1/

can occur. The argument from the preceding paragraph can be repeated to see that the
kernel of Dh cannot contain two linearly independent elements which are such that
both have ny D 0 or both have ny0 D 0. This constraint is satisfied only if the kernel
has dimension 2.
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5D The Banach spaces H� and L�

There is an analog in the context of Proposition 5.7 of Section 3E’s Banach spaces H�
and L� . To set the stage for the definitions, first reintroduce the notation used in (5-22).
Use dist. � ; � / to denote the distance function on Ch that is induced by the metric on
R �HCp� . Let � denote a smooth, nonincreasing function on Œ0;1/ with value 1

on
�
0; 1

2

�
and value 0 on Œ1;1/. Given � > 0 and .x; yu/ 2 .R � I�/ n .y; 0/, use

��;.x;yu/ to denote the function �
�
��1 dist. � ; .x; yu//

�
. As in (3-33), fix � 2

�
0; 1

100

�
.

The norm that defines H� is the sum of two terms. The first is the norm for H , and
the second is the square root of the function that assigns to a given smooth map in H

the value

(5-31) sup
.x;yu/2.R�I�/n.y;0/

sup
�2.0;1/

���k��;.x;yu/r�
0
k

2:

This norm is denoted by k � kH� . The Banach space H� is the completion of the set of
smooth, compactly supported elements in H using this norm.

The Banach space L� is the completion of the space of smooth, compactly supported
sections of L using the norm that is the sum of the norm k � kL with the norm whose
square is the function that is given by replacing r�0 in (5-31) by �0 and by replacing
the norm k � k by k � kL .

The following lemma states the analogs of Lemmas 3.4 and 3.5 for these new ver-
sions of H� and L� . Given Proposition 5.7, the assertions also follow directly from
Theorem 3.5.2 in [12].

Lemma 5.10 Define H� and L� as above.

� Elements in H� are Hölder continuous with exponent 1
2
� and the inclusion

map from H� into the corresponding Hölder Banach space is continuous. In
particular, there exists a constant � > 1 that depends only on � and has the
following significance: if f 2H� , then jfj � �kfkH� .

� If .x; yu/ is any given point in .R�I�/nQ , then limdist. � ;.x;yu//!1jfj exists and
it is zero; thus, elements in H� have pointwise uniform limit zero as s !1
on Ch .

� Any operator D given by (3-5), (3-6) and (5-22) maps H� to L� , and its inverse
restricts to L� so as to define a bounded linear operator from L� to H� .

As was the case for H and L, the norms that define the Banach spaces H� and L�
depend on the chosen pair h but the spaces do not.
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6 Proof of Proposition 2.2: the �p > 0 case

The proof in the case when some p 2ƒ versions of �p are 1 or 2 follows much the
same path as that given in the preceding section for when �p is zero. In particular,
an open/closed argument is again used for a certain Œ0; 1�–parametrized family of
nonlinear, elliptic, first-order equations for a map from the complement of either one
or two yuD 0 points in R� I� to .R=2�Z/�

�
�

4

3
p

3
ı2
�;

4

3
p

3
ı2
�

�
. As in Section 4, the

� D 0 member of this family is explicit, and the � D 1 member is the desired pair
.'p0 ; &p0/. The substantive differences are consequences of two related facts: The first
is that the domain of .'p0 ; &p0/ is now the complement in R�I� of the aforementioned
yuD 0 point or points. The second stems from item (b) of the third bullet in (2-9); the
latter prescribes the behavior of .'; &/ near the missing set in R� I� . This prescribed
behavior makes for a more complicated � D 0 member of the family. The new domain
and the prescribed asymptotics requires versions of Proposition 5.7’s operator D.

The arguments that follow discuss only the case when �pD1 and mpD�1 because the
�pDmpD 1 arguments and those when �pD 2 are identical but for cosmetic changes.

6A An approximation to .'p0; &p0/

This subsection constructs an R–parametrized family of maps from the complement
of a yuD 0 point in R� I� to the space .R=2�Z/�

�
�

4

3
p

3
ı2
�;

4

3
p

3
ı2
�

�
such that each

member defines a graph in R�X whose ‰p–image has Cp0
’s large js j asymptotics

and Cp0
’s behavior near the jyuj DRC 1

2
ln z� boundaries of R� I� . The family is

parametrized by the R coordinate of the missing yuD 0 point. The R coordinate of
this point is denoted by y . There are three parts to the construction.

Looking ahead, Section 6B explains how any one of these approximations can be used
as the starting solution for a Œ0; 1�–parametrized family of equations whose parameter 1

solution is the desired .'p0 ; &p0/. The construction of this Œ0; 1�–parametrized family
requires the analytic tools that are supplied by Section 5.

Part 1 Construct the 1–parameter family of arcs f�g�2Œ0;1� as done in Part 1 of
Section 4A. These are described in (4-1). The mpD1 condition implies that �D1¤pC .
Even so, complete the constructions of Section 4 with the family f�g�2Œ0;1� to obtain
a map from R � I� to .R=2�Z/ �

�
�

4

3
p

3
ı2
�;

4

3
p

3
ı2
�

�
whose graph in R � X has

J –holomorphic image via ‰p . Use .'�; &�/ to denote R–valued functions that define
this map.
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Let  0p� denote the integral curve of v in the jyuj �RC 1
2

ln z� part of HCp� with the
following properties: It starts where yuD�R� 1

2
ln z� at the same � angle as p� and

it ends where yuDRC 1
2

ln z� at the same � angle as p� . Let �� and ��0 denote
the respective angle changes along p� and  0p� . These are given by the integral that
appears in the fourth bullet of Lemma II.2.2. Require that ��0 D�� � 2� . Redo the
construction in Part 1 of Section 4A starting with the arc  0p� at � D 0. Use f 0�g�2Œ0;1�
to denote the resulting family. This family is such that  0

�D1
D pC . Corresponding arcs

� and  0� have the same � 2R=2�Z values where yuD�R� 1
2

ln z� and also where
yuDRC 1

2
ln z� . Even so, the corresponding versions of �� and ��0 differ by �2� .

Redo the constructions of Section 4 with this second family f 0�g�2Œ0;1� to obtain
a second graph in R � X whose image via ‰p is J –holomorphic. Use .'C; &C/
to denote the map from R � I� to R �

�
�

4

3
p

3
ı2
�;

4

3
p

3
ı2
�

�
that define this second

graph. If necessary, add 2� times an integer to 'C so that '� and 'C agree where
yuD�R� 1

2
ln z� . As a consequence, 'C�'� D�2� at yuDRC 1

2
ln z� .

Part 2 Choose a smooth, nondecreasing map wW Œ�1; 1�! Œ0; 1� that is equal to 0 on
the interval

�
�1;�1

8

�
, equal to 1 on

�
1
8
; 1
�
, and is such that w.�s/D 1�w.s/. Fix

" > 0 and introduce functions w�";y and wC";y mapping R to Œ0; 1� by the rules

(6-1) w�";y.x/! w
�

1

"
.x�y/

�
and wC";y.x/D w

�
�

1

"
.x�y/

�
:

These yu–independent functions are used to define a graph over R� I� that is smooth
in the complement of the part of the yu D 0 locus where jx � yj < ". The graph is
defined by the pair of respective R=2�Z– and R–valued functions .'";y;0; &";y;0/ that
are given by the two rules that follow:

(6-2) � .'";y;0D '�Cw
�
";y.'C�'�/; &";y;0D &�Cw

�
";y.&C�&�// where yu� 0.

� .'";y;0D 'CCw
C
";y.'��'C�2�/; &";y;0D &CCw

C
";y.&��&C// where

yu� 0.

What follows are two key properties of the pair .'";y;0; &";y;0/:

(6-3) � The function '";y;0 D where jyuj DRC 1
2

ln z� is the function �S0. � ; z�/
in (2-12).

� The jx � yj > " parts of the graph of .'";y;0; &";y;0/ defines via ‰p a J –
holomorphic submanifold with boundary in R�HCp� whose constant js j
slices converge as s !�1 to the arc p� and as s !1 to the arc pC .

Introduce C 0 to denote the image via ‰p of the graph of the pair .'";y;0; &";y;0/.
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Part 3 Set c0D˛y , fix c1 2Rn0 but small and fix �1 2R=2�Z and use the resulting
nD 1 version of y from Proposition 5.1 to define via (5-5)–(5-7) a J –holomorphic
cylinder in the s � 1 part of R�HCp� . Use E �R�HCp� to denote this cylinder. The
picture supplied by Lemma 5.3 has the following implication: There exists s1 > sy
such that the ‰p–inverse image of the complement of a compact set in the s � s1 part
of E can be written as a graph over the complement of .y; 0/ in a small radius disk
in R� I� about .y; 0/. This is to say that this part of ‰�1

p .E/ can be written as the
graph

(6-4) .x; yu/! .x; yu; y� D 'y.x; yu/; hD &y.x; yu//;

where .'y ; &y/ is a smooth map from the complement of .y; 0/ in such a small radius
disk to R�

�
�

4

3
p

3
ı2
�;

4

3
p

3
ı2
�

�
. Use �y to denote the radius of this disk.

What follow are two additional observations that follow directly from Lemma 5.3: First,
the function .x; yu/!&y.x; yu/ limits uniformly to 2

3
p

3
.x 0C4e�2R/ as jx�yj2Cjyuj2

limits to zero. The second concerns the map 'y on circles where jx � yj2C jyuj2 is
constant. Fix any r� 2 .0; �y/ and define the pair .'";y;0; &";y;0/ using (6-8) with
" � r� . Then the restriction of 'y to the circle jx � yj2C jyuj2 D r2

� defines a map
from S1 to S1 that is homotopic to the restriction of '";y;0 .

Let r now denote the radial coordinate on the disk of radius �y in R� I� centered on
.y; 0/. Reintroduce the function w and set wy to be the function on this same disk
given by w.2��1

y r �1/. This function is 1 where r � 5
8
�y and it is 0 where r � 3

8
�y .

Fix " < 1
8
�y and use (6-8) to define the pair .'";y;0; &";y;0/. The function '";y;0 can

be written on the r 2 ."; �y/ part of this disk as '";y;0 D 'y C'
0
";y;0

, where '0
";y;0

is
an R–valued function on this part of the disk.

The pairs .'";y;0; &";y;0/ and .'y ; &y/ with the function wy are used next to define
functions .'";y ; &";y/ on the complement of .y; 0/ in R � I� . These are given by
.'";y;0; &";y;0/ on the complement of the radius �y disk centered at .y; 0/, and given
inside this disk by

(6-5) .'";y D 'y Cwy'
0
";y;0; &";y D &y Cwy&";y;0/:

This pair is such that the .'; &/D .'";y ; &";y/ version of the following conditions are
obeyed:

(6-6) � The function ' where jyuj D RC 1
2

ln z� is the function 'S0. � ; z�/ that
appears in (2-12).
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� The graph .x; yu/! .x; yu; y� D '.x; yu/; hD &.x; yu// lies in R�X, and as
a consequence, this graph is in the domain of the map ‰p .

� There exists a purely S –dependent (or K–compatible) constant �c � 1 with
the following significance: Assume that z�<��1

c and that ı2<��1
c z� . The

‰p–image of the jyuj �RC 1
2

ln z�� 6 part of the graph is J –holomorphic
where 1� 3 cos2 � � ��1

c .

� There is a constant �cc > 1 with the following property: the ‰p–image of
the graph is J –holomorphic where either js j � �cc or 1� 3 cos2 � � ��1

cc .

� The ‰p–image of the jx�yj � " part of this graph is J –holomorphic.

� Each constant s � �1 slice of the ‰p–image of this graph consists of a
single arc that is isotopic rel boundary in HCp� to p� . The corresponding
family of such arcs converges as an isotopy rel boundary to p� as s!�1.

� Each constant s � 1 slice of the ‰p–image of this graph consists of two
components:

(a) The first is an arc that is isotopic rel boundary in HCp� to p� . The
corresponding family of such arcs converges as an isotopy rel boundary
to pC as s !�1.

(b) The second is an embedded circle that is isotopic in HCp� to yCp . The
corresponding family of such circles converges as an isotopy rel boundary
to yCp as s !1.

By way of explanation for the third bullet, Lemma 4.6 supplies a purely S –dependent
(or K–compatible) version of �c such that the ‰p–image of the jyuj �RC 1

2
ln z�� 8

part of the graph of .'";y ; &";y/ is J –holomorphic where 1�3 cos2 � < ��1
c . This fact

is used in a moment. The constant �cc for the fourth bullet is supplied by Lemma 4.7.
The remaining bullets follow directly from the definition of .'";y ; &";y/.

Fix " 2
�
0; 1

8

�
so that (6-6) holds.

6B Deformations to .'p0; &p0/

This subsection studies a Œ0; 1�–parametrized family of equations for a map from
.R�I�/n .y; 0/ that obeys (6-6). The initial equation is satisfied by .'";y ; &";y/ and a
solution to the final equation can serve as .'p0 ; &p0/ since the ‰p–image of its graph
in R�X is J –holomorphic.
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To define these equations, use .'";y ; &";y/ for .'; &/ in the left-hand side of (3-4)
and write the resulting pair of functions on .R� I�/ n .y; 0/ as .g1; g2/. These have
compact support in .R�I�/n.y; 0/, a consequence of the third, fourth and fifth bullets
of (6-6).

Use Lemma 4.6 to find a purely S –dependent (or K–compatible) constant rc � 1 such
that the ‰p–image of the jyuj � RC 1

2
ln z� � 8 part of the graph of .'";y ; &";y/ is

J –holomorphic where 1� 3 cos2 � � r�1
c . Use ‰p to view the angle � as a function

on R�X. Having done so, let �c denote function on R�X given by

(6-7) �c D 1��
�
2.RC 1

2
ln z�� 7� jyuj/

�
�.4rc.1� 3 cos2 �/� 3/:

This function is equal to 1 where the ‰p–image of the graph of .'";y ; &";y/ is not
J –holomorphic, and it is equal to zero on the part of this graph that is described in the
third bullet of (6-6).

Use the fourth bullet of (6-6) to find r > 1 such that the ‰p–image of the graph of
.'";y ; &";y/ is J –holomorphic where 1�3 cos2 � < 1

r1
. Let �ccW R�X! Œ0; 1� denote

the function �.2� 2r .1� 3 cos2 �//. This function equals 1 where 1� 3 cos2 � > 1
r ,

and it vanishes where 1� 3 cos2 � � 1
2r .

The � 2 Œ0; 1� member of the family of equations asks for a pair .'; &/ that obeys (6-12)
and is such that

(6-8)
a1@x' � @yu& � .1� �/.�c�cc/jhD& g1 D 0;

a2@x& C @yu'C b� .1� �/.�c�cc/jhD& g2 D 0:

Here, as in (3-4), what is written as a1 , a2 and b are functions on .R� I�/ n .y; 0/

that are obtained from the eponymous set of functions of the variables .yu; h/ by setting
hD & .

An open/closed strategy is used in what follows to construct a smoothly parametrized
family f.'� ; &� /g�2Œ0;1� such that each � 2 Œ0; 1� member obeys (6-6) and (6-8) and
with the � D 0 member given by .'";y ; &";y/. The image via ‰p of the graph in R�X
of .'�D1; &�D1/ is J –holomorphic since the .g1; g2/ terms in (6-8) are absent when
� D 1. This being the case, this � D 1 member of the family serves for the desired
.'p0 ; &p0/. To set up the open/closed argument, use I to denote the subset of points
� 2 Œ0; 1� for which the corresponding version of (6-8) has a solution. Since � D 0

is in I , this set is not empty. Part 1 of this subsection explains why I is open. The
remaining four parts explain why I is closed. Given that I is not empty, and both open
and closed, this set can only be Œ0; 1�. Section 6C completes the proof of the mp D�1
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version of Proposition 2.2 by explaining why there is but a single .'p0 ; &p0/ with the
desired properties.

Part 1 This part of the subsection proves that I is open. To this end, suppose that
� 2 I and let hD .'� ; &� / denote a corresponding pair that obeys (6-6) and (6-8). It
follows from Lemma 5.9 that there exists a ball B� �H� about the origin with two
essential properties. To state them, fix for the moment .'0; & 0/ 2 B� and use .'; &/
to denote .'� C '0; &� C & 0/. Here is the first property: the graph of .'; &/ is in
R�X. The second property is that the assignment to any given .'0; & 0/ 2 B� of the
corresponding .'; &/D .'� C'0; &� C & 0/ version of the expressions on the left-hand
side of (6-8) defines a smooth map from B� to L� . Let FB denote this map.

Let I � Œ0; 1� denote an open neighborhood of � , and define a map F W I �B�! L�
by the rule

(6-9) .� 0; �/! F.� 0; �/D FB.�/� .� � �
0/.�c�cc/jhD& .g1; g2/:

Fix � 0 2 I. The differential of F at .�; 0/ along the B factor of its domain is an
operator D that obeys (3-5), (3-6) and (5-22). Lemma 5.10 asserts that D maps H� sur-
jectively to L� and so the differential of F at any such .� 0; 0/ point is an isomorphism.
This with the inverse function theorem supplies a smooth map, q , from a neighborhood
I 0 � I of � to B� such that F.� 0; q.� 0//D 0. This being the case, any given � 0 2 I 0

version of the pair .'; &/ D .'� ; &� /C q.� 0/ obeys the � 0 version of (6-8). Note in
this regard that .'; &/ is smooth, a fact that can be proved in a straightforward fashion
using standard elliptic regularity techniques, for example those in [12, Chapter 6].

Granted that .'; &/ is smooth, and granted that the pair .g1; g2/ has compact support
.R� I�/ n .y; 0/, it follows that .'; &/ is described by (6-6). Thus I 0 � I and so I is
open.

Part 2 This part of the subsection outlines the proof that I is closed. The proof starts
with a lemma which describes a compact set in R�HCp� with the following significance:
if � 2 Œ0; 1� and if .'; &/ obeys (6-6) and (6-8), then the ‰p–image of the graph of
.'; &/ is J –holomorphic on the complement of this set. The proof then derives � –
and .'; &/–independent bounds for the integral of w over such a graph, and for the
integral of ds ^ ya over any subset of the graph where s is bounded. These integrals
bounds are used with Proposition II.5.5 to control the part of the graph that lies in the
complement of the ‰p–inverse image of the aforementioned compact set. The resulting
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control over this part of the graph is used in conjunction with some standard elliptic
regularity tools to obtain � –independent pointwise bounds for the derivatives to any
given order for .'; &/.

Granted all of this preliminary work, the proof proceeds as follows: Fix a point, �0 ,
in the closure of I . A sequence f�n; .'n; &n/gnD1;2;::: is chosen with f�ngnD1;2::: � I
converging to �0 and with any given n 2 f1; 2; : : : g version of .'n; &n/ obeying (6-6)
and solving the � D �n version of (6-8). The control described in the preceding
paragraph is used to obtain a subsequence of f.'n; &n/gnD1;2;::: that converges to a
pair that obeys (6-6) and the � D �0 version of (6-8).

The details of the arguments proving I is closed occupy the remaining Parts 3–6 of
this subsection.

Part 3 The second lemma gives the needed integral bounds for w and ds ^ ya . To set
the stage, reintroduce �c from the third bullet of (6-6), and let W �R�HCp� denote the
set of points from the jyuj>RC 1

2
ln z��6 part of R�X where 1�3 cos2 � < 1

2
��1

c .

Reintroduce �cc from the fourth bullet of (6-6) and let W��R�HCp denote the subset
where both 1� 3 cos2 � � ��1

cc and js j � �cc .

Lemma 6.1 There exists a purely S –dependent (or K–compatible) constant � > 1

with the following significance: Fix � 2 Œ0; 1� and suppose that hD .'; &/ is a pair that
obeys (6-6) and (6-8). Use Ch to denote the ‰p–image of the graph of h. Let I �R

denote an interval of length 1. ThenZ
.Ch\W/\.I�HCp� /

.ds ^ yaCw /� �:

There is a .'; &/ and � –independent constant �� > 1 such thatZ
Ch\W�

w � �� and
Z
.Ch\W�/\.I�HCp� /

ds ^ ya � ��:

Proof The proof that follows is given in seven steps.

Step 1 This step, Step 2 and Step 3 consider the integral that involves Ch \W. To
this end, note that this integral has two regions of support: the part of the graph
of .'; &/ where the function yu is greater than RC 1

2
ln z� � 6 and the part where

yu< �R� 1
2

ln z�C 6. The argument that follows considers the former region as the
argument for the other is identical but for some sign changes.
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Reintroduce rc from (6-7) and set KD �.4rc.1�3 cos2 �/�1/, here viewed using ‰p

as a function on R�X. The latter is equal to 1 where 1� 3 cos2 � < 1
4

r�1
c and it is

equal to 0 where 1� 3 cos2 � > 1
2

r�1
c . Let s0 denote the midpoint of the interval I

and introduce L to denote the function �.2js� s0j�2/�
�
2
�
RC 1

2
ln z��6�yu

��
. This

function is equal to 1 where both s 2 I and yu�RC 1
2

ln z�� 6 and it is equal to 0

where js � s0j>
3
2

or where yu is less than RC 1
2

ln z�� 6:5.

Step 2 Consider the integral of �
p

6 d.L2K2h d y�/ over the graph of .'; &/. Note
that the integrand is supported on the part where the ‰p–image is J –holomorphic.
Moreover, the integrand is equal to ‰�p w on .Ch\W/\ .I �HCp�/, this being a conse-
quence of the formula for w in (1-6). To say more about the integrand, it proves useful
to introduce the coordinate vD e�2.R�yu/ for the yu>RC ln ı part of .R�I�/n.y; 0/.
Using .x; v/ now to parametrize the graph, the 2–form �

p
6 d.L2K2h d y�/ appears

as

(6-10)
p

6
˚

L2.K2
C 2&�@hK/.@x'@v& � @x&@v'/

C 2
p

6 KL&.@v.KL/@x' � @x.KL/@v'/
	

dx ^ dv:

Granted that the ‰p–image of the graph of .'; &/ is J –holomorphic on the support of
the form �

p
6 d.L2K2h d y�/, and given the properties of J in Section 1C, so .'; &/

obey the Cauchy–Riemann equations on the support of this form when viewed as
functions of .x; v/. This is to say that @x' � @v& D 0 and @x& C @v' . Thus, the
2–form in (6-10) is

(6-11)
p

6
˚

L2.K2
C 2&�@hK/.j@x'j

2
Cj@v'j

2/

C 2
p

6 KL'.@v.KL/@x' � @x.KL/@v'/
	

dx ^ dv:

What follows is a key observation: the function h@hK is nonnegative, this being a
consequence (1-27) and the definition of ‰p . Granted that this is so, the function that
multiplies the form dx ^ dv in (6-11) is no less than

(6-12)
p

6
˚

1
2

L2K2.j@x'j
2
Cj@v'j

2/� cı4
�

�
j@x.KL/j2Cj@v.KL/j2

�	
;

where c�1 is a purely S –dependent (or K–compatible) constant. Given the definitions
of K and L , it follows that this function is no less than �cz�2

� with c � 1 being
another purely S –dependent (or K–compatible) constant. This means that the integral
of �
p

6 d.L2K2h d y�/ over the complement of the part of the ‰p–inverse image of
.Ch nW/ \ .I �HCp�/ is bounded from below by �cz�1

� where c is again purely
S –dependent (or K–compatible).
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Step 3 Stokes’ theorem equates the integral of �
p

6 d.L2K2h d y�/ with the line
integral

(6-13)
Z

R
.K2L2& d'/j

yuDRC 1
2

ln z� :

Given the boundary condition in the first bullet of (6-6) and given the fourth bullet of
Proposition 2.1, this integral is no greater than a purely S –dependent (or K–compatible)
constant.

Lemma 6.1’s bound for the integral of w over .Ch\W/\ .I �HCp / follows directly
from the conclusions of the preceding paragraph and from the conclusions of Step 3
because w is a nonnegative multiple of dx ^ d yu on the J –holomorphic part of Ch

which contains Ch\W.

The asserted bound for the integral of ds ^ ya over .Ch \W/ \ .I �HCp / follows
from the fact that the latter form when pulled back by ‰p and written in terms of the
coordinates .x; v/ is dx ^ dv . This the case, its integral is bounded by z� .

Step 4 The set ‰�1
p .W�/ is a compact set in R�X and so the image in R� I� of

‰�1
p .W�/ via the projection is compact. It follows from this that there exist d � 1

whose significance is explained next. To set the background, introduce W to denote
the portion of .R� I�/ n .y; 0/ where the following conditions are met:

(6-14) jxj � d; jx�yjC jyuj � d�1 and jyuj �RC ln ı� 1
8
:

Let � 2 Œ0; 1� and suppose that hD .'; &/ obeys (6-6) and (6-8). Then the ‰p–image
of the graph of .'; &/ over the complement of W lies in the complement of W . This
last observation implies the existence of c � 1 such that:

(6-15) � The functions a1 and a2 that appear in (6-6) are bounded from below on W

by c�1 and bounded from above on W by c . Likewise, b is bounded on
W by c .

� The metric on the .x; yu/ 2 W part of the graph of .'; &/ coming from
the Euclidean metric from R�I��R=.2�Z/�

�
�

4

3
p

3
ı2
�;

4

3
p

3
ı2
�

�
pushes

forward via ‰p to a metric on Ch\W that is bounded respectively above
and below c and c�1 times the metric that comes from R�HCp� .

The second bullet in particular implies that the Euclidean inner product on R�X can
be used when deriving an upper bound for �w and for �ds ^ ya .
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Step 5 Use (1-6) and (1-30) to write

(6-16) � ‰�p w D
p

6 d y� ^ dhC˛w d yu^ dh,

� ‰�p .ds ^ ya/D �0 dx ^ d yuC x 2�d y� ^ dhC˛x dx ^ d y�C˛yu d yu^ dh,

where �0 and � are positive and such that the following is true: there exists c0 � 1

such that �0 > c�1
0

and j�jC j˛w jC j˛xjC j˛y j � c0 on ‰�1
p .W /.

Step 6 Suppose that � 2 Œ0; 1� and that hD .'; &/ obeys (6-12) and (6-13). Use the
coordinates .x; yu/ 2 .R� I�/n .y; 0/ for the graph of .'; &/ to parametrize ‰�1

p .Ch/.
This coordinate map pulls back the form d y� ^ dh as

(6-17) .@x'@yu& � @x&@yu'/ dx ^ d yu:

Use (6-8) to see that the latter expression can be written as

(6-18) .a1 j@x'j
2
C a2 j@x& j

2
C .1� �/ �.@x'g1C @x&g2// dx ^ d yu:

Since dx ^ d yu gives the proper orientation for Ch , what is written above with (6-6)
and (6-16) imply that

(6-19)
w jV2

T Ch
� c�1

1 .jd'j2Cjd& j2/ dx ^ d yu� c1 dx ^ d yu;

.ds ^ ya/jV2
T Ch
� �c1 dx ^ d yu;

where c1 � 1 enjoys a � – and .'; &/–independent upper bound on W . These formulas
supply a .'; &/– and � –independent lower bound for the respective parts of Ch where
w and ds ^ ya are negative multiples of the area form.

Step 7 To see about the integral of w over the whole of Ch , note first that the argument
used at the start of Lemma 4.5 has what are purely cosmetic modifications that prove
that the integral of w over Ch is finite. With (1-6) used to identify w on R�HCp� as
w D d.x .1� 3 cos2 � d�/�

p
6 d.h d�/, this same argument justifies an application

of Stokes’ theorem to write the integral of w over Ch as a sum of five terms. The first
two are integrals over the arcs pC and p� . That over pC is given by (II.5-9) and
that over p� is .�1/ times the p� version of (II.5-9). Steps 2 and 3 in the proof
of Proposition II.5.1 bound the total contribution from these two terms by a purely
S –dependent (or K–compatible) constant. The third term in the sum is the integral of
�
p

6 h d� over yCp . This is 4�
p

2
3
.x 0C 4e�2R/. The last two terms are the integrals

of h d� over the two boundary components of Ch . Up to an overall plus/minus sign,
one is the integral of &@x dx along the yuDRC 1

2
ln z� boundary of R� I� and the

other is the integral of '@x' dx along the yuD�R� 1
2

ln z� boundary of R�I� . Both
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integrals are bounded by the integral of 4p
3
ı2
� j@x'

S0 j, where 'S0 is the value at z�
of the function that appears in (2-12). In particular, it follows from what is asserted
by the fourth bullet of Proposition 2.1 that both versions of the latter integral are no
greater than a purely S –dependent (or K–compatible) constant.

A bound on the integral of ds^ya over Ch\.I�HCp�/ is obtained by mimicking what is
done in Step 4 of the proof of Proposition II.5.1. Note in this regard that the integration
by parts done in the latter proof has no contributions from the boundary of Ch because
the 1–form ya annihilates the tangent space of each level set of f in Mı .

Part 4 This first lemma below supplies a � – and .'; &/–independent O.z�/ upper
bound for j& j near the boundary of R�X. This lemma states what Lemma 4.6 states
for the �p D 0 case. The second lemma uses what is said in Lemma 6.2 to obtain
� – and .'; &/–independent, positive lower bounds for the function 1� 3 cos2 � on
various parts of the corresponding surface Ch . The latter are the analogs of those given
in the mp D 0 case by Lemma 4.7.

Lemma 6.2 There exists a purely S –dependent (of K–compatible) constant � � 1

such that if ı2 < ��1z� , then the following is true: Suppose that � 2 Œ0; 1� and that
.'; &/ is described by (6-6) and obeys (6-8). Then j& j is bounded by �z� where
jyuj>RC 1

2
ln z�� 6.

Proof Except for two modifications, the argument is identical to that given to prove
Lemma 4.6. The first modification replaces the appeal to Lemma 4.5 with an appeal to
the first inequality of Lemma 6.1. The second modification concerns the hypothetical
nonsense loop in each large n version of Cp0n , this being the loop that must define a
nonzero homology class in R�HCp� . Although Cp0n in this case does contain a loop
that generates the homology of R�HCp� , the hypothetical nonsense loop would sit
entirely in either the u> 0 or the u< 0 part of Cp0n . Each of these parts is contractible
in R�HCp� , so no such loop can exist.

The next lemma gives the promised lower bounds for 1� 3 cos2 � .

Lemma 6.3 There exists � > 1 and , given " 2 .0; 1�, there exists �" > 1, and these
have the following significance: Suppose that � 2 Œ0; 1� and that .'; &/ is described
by (6-6) and is a solution to (6-8).

� cos � < 1p
3
� ��1

" on the juj � " part of Ch .
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� cos � < 1p
3
� ��1 on the s < �� part of Ch .

� cos � > � 1p
3
C ��1 on the whole of Ch .

Proof The proof has seven steps.

Step 1 This step proves that there exists a .'; &/– and � –independent �" � 1 such
that 1� 3 cos2 � > ��1

" on the part of Ch where juj> ". This implies what is asserted
by the first bullet. To start, use Lemma 6.2 to choose a .'; &/– and � –independent
constant r � 1 such that the 1�3 cos2 � � 1

r
part of Ch is J –holomorphic and so that

1�3 cos2 � > 1
r

on the boundary of Ch and on the segments pC and p� that are used
to describe the arc components of the large js j slices of Ch . Granted this, the proof of
Lemma 4.7 can be copied to prove the existences of �" but for two modifications. The
first modification replaces the appeal to Lemma 4.5 with an appeal to Lemma 6.1. As
in the proof of Lemma 6.2, the second modification concerns the hypothetical nonsense
loop. This loop would sit entirely in either the u> 0 part of Cp0n or in the u< 0 part,
and both parts are contractible. Thus, no such loop can exist.

Step 2 This step and Steps 3–6 explain why there exists a .'; &/– and � –independent
constant � > 1 such that 1� 3 cos2 � > ��1 on the s < �� part of Ch . The existence
of such a constant implies what is asserted by the second bullet. Existence is proved by
assuming to the contrary that no such constant exists so as to derive nonsense. Granted
this assumption, there exists a sequence f�n; .'n; &n/gnD1;2::: with the following prop-
erties: First, any given n 2 f1; 2; : : : g version of �n 2 Œ0; 1� and .'n; &n/ obeys (6-6)
plus the � D �n version of (6-8). Furthermore, the corresponding hD .'n; &n/ version
of Ch has a point where both 1� 3 cos2 � < 1

n
and s < �n. Given what is said by

Lemma II.4.8 nothing is lost by taking this point to be a local minimum of 1�3 cos2 �

and thus a point where u D 0. No generality is lost by assuming that such a point
occurs where cos � � 1p

3
.

Introduce from Part 2 of Section 5A the tubular neighborhood UC � HCp� of the
cos � D 1p

3
and u D 0 integral curve of v , this being the loop yCp . Let r be as

in Step 1, and use what is said in Step 1 to choose " < 1
r

so that points in Ch with
cos � > 1p

3
� " are mapped via the projection to HCp� to a subset in UC with compact

closure. Use V � UC to denote the subset of points where 1� 3 cos2 � < ".

The ensuing discussion uses the coordinates .sC; �C; �C;uC/ for R � UC from
Section 5B and (5-5). By way of reminder, the .�C D 0; uC D 0/ locus is R� yCp ,
and any given constant sC and �C disk is J –holomorphic.
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For each n 2 f1; 2; : : : g, choose a point in the h D .'n; &n/ version of Ch with sC
coordinate less than �n and with cos � > 1p

3

�
1� 1

n

�1=2 . Use sn to denote the value
of sC at this point; and use Vn�Ch to denote the component of this chosen point in the
R�V part of Ch . Fix "0 2

�
1
4
"; 1

2
"
�

so that each index n version of Vn is transversal
to the locus where 1�3 cos2 � D "0. Introduce V 0 � V to denote the 1�3 cos2 � � "0

part and use V 0n to denote the connected component of the R� V 0 part of Vn that
contains the chosen point where sC D sn and 1� 3 cos2 � < 1

n
. Let @V 0n � Vn denote

the boundary of V 0n . The ensuing discussion here and in Steps 3–5 assumes that at
least one of the following two conditions hold for an infinite subset of n 2 f1; 2; : : : g:

(6-20) � sC is bounded from above on V 0n .

� There are points on @V 0n where sC � sn .

The case when neither condition holds when n is sufficiently large is treated in Step 6.

Assume now that one or the other of the conditions in (6-20) holds for all indices n. If
the first condition holds, use snC to denote the maximum value of sC on V 0n . If the
first condition fails but the second condition holds, use snC to denote the minimum
value of sC on the s � sn part of @V 0n . Meanwhile, sC is bounded from below on V 0n
in any event. If it is the case that s � sn on @V 0n set sn� to denote the maximum value
of sC on the s � sn part of @V 0n . If s > sn on @V 0n , then set sn� to be the minimum
of s on V 0n . Extra arguments are needed when the following occurs:

(6-21) Neither fsn � snCgnD1;2;::: nor fsn � sn�gnD1;2;::: have convergent subse-
quences.

The next step assumes that one or both of these requirements is violated.

Step 3 Assume that (6-21) is violated. Pass to a subsequence (hence renumbered
consecutively from 1) such that one of the sequences in question is convergent. For
each large n in f1; 2; : : : g, translate Vn by �sn along the R factor of R� VC and
let Vn� denote the resulting J –holomorphic submanifold. This translate is a properly
embedded submanifold in R � V . Moreover, sC on Vn takes value zero, and it is
bounded either from above or below by some n–independent constant s� .

Use Proposition II.5.5 with Lemma II.5.6 and Lemma 6.1 to obtain a subsequence of
fVn�gnD1;2;::: (hence renumbered consecutively) that converges on compact subsets of
R�VC in the manner dictated by Proposition II.5.5. The geometric limit is a closed,
J –holomorphic subvariety of R�VC that sits where 1� 3 cos2 � � 0 and contains a
point where 1� 3 cos2 � D 0. Moreover, s is bounded from either above or below on
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this subvariety. But this is impossible because the bound 1� 3 cos2 � � 0 with a point
of equality implies that the limit subvariety is R� yCp .

Step 4 Now assume that (6-21) holds. Construct each index n version of Vn� as
directed in Step 3. In this case, Lemma 6.1 with Proposition II.5.5 and Lemma II.5.6
provide a subsequence of fVn�gnD1;2;::: (hence relabeled consecutively from 1) that
converges in the manner dictated by Proposition II.5.5 to R� yCp .

Let �C denote the projection map .sC; �C; �C;uC/! .sC; �C/ from R � UC to
R� yCp . The submanifold V 0n has positive local intersection numbers with the constant
.sC; �C/ disks in �.V 0n/. This has the following consequence: Let D��.V 0n/ denote a
disk whose inverse image in V 0n is disjoint from the boundary. Then the restriction of �C
to ��1

C .D/\V 0n is a finite-to-1, branched cover with purely positive ramification points.
This observation has an important consequence that is described in a moment. To set
the stage, suppose that � �R� yCp is an embedded, oriented loop with the following
three properties: First, � is �1 times the generator of H1.R � y

C
p IZ/. Second,

� 2 �C.V
0

n/ and ��1
C .�/\V 0n is disjoint from the boundary of V 0n . Third, � does not

contain any branch points of �C on V 0n . Granted these conditions, the projection map
�CW �

�1
C .�/\V 0n! � must be 1-to-1 on each component of ��1

C .�/\V 0n . This is
proved in the next paragraph.

To prove this is, note that each component of ��1
C .�/ \ V 0n comes via the graph

.x; yu/! .x; yu; y� D 'n.x; yu/; hD &n.x; yu// of an embedded loop in .R�I�/n .y; 0/

that has positive linking number in R� I� with the point .y; 0/. As each such loop
is embedded, it must have linking number 1 with .y; 0/ and so its image via ‰p�

must be �1 times the generator H1.R�HCp� IZ/. This would not be the case were
��1
C .�/\Vn a nontrivial covering map.

Step 5 Each index n version of V 0n has strictly positive and locally constant intersection
number with the fibers of �C over .sn�; snC/2R�yCp . Let mn denote this intersection
number. Granted what was said in the previous step, it must be the case that the
sC 2 .sn�; snC/ part of V 0n has mn components and �C restricts to each component
so as to map it diffeomorphically onto .sn�; snC/� y

C
p . Fix a component of this part

of V 0n whose closure has an sCD snC point where 1�3 cos2 � D "0. Use An to denote
the chosen component.

Let Vn denote the translate of Vn by the constant factor �snC of the sC coordinate.
Let V 0n � Vn denote the corresponding translate of V 0n and let An � V 0n denote the

Geometry & Topology, Volume 24 (2020)



HFD HM , III 3123

translate of An . The subvariety Vn intersects .sn�� snC; 1/�VC as a J –holomorphic
submanifold with an sC D 0 point in the closure of An where 1� 3 cos2 � D "0.

Use Proposition II.5.5 and Lemma II.5.6 with Lemma 6.1 to find a subsequence of
fVngnD1;2;::: (henceforth renumbered consecutively from 1) that converges on compact
subsets of .�1; 1/�UC to a nonempty, properly embedded J –holomorphic subvariety.
Let V denote this limit and let V 0 and A denote the respective subsets of V that arise
from the corresponding limits of fV 0ngnD1;2;::: and fAngnD1;2;::: .

The function 1�3 cos2 � � 0 on V and so V cannot contain a fiber of the projection �C
for the latter has points where 1� 3 cos2 � < 0. This implies that 1� 3 cos2 � D "0 at
a point where sC D 0 in the closure of A and so 1� 3 cos2 � > 0 on the .�1;�1�

part of A. Meanwhile, the functions 1� 3 cos2 � and u have limit 0 as sC and thus s
limit to �1 on A. In addition, A has intersection number 1 with each sC ��1 fiber
of �C .

Granted these properties, it follows that the s ��1 part of A is given via (5-5)–(5-7)
by a map y of the sort that is described by the second bullet of Proposition 5.1. This last
conclusion is nonsense for the following reason: the function 1� 3 cos2 � is positive
on A, but any given subvariety that comes via the second bullet of Proposition 5.1 has
points where 1� 3 cos2 � < 0 and s is less than any specified value.

Step 6 This step considers the case where neither bullet in (6-20) is satisfied. If this is
the case, then the sC< sn� part of V 0n will contain the end of Ch whose constant s slices
converge in an isotopic fashion as s !1 to yCp . This implies, in particular, that the
map �C restricts to the s < sn� part of V 0n as a 1-to-1 diffeomorphism onto the s� sn�

part of R� yCp . Let Vn denote the translate of Vn that adds �sn� to the sC coordinate
of each point. Use Lemma 6.1 with Proposition II.5.5 and Lemma II.5.6 to obtain a
subsequence of fVngnD1;2;::: (hence renumbered consecutively from 1) that converges
on compact subsets of .1;1/�V in the manner dictated by Proposition II.5.5. Let V
denote this limit and let V 0 � V denote the part that comes as a limit from fV 0ng. Let
A � V 0 denote the sC � 1 part of V 0. A repeat of the arguments from the second to
last paragraph in Step 5 prove that A is an embedded cylinder with boundary with the
following properties: First, 1� 3 cos2 � > 0 on A, but also 1� 3 cos2 � � 1

2
" on A.

Second, both �C and uC limit to 0 on A as sC!1. Third, the projection �C maps
A diffeomorphically to Œ1;1/� yCp .

What is said in the first bullet of Proposition 5.1 and the first bullet in Lemma 6.4
implies that the constant " can be chosen in advance so that A is the graph of a smooth
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map .sC; �C/ ! y D .�C D aC.sC; �C/; uC D bC.sC; �C// that obeys (5-7) on
Œ1;1/�R=2�Z and has the form

(6-22) yD c0.e
��1sC C e1; 0/C c1y1C C e1;

where c0 > 0 and c1 > 0, and e1 is as given in (5-8) and y1C is some �1 version
of (5-4). Meanwhile, e1 is as described in the first bullet of Proposition 5.1.

The missing yuD 0 point in R�I� that defines the domain of .'n; &n/ has coordinates
.y; 0/. Let ˛y denote the strictly positive constant from Lemma 5.2 that is assigned
to y . Let En denote the index n version of the end ChD.'n;&n/ whose constant s slices
converge as s !1 to yCp . Lemmas 5.3 and 5.6 imply that the s � 1 part of En is
given via (5-5)–(5-6) by a map from Proposition 5.1’s first bullet that can be written as

(6-23) y.n/ D ˛y.e
��1sC C e1; 0/C c1ny1C C e1n;

where c1n 2R n 0, where y1C is given by some �1 D �1n version of (5-4) and where
e1n obeys the bounds given in Proposition 5.1 for the latter’s e1 . What follows is now
a direct consequence of (6-22) and (6-23): given "� > 0, there exists n� � 1 such that

(6-24) j˛y � c0 e��1 jsn�jj< "�

when n� n� . But this is nonsense given that ˛y > 0 and fsngnD1;2;::: is unbounded
from below.

Step 7 This step proves the third bullet of Lemma 6.3. The proof starts by assuming
that the assertion is false so as to derive some nonsense. Granted there is no such � ,
there is a sequence f�n; .'n; &n/gnD1;2::: with the following properties: First, any
given n 2 f1; 2; : : : g version of �n 2 Œ0; 1� and .'n; &n/ obeys (6-6) plus the � D �n

version of (6-8). Furthermore, the corresponding h D .'n; &n/ version of Ch has a
point where both cos � < � 1p

3
C

1
n

. Let .sn;pn/ 2 R �HCp� denote such a point.
Use Proposition II.5.5 and Lemma II.5.6 with Lemma 6.1 to see that the sequence
fjsnjgnD1;2;::: cannot have convergent subsequences. What is said in the second bullet
of Lemma 6.3 implies that limn!1 sn D1. This understood, the arguments used in
Steps 2–6 can be used with only cosmetic changes to generate the desired nonsense.

Part 5 Let � 2 Œ0; 1� and let hD .'; &/ be as described in (6-6) and a solution to (6-8).
The subvariety Ch has an end whose constant s slices converge in an isotopic fashion
as s ! 1 to yCp . The following is a consequence of Lemmas 5.3 and 5.10 and
Proposition 5.1: There exist constants sh � 1 and c1h 2R n 0 and �1h 2R=2�Z such

Geometry & Topology, Volume 24 (2020)



HFD HM , III 3125

that E intersects the sC 2 Œsh;1/ part of R�UC as a smooth, properly embedded
submanifold with boundary on the sC D sh slice. Furthermore, this intersection is
given by the graph of a smooth map as described in the first bullet of Proposition 5.1
with domain Œsh;1/�R=2�Z that has the form depicted in (6-23) with c1 D c1h and
with y1C defined using �1D �1h . The next lemma says something about the constants
sh and c1h .

Lemma 6.4 There exists � > 1 with the following significance: Let � 2 Œ0; 1� and
suppose that h D .'; &/ is described by (6-6) and that it obeys (6-8). Then the
corresponding constant sh can be chosen so that sh � � . Meanwhile , jc1hj 2 Œ�

�1; ��.

Proof An upper bound for sh is obtained using what are essentially the same arguments
as those in Step 6 of the proof of Lemma 6.3. The salient difference in this case is
that the assumption of no uniform upper bound gives a sequence f�n; .'n; &n/gnD1;2;:::

with the property that the corresponding sequence fsn�gnD1;2;::: is now unbounded
from above instead of from below. This understood, the inequality in (6-24) is replaced
by j˛y � c0e�1sn� j< "� , which cannot hold when n is large if fsng diverges.

The upper and lower bounds on ch follow in a straightforward manner given the a priori
bound on sh . In fact, the upper bound follows from the constraint that 1� 3 cos2 � is
positive. The lower bound follows by assuming the contrary and deriving a contradiction
from a limit submanifold that is described by (6-22) and obtained with the help of
Proposition II.5.5 from a sequence f�n; .'n; &n/gnD1;2;::: that has jc1nj<

1
n

.

Let � and hD .'; &/ be as described above. The s ��1 slices of Ch converge in an
isotopic fashion to the arc p� as s !�1, and the s � 1 slices have a component
that converges in an isotopic fashion as s!1 to the arc pC . The next lemma asserts
that the convergence in both cases is suitably h– and � –independent. This lemma is
the analog of what Lemma 4.8 states for the �p D 0 case.

Lemma 6.5 Given "> 0, there exists �"> 1 with the following significance: Suppose
that � 2 Œ0; 1� and that .'; &/ is described by (6-6) and obeys (6-8). Then

� j'.x; yu/��.p� jyu/jC j&.x; yu/� h.p�/j< " where x < ��" ,

� j'.x; yu/��.� jyu/jC j&.x; yu/� h.� /j< " where x > �" .

Proof What with Lemmas 6.3 and 6.4, the proof of Lemma 4.8 can be quoted in an
essentially verbatim fashion to prove Lemma 6.5.
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Part 6 This last part of the subsection completes the proof that the set I is closed. To
start, suppose that � 2 Œ0; 1� and that hD .'; &/ is described by (6-6) and obeys (6-8).
Lemmas 6.2–6.5 supply a � – and h–independent disk U �R� I� centered on .y; 0/
and a compact set in R�X such that the graph of .'; &/ over .R�I�/nU maps into this
compact set and has uniform limits as x!˙1. This implies that the functions a1 , a2

and b that appear in (6-8) have h– and � –independent bounds for .x; yu/2 .R�I�/nU,
and that a1 and a2 are bounded away from zero by h– and � –independent, positive
constants. As a consequence, standard elliptic regularity arguments of the sort that
can be found in Chapter 6 of [12] can be employed to see that the absolute values of
the derivatives of h on .R� I�/ nU to any given order have h– and � –independent
bounds. Lemma 6.2 ensures that the boundary values also enjoy h– and � –independent
bounds. Lemma 6.5 ensures that these � – and h–independent derivative bounds hold
uniformly as x!˙1.

Meanwhile, the part of Ch that is parametrized via ‰p� by U maps into the R�UC

part of R�Hp� , and in particular the part where sC � � with � as in Lemma 6.4. As
a consequence, this part of Ch can be described using (5-5)–(5-6) by a solution to (5-7)
from the first bullet of Proposition 5.1 that has the form given in (6-23) with c1h as
described in Lemma 6.5.

Granted all of this, suppose that f�ngnD1;2;::: 2 I converges to �0 2 Œ0; 1�. For
each index n, let .'n; &n/ denote a pair described by (6-6) and obeying the � D �n

version of (6-8). Use the uniform bounds described in the preceding paragraphs
for f.'n; &n/gnD1;2;::: on .R� I�/ nU with the Arzelà–Ascoli theorem to obtain a
subsequence that converges on .R � I�/ n U in the strong C1 topology to a pair
.'; &/ whose graph over .R� I�/ nU maps into R�X. Meanwhile, use the uniform
bounds on the constants fc1hD.'n;&n/gnD1;2;::: to obtain a subsequence as above whose
corresponding sequence of constants converges to a nonzero limit. Let c1h denote the
latter. Granted this convergence, it follows that .'; &/ extends over U n .y; 0/ to give
a solution to the � D �0 version of (6-8) that is described by (6-6). Thus �0 2 I .

6C Uniqueness

This subsection completes the proof of Proposition 2.2 by proving that there is only one
pair .'p0 ; &p0/ that obeys the conditions imposed by Proposition 2.2. This uniqueness
assertion is one consequence of the lemma that follows.

Lemma 6.6 Fix y 2 R and � 2 Œ0; 1�. There exists exactly one pair .'; &/ with the
domain .R� I�/ n .y; 0/ that obeys the conditions set forth in (6-6) and (6-8).
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Proof Suppose that y 2 R, that � 2 Œ0; 1� and that .'.0/; & .0// and .'.1/; & .1// are
two pairs with domain .R� I�/ n .y; 0/ that obey (6-6) and (6-8). Write

(6-25) .'.1/; '.1//D .'.0/C'0; & .0/C & 0/;

where �D .'0; & 0/ is a smooth map from .R� I�/ n .y; 0/ to R that obeys

(6-26) � '0 D 0 where jyuj DRC 1
2

ln z� ,

� limjxj!1.'0; & 0/D 0.

This pair obeys an equation of the form D�D 0 with D as described by (3-5) and (3-6)
with coefficient functions a1 , a2 , b1 and b2 as described in the proof of Lemma 4.9.

Let C0 and C1 denote the respective hD .'.0/; & .0// and hD .'.1/; & .1// versions
of Ch . These have corresponding ends where the constant s slices converge in an
isotopic fashion to yCp as s!1. These ends can be written via (5-5) and (5-6) in the
sC� c0 part of R�UC as graphs over ŒsC;1/�R=2�Z. These respective maps, y.0/
and y.1/ , are described by (6-23). Write y.1/ as y.0/Cy with yD .a; b/ here denoting
a smooth map from Œc0;1/�R=2�Z to R2 with limit zero as js j!1. In particular,
it follows from (6-23) that y can be written as yD cy1C C e where c 2R is nonzero
if y.0/ ¤ y.1/ , where y1C is given by (5-4) with �1 determined by y.0/ and y.1/ , and
where jej � c0 jcje�.�11C1=c0/sC . Note in particular that y, if not identically zero, it
defines a degree 1 map from any constant sC� 1 circle in R�R=2�Z to R2 n 0.

A change of variables relates the pair �D .'0; & 0/ at points .x; yu/ near .y; 0/ to the
pair y. This formula takes the form yD U.1C e0/�, where U is the linear map from
Lemma 5.5 and where je0j < c0 e�sC=c0 . With the preceding as background, use the
arguments in Steps 1–4 of Part 4 in Section 5C to see that �D .'0; & 0/, if not identically
zero, defines a map from the boundary of any very small radius disk about the point
.y; 0/ to R2 n f0g with negative degree. The relation y D U.1C e/� implies that y
must define a nonpositive degree map to R2 n f0g from any sufficiently large sC circle
in R�R=2�Z, and in particular y cannot have degree 1.

This paradox is avoided only if .'.0/; & .0//D .'.1/; & .1//.

7 Cobordisms to the ech-HF submanifold moduli space

Section 2 describes sets of the form C0 D fCS0
; fCp0

gp2ƒg with CS0
being a surface

with boundary in R�Mı and with each p 2ƒ version of Cp0
being a surface with
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boundary in R�HCp� . The interiors of these surfaces are J –holomorphic. Each looks
much like the portion of an ech-HF submanifold in the relevant part of R�Y . However,
these surfaces with boundary do not necessarily fit together so as to define a closed
surface in R � Y . As noted in Part 2 of Section 1F, the sets that are described in
Section 2 form one boundary of a cobordism with two boundary components, the other
being the moduli space of ech-HF submanifolds. This cobordism has an associated
proper function mapping it to Œ0; 1� with the inverse image over 1 being the boundary
composed of ech-HF submanifolds. This section first describes and then constructs
these cobordism spaces.

Section 2A describes a data set of the form .z�; ı; x 0;R/ along with an almost complex
structure JHF for the construction of any given version of C0 . With .ı; x 0;R/ and JHF

specified, an almost complex structure for R�Y is then chosen subject to the conditions
given in Part 1 of Section 1C. This almost complex structure is again denoted by J.

The definitions in Section 2 and the constructions in the previous sections require the
choice of an orbit in AHF=R of a given Lipshitz surface. As in Section 2, the latter
determines an upper bound on z� and ı . As explained in Section 1A, the choice of ı
determines an upper bound for x 0 and the choice for x 0 determines one for R. The
required upper bounds for z� and ı may need some refinement in order to construct
the cobordism space. The refined upper bounds are stated as needed for the various
constructions that follow. In Section 2 and in what follows, the upper bounds in question
for z� and ı can be chosen so as to hold for all subvarieties chosen from a given
finite or compact set in AHF=R. Likewise, if K�AHF is a given R–invariant, weakly
compact set, then the parameters z� and ı can be chosen to be K–compatible.

As in the previous sections, S is used to denote a chosen Lipshitz submanifold. Like-
wise, .y‚�; y‚C/ 2 yZS is chosen. Use .‚�; ‚C/ again to denote the corresponding
pair in Zech;M.

7A The cobordism space

A point in the cobordism space consists of a pair .�; C/ where � 2 Œ0; 1� and where
C D fCS ; fCpgp2ƒg is a set of GC 1 submanifolds with boundary in R�Y . The map
to Œ0; 1� sends .�; C/ to � . The three parts that follow describe C . Part 1 describes CS ;
Part 2 describes the various p 2ƒ versions of Cp . Part 3 describes how � enters the
picture. The notation used in Section 2 is used here also.
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Part 1 What is denoted by CS is a properly embedded submanifold with boundary
in the f �1.Œ1C z�; 2� z��/ part of R�Mı whose interior is J –holomorphic. This
submanifold is characterized in part by the four properties that are listed in what follows.

To set the stage for the statement of the first property, introduce the constant �S , the
disk bundle N0! S, the map eS and the other notation from Part 5 of Section 2C.
Let �0 denote the constant from Lemma II.6.5 and let � denote the constant from
Lemma II.6.6. Introduce �S to denote 106��0 . Let U � R� Œ1; 2��† denote the
tubular neighborhood of S that is described in Lemma II.6.5.

Property 1 View CS as a submanifold in R� Œ1C z�; 2� z���†. As such, CS lies
in U and in the image via the exponential map eS of the radius ��1

S
�2

S
disk subbundle

in N0 . Moreover, CS has intersection number 1 with the eS –image of each fiber of
this disk bundle over the t 2 Œ1C z�; 2� z�� part of S.

The next property writes CS as the image of a map from the t 2 Œ1C z�; 2� z�� part
of S that has the form eS ı � with � being a section of N0 . This upcoming property
also refers to the Fredholm operator DS that is discussed in Parts 2–4 of Section II.6E
and depicted in (1-25). The kernel of DS is the vector space of sections in the domain
Hilbert space that are annihilated by DS .

Property 2 The section � is L2 –orthogonal to the restriction of each element in the
kernel of DS to the part of S where t 2 Œ1C z�; 2� z��.

The third property speaks to the large js j behavior of CS . The notation borrows from
the fourth bullet of Proposition 2.1. By way of a reminder, let y�� and y�C denote
the respective HF-cycles that are used to define ‚� and ‚C . Let q denote a given
intersection point from either with †; this a point in C� \ CC . The corresponding
integral curve of v from y�� or y�C appears as .1; 2/� q when writing f �1.1; 2/�M

as .1; 2/�†. The point q labels a corresponding s ��1 or s � 1 end of S, this
denoted by ESq . This end of S is in q ’s component of R�Œ1; 2��.T�\TC/. Note also
that the functions .s ; t / restrict as coordinate functions to ESq . The normal bundle NS

over ESq is identified with the product R2 –bundle in the manner that is described
just prior to (2-6) and this identification is used to view a section as a map to R2 .
Meanwhile, the exponential map eS over ESq is written as in (2-6).

As in Proposition 2.1, q� is used to denote the point in T� \ TC near q where the
corresponding segment of an integral curve of v from ‚� or ‚C intersects †. This
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point q� has distance c0ı or less from q and so lies in q ’s component of T� \ TC .
Writing eS over ESq writes q� as a section of the normal bundle NS over ESq .

Property 3 Let q 2 C� \ CC denote an intersection point of an integral curve of v

from either y�� or y�C . The section � over the t 2 Œ1Cz�; 2�z�� part of ESq converges
pointwise as s !�1 or s !1 to q� .

The final property views CS as sitting in R� Œ1C z�; 2� z���†. It talks about the
behavior of CS where t is near the endpoints of the interval Œ1C z�; 2� z��. The
statement of this property uses the notation from Part 1 of Section 1C. In particular,
Part 1 of Section 1C uses the coordinates .'C; hC/ for any given component of the
region TC �†, and it uses the coordinate .'�; h�/ for any given component of T� .

Property 4 View CS as a submanifold with boundary in R� Œ1Cz�; 2�z���†. As
such , a neighborhood of its boundary has the following properties:

� The Œ1C z�; 1C zS � portion of CS has G components, with one mapping to
each component of TC . A given component of this portion of CS is the image
of a map from R� Œz�; zS � to R� Œ1Cz�; 1CzS ��R=.2�Z/�

�
4

3
p

3
ı2
�;

4

3
p

3
ı2
�

�
that has the form

.x; z/! .s D x; t D 1C z; 'C D '
S .x; z/; hC D &S .x; z//:

� The Œ2�zS ; 2�z�� portion of CS has G components , with one mapping to each
component of T� . A given component of this portion of CS is the image of a
map from R� Œz�; zS � to R� Œ2�zS ; 2�z���R=.2�Z/�

�
4

3
p

3
ı2
�;

4

3
p

3
ı2
�

�
of

the form

.x; z/! .s D x; t D 2� z; '� D '
S .x; z/; h� D &S .x; z//:

In short, these four properties say that CS looks much like the R �Mı part of an
ech-HF submanifold. Note in particular that these properties are satisfied if CS D CS0

with the latter coming from a set of the sort that is described in Section 2.

Part 2 What is denoted by Cp is a properly embedded submanifold with boundary in
R�HCp� with J –holomorphic interior. There are two boundary components, one on the
u> 0 component of the boundary of R�HCp� and the other on the u< 0 component.
The submanifold Cp is diffeomorphic to the complement of �p interior points of the
product of R with a closed interval. What follows lists two additional properties.

Property 1 The large js j part of Cp is described by (2-9).
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Property 2 The submanifold Cp is the ‰p–image of a graph in the jyuj �RC 1
2

ln z�
part of R�HCp� over a domain in R� I� having the form

.x; yu/! .x; yu; y� D 'p.x; yu/; h D &p.x; yu//:

The domain for the functions .'p; &p/ is R� I� when �p D 0, it is the complement of
a single yuD 0 point when �p D 1, and it is the complement of two yuD 0 points when
�p D 2.

In short, these properties say that Cp looks much like the R�HCp� part of an ech-HF
submanifold.

Part 3 The parameter � enters the story here. To set the stage, fix p 2ƒ and write
the part of CS in R�HCp� as in Property 4 in Part 1 using functions .'S ; &S /, and
write Cp as in Property 2 of Part 2. Meanwhile, reintroduce from (2-5) the functions
.'S0 ; &S0/ that are defined by the surface CS0

. The functions .'S ; &S / that define CS

and the pair .'p; &p/ that define Cp are constrained on the common t D 1C z� and
t D 2� z� boundaries of their domains to obey

(7-1) � &S � &S0 D �.&p� &S0/,

� �.'S �'S0/D 'p�'S0 .

What follows are two remarks concerning these matching conditions. The first remark
concerns the � D 1 version of (7-1): This version asserts that CS and Cp fit seamlessly
together across their common boundary in R�HCp� . As a consequence, any given
� D 1 version of C D CS [

�S
p2ƒ Cp

�
is an ech-HF submanifold.

The second remark concerns the � D 0 case. A set C0 D fCS0
; fCp0

gp2ƒg of the sort
described in Section 2 obeys all of the � D 0 conditions. Moreover, it follows from
Propositions 2.1 and 2.2 that these are the only sets that obey the � D 0 conditions.

A set C D fCS ; fCpgp2ƒg that is described by Parts 1 and 2 above and obeys a given
� 2 Œ0; 1� version of (7-1) is said to be a .J; �/–holomorphic submanifold.

7B The structure of the cobordism space

Introduce M� to denote the set of pairs of the form .�; C/ with � 2 Œ0; 1� and with
C being a .J; �/–holomorphic submanifold. This set is given the topology whereby
open neighborhoods of a given element .�; C D fCS ; fCpgp2ƒg/ are generated by sets
of the following sort: Fix " > 0 and a compactly supported 2–form � on R � Y .
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The set in question contains a given .� 0; C0 D fC 0
S
; fC 0pgp2ƒg/ if j� � � 0j < " and

if the conditions in (1-16) hold with the pair .C;C 0/ replaced by each pair from
f.CS ;C

0
S
/; f.Cp;C

0
p/gp2ƒg.

The map from M� to Œ0; 1� defined by the rule .�; C/! � is denoted by �I . A second
map, this one from M� to a Euclidean space, also enters the story. The latter is denoted
by p and its definition follows directly. To start, introduce ƒ� � ƒ to denote the
subset of �p � 1 elements. The map p sends M� to �p2ƒ

�
��p

R
�
. To give the

rule that defines p , write a given element in M� as .�; C D fCS ; fCpgp2ƒg/. Each
p 2ƒ version of Cp is defined by a pair of functions whose domain is the complement
in R� I� of �p with yu D 0. The R coordinate of these missing yu D 0 points are
the R coordinates of p.�; C/ in p’s factor of �p2ƒ

�
��p

R
�

with it understood that
when �p D 2, the first coordinate in the corresponding factor �2 R2 corresponds to
the end of Cp where cos.�/ limits to 1p

3
as s !1. The upcoming propositions set

n� D
P

p2ƒ�p and they set Rn� D�p2ƒ

�
��p

R
�
.

The following proposition describes the structure M� :

Proposition 7.1 Fix a Lipshitz submanifold S such that DS has trivial cokernel.
There exists a purely S –dependent constant � � 1 and , with z� < ��1 , there exists
a constant �� that depends on z� but is otherwise purely S –dependent with the
following property: Use ı < ��1

� z� with a pair .y‚�; y‚C/ from yZS to define M� .
Fix .�; C/ 2M� .

� There exist an integer n� 0, a neighborhood U �Rn�Cn of the origin , an open
neighborhood I � Œ0; 1� of � , a smooth map fW I �U ! Rn that sends .�; 0/
to the origin, and a topological embedding ˆW f�1.0/!M� onto an open set
that sends the pair .�; 0/ to C and is such that �I ıˆ gives the projection from
I �U to I.

� The subspace of elements M�smooth �M� where f is a submersion is open and a
smooth .n�C1/–dimensional manifold with boundary. The maps �I and p are
smooth on this smooth subset.

� The integer n can be taken to be either 0 or 1 at points in M�smooth , and it can
be taken equal to zero at the points in M�smooth where d�I ¤ 0.

� An open neighborhood of the �1 –inverse image of 0 in M�smooth is mapped by
�1�p diffeomorphically onto an open neighborhood of f0g�

�
�p2ƒ

�
��p

R
��

in Œ0; 1��
�
�p2ƒ

�
��p

R
��

.
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Proposition 7.1 can be generalized in a straightforward manner to account for variations
in the choice of the pair S. The formulation of this more general version is omitted.

The next proposition refers to the notion from Section 2A of a weakly compact subset
of Lipshitz submanifolds. The proposition asserts that J, in particular, can be chosen
so as to make Proposition 7.1’s map f everywhere a submersion for a residual set of
Lipshitz submanifolds from any given weakly compact subset of Lipshitz submanifolds.

To set the stage for the proposition, introduce the notion of a Lipshitz subvariety. The
latter is a certain sort of 2–dimensional, JHF –holomorphic subvariety in R� Œ1; 2��†.
The definition is identical to that in Section 1G for a Lipshitz submanifold but for
three items. First, the subvariety need not be a submanifold as it is allowed to have
a finite number of interior singular points. Second, no irreducible component lies in
a constant .s ; t / slice of R� Œ1; 2��†. Third, Property 8 in Section 1G need not be
obeyed. To say more about this last point, note that any given Lipshitz subvariety can
be viewed as a pair, .S; u/, where S is a smooth complex curve with 2G boundary
components and u a JHF –holomorphic map from S into R� Œ1; 2��† whose image is
the subvariety in question. The pair .S; u/ is described by the first six bullets in (II.6-2)
and the modified version of the seventh bullet of (II.6-2) that requires u to embed
the complement of a finite set of interior points. If u is an immersion, there is a
holomorphic line bundle over S whose restriction to any given small radius disk is
the normal bundle to its u –image. In this case an operator DS that maps sections of
the latter to sections of its tensor product with T 0;1S which has the form depicted
in (1-25). When u is not an embedding, there is an operator that plays the role of DS

and is denoted by DS . This operator is obtained from what is denoted by Dx@ in the
proof of Proposition 3.4 in [10] by restricting the latter to elements of the form .�;Y; 0/.
The latter is Fredholm when viewed as a bounded, linear map from the L2

1
completion

of its domain to the L2 completion of its range. Because u is singular at only a finite
number of points, all in the interior, this follows directly from what is said in Part 4 of
Section II.6E.

Proposition 7.2 Fix a countable set in
�
�3.0; 1/

�
� .1;1/ of possible choices for

the data .z�; ı; x 0;R/, then there is a C1–residual set of allowed choices for JHF for
which the assertions that follow are true. Choose JHF from this residual set.

� Let S denote a Lipshitz subvariety. Then DS has trivial cokernel.

� Let K denote a given R–invariant, weakly compact subset of Lipshitz subman-
ifolds, then there exists a constant � � 1 that depends only on K and, given
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z� < ��1 , there exists �� > 1 that depends on z� and K with the following
significance: Choose a K–compatible data set .z�; ı; x 0;R/ from the given set
with z� < ��1 and ı < ��1

� z� . Use this data to define the geometry of Y .

(a) There is a certain residual set of almost complex structures pursuant to
the constraints given in Section 1C and there exists a residual subset in K
such that if J is chosen from the former and S from the latter then all
.y‚�; y‚C/ 2 yZS version of M� are such that

(1) The corresponding M�smooth is the whole of M� and so M� is a smooth
.n�C1/–dimensional manifold with boundary, and �I � pWM� !
Œ0; 1��

�
�p2ƒ

�
��p

R
��

is a smooth map.

(2) The critical values of �1 are in .0; 1/, and only finitely many of them
are critical values of �I ’s restriction to any given compact set in M� .

(b) If K is an open set, then the various versions of M�j�D1 as defined by the
elements in K and a given choice for J define a smooth manifold such that
the tautological map to K is smooth.

Propositions 7.1 and 7.2 are proved in Section 7E.

By way of a parenthetical remark, the tools that are developed in this section can
be used to strengthen both the fourth bullet of Proposition 7.1 and item (a)(2) of the
second bullet of Proposition 7.2. With regards to the fourth bullet of Proposition 7.1,
the open neighborhood of ��1.0/ can be taken to be the �1 –inverse image of an open
neighborhood of 0 in Œ0; 1�. The strengthened version of item (a)(2) of the second
bullet of Proposition 7.2 asserts that the set of critical values of �1 on the whole of M�

is finite. The proofs of these strengthened versions do not involve any new technology.
Even so, a full presentation is lengthy and so these stronger versions are not proved here.

The final proposition implies that �I is in all cases a proper map. This proposition
refers to the strong C1 topology on spaces of sections and maps. This topology
is defined as follows: An open neighborhood of a given section or map is indexed
by a positive integer and a positive number. Let q denote the given section or map
and let .k; "/ denote a given positive integer and positive number. Elements in the
corresponding neighborhood of q have C k distance less than " from q over the whole
of q’s domain.

The upcoming proposition also refers to the normal bundle and various associated
notions for a submanifold that is described by Part 2 of Section 7A, an example being
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some p2ƒ version of Cp . Let C denote the relevant submanifold. The fiber metric on
C ’s normal bundle is defined by the ambient metric on R�HCp� that comes from the
chosen almost complex structure J and the compatible 2–form ds ^ yaCw . The latter
metric defines a metric on C and the covariant derivative on sections of the normal
bundle and tensor bundles over C. The normal bundle can also be endowed with an
exponential map that embeds a constant radius disk subbundle into R�HCp� . This
exponential map gives the canonical identification between the zero section and C, its
differential on the zero section is the identity map, and it maps the disk bundle over the
boundary of C to the boundary of R�HCp� .

Proposition 7.3 Fix a Lipshitz submanifold S. There exists a purely S –dependent
constant � � 1, and with z� < ��1 , there exists a constant �� that depends on z�
but is otherwise purely S –dependent with the following property: Fix z� < ��1 and
ı < ��1

� z� , and then a pair .y‚�; y‚C/ 2 yZS to define M� . The map pWM� !
�p2ƒ

�
��p

R
�

is proper in the following strong sense: Let

f.�n; Cn D fCSn; fCpngp2ƒg/gnD1;2;::: �M�

be any given sequence with fixed p –image. There is an element .�; CDfCS ; fCpgp2ƒg/

in M� with the given p–image and a subsequence (hence renumbered consecutively
from 1) with the properties listed next :

� For each n 2 f1; 2; : : : g, let �n denote the section of the disk bundle NS that
defines CSn . The resulting sequence of sections f�ngnD1;2;::: converges over
the t 2 Œ1C z�2� z�� part of S in the strong C1 topology to the section that
defines CS .

� Fix p 2ƒ. There exists a sequence of sections f�pngnD1;2;::: of the disk subbun-
dle of Cp ’s normal bundle that converges to zero in the strong C1–topology
on C1.CpIN / and is such that each index n version of Cpn is the image of the
composition of the exponential map with the corresponding section �pn .

This proposition is proved in Section 7D.

7C Boundary conditions for the Cauchy–Riemann equations

This subsection constitutes a digression to introduce the analytic tools that are needed
to handle the boundary-matching conditions given by (7-1). By way of background,
the pair .'S ; &S / that appears in the index 1 critical point version of (7-1) obeys
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the standard Cauchy–Riemann equations in coordinates .x; z/ for R� Œz�; zS � that
are defined by the rule s D x , t D 1C z . Meanwhile, the pair .'p; &p/ obey these
equations on the domain R � Œı2; z�� if z is identified with e�2.R�yu/ . There are
analogous Cauchy–Riemann equations near an index 2 critical point version of (7-1).
The Cauchy–Riemann equations here are obeyed by .'S ;�&S / using the coordinates
.x;�z/ for R� Œz�; zS � that are defined by writing .s ; t / as s D x and t D 2� z .
Meanwhile, the pair .'p;�&p/ obey the same Cauchy–Riemann equations in terms
of coordinates .x; z/ on the domain R� Œı2; z�� when z is defined by z D e�2.RCyu/ .
These coordinate identifications are used implicitly in the rest of this section and in the
subsequent sections. The pair .'S0 ; &S0/ or .'S0 ;�&S0/, as the case may be, obeys
the Cauchy–Riemann equations on the domain R� Œe�8z�; zS � and thus on both sides
of the z D z� locus where (7-1) holds. The fact that all of these pairs obey a linear
equation near the z D z� locus explains the focus in this subsection on the coupled,
linear boundary value problem that is described next.

The boundary value problem is that for pairs .'C; &C/ and .'�; &�/ which obey the
Cauchy–Riemann equations on the respective domains R�Œz�; zS � and R�Œe�8z�; z��.
This is to say that

(7-2) @x'˙� @z&˙ D 0 and @x&˙C @z'˙ D 0

on the relevant domain, and so �C D 'CC i&C and �� D '�C i&� are holomorphic
functions of the complex coordinate xC iz . Their boundary values are constrained on
the common boundary of their respective domains by a given � 2 Œ0; 1� version of

(7-3) &C D �&� and �'C D '� where z D z�:

They are also constrained so that

(7-4) lim
jxj!1

.j&˙jC j'˙j/D 0:

The five parts that follow in this subsection discuss various aspects of this coupled,
linear boundary value problem.

Part 1 This part of the subsection describes energy bounds that hold for the pairs just
described. These are summarized by the next lemma. The lemma uses the notation k � k
to denote the L2 –norm of a given function with it understood that the integration
domain is the domain where the function is defined.
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Lemma 7.4 Suppose that .'C; &C/ and .'�; &�/ are pairs of compactly supported,
smooth functions that are defined on the domains R� Œz�; zS / and R� .e�8z�; z��,
respectively, and that obey (7-3) on the common boundary of their domains of defini-
tion. Let �˙ denote the C–valued functions '˙C i&˙ . Then kx@�Ck2Ckx@��k2 D
1
4
kd�Ck

2C
1
4
kd��k

2 .

Proof Integration by parts finds that

(7-5) kx@�Ck2Ckx@��k2 D 1
4
kd�Ck

2
C

1
4
kd��k

2
C

Z
R�z�

.'�@x&��'C@x&C/:

Use (7-3) to see that the boundary integral is zero.

Part 2 This part describes a version of the maximum principle for pairs .'˙; &˙/
that obey (7-2)–(7-4). Such is the content of the next lemma.

Lemma 7.5 Suppose that .'C; &C/ and .'�; &�/ are pairs of smooth functions that
are defined on the respective domains R � Œz�; zS � and R � Œe�8z�; z�� and obey
(7-2)–(7-4). Define functions ' and & on the domain R� Œe�8z�; zS � by the rule

� ' D '� where z 2 Œe�8z�; zS � and ' D �'C where z 2 Œz�; zS �,

� & D �&� where z 2 Œe�8z�; zS � and & D &C where z 2 Œz�; zS �.

If either function is not identically zero , then neither function can have a local maximum
or minimum on R� .e�8z�; zS /.

Proof Consider, for example, & . The function &� is harmonic, as is &C . Thus,
neither can have local extremal values in the interior of their domain of definition. If
� D 0, then & is zero where z � z� . Suppose for the sake of argument that 0 is a
local minimum of & . As &C D 0 at z D z� , its z–derivative must be nonnegative and
positive at some z D z� points if &C is not identically zero. If this is so then (7-2)
implies that 'C at z D z� is a nondecreasing function of x with positive derivative at
some points, so (7-4) cannot be true.

Suppose next that � > 0 and suppose that & takes a local maximum or minimum at a
given point .x�; z�/. The simplest case to consider is that where @z&C¤ 0 at this point.
Suppose for the sake of argument that @z&C < 0. Then the function z! �&�.x�; z/

is a decreasing function of z for z near to but slightly less than z� . Thus, �&� and
hence & will not have a local maximum at .x�; z�/.

Geometry & Topology, Volume 24 (2020)
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To see about the general case, suppose for the sake of argument that .x�; z�/ is a local
maximum for & . What follows generates some nonsense from this assumption. To
set up the notation, introduce q to denote the value of & at this point. No generality
is lost by assuming that q ¤ 0. Introduce r to denote the Euclidean distance on
R� Œe�8z�; zS � from .x�; z�/. Fix " 2 .0; q/ but very small, chosen in particular so
that q � " is a regular value of both &C and �&� . Let U denote the component of the
set where & � q � " that contains the point .x�; z�/. This set is compact. Introduce
@UC and @U� to denote the respective z � z� and z � z� components of the boundary
of U. These are smooth arcs. It follows from (7-2) that these arcs are oriented by the
respective 1–forms d'C and d'� . In particular, the respective integrals

(7-6)
Z
@UC

d'C and �

Z
@U�

d'�

are positive. But this last conclusion is nonsense because they sum to zero as a
consequence of (7-2) with the fundamental theorem of calculus (use Stokes’ theorem
along an arc).

Part 3 This part explains how a bound j&Cj for z > 1
2

zS and on j&�j for z < 1
2

z�
can be used to obtain � –independent bounds at z D z� . The following lemma makes a
quantitative statement:

Lemma 7.6 There exists a z�– and zS –independent constant ��1 with the following
significance: Suppose that .'˙; &˙/ are pairs of functions as in Lemma 7.5 that obey
(7-2)–(7-4). Fix constants r� > 0 and rS > 0 such that j&Cj � rS for z > 1

2
zS and

j&�j � r� for z < 1
2

z� . Then j&�j � �.r�C z�rS=zS / where z D z� .

Proof Let ��R�
�
e�8z�; 1

2
z�
�

denote a disk of radius 1
4

z� , and introduce �0 to
denote the concentric disk with radius 1

8
z� . Use of the standard Green’s function for

the Laplacian with a cutoff function that is 1 on �0 and zero on the complement of �
will find that

(7-7) jr&�j � c0r�z�1
�

at the origin of �. It follows as a consequence of (7-2) that jr'�j � c0r�z�1
� where

z � 1
4

z� . Much the same argument finds that jr'Cj � c0rS z�1
S

where z � 1
4

zS . Hold
on to these bounds for the moment.

The two pairs of functions .'0
˙
; & 0
˙
/ D .@x'˙; @x&˙/ obey (7-2) and they also

obey (7-3). As explained in a moment, Lemma 7.5 can be invoked using the function '0

which is defined to be @x'� where z � z� and �@x'C where z � z� . Granted
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Lemma 7.5, it follows from the conclusions of the preceding paragraph that @x' at
z D z� can have absolute value no greater that c0.r�z�1

� C rS z�1
S
/. This with the

Cauchy–Riemann equations imply that j@z&�j � c0.r�z�1
� C rS z�1

S
/ at z D z� .

Let w denote the function on
�

1
4

z�; z�
�

given by the rule

(7-8) z! w.z/D r C c0.r�z�1
� C rS z�1

S /z:

View w as an x–independent function on R�
�

1
4

z�; z�
�
. As such, it is harmonic, and

the maximum principle implies that w.z/� &�.z/ on its domain of definition. Since
this is the case, it follows that &� �w at all z 2

�
1
4

z�; z�
�

and so c0r at z D z� . This
gives the asserted upper bound for &� where z D z� . The exact same argument with
�&� replacing &� gives the asserted upper bound at z D z� for �&� .

Return now to the assertion that Lemma 7.5 can be invoked using '0. There is no issue
if it is known a priori that j@x&˙j and j@x'˙j limit uniformly to zero as jxj ! 1.
If this has not been established, the argument proceeds as follows: Let ˇW R! Œ0; 1�

denote a smooth function with compact support with integral equal to 1. Given " > 0,
introduce ˇ"W R! Œ0; 1� to denote the function given by the rule x! "�1ˇ."�1x/.
Consider now the pair .'"˙ ; &"˙/ given by the mollifying formula

(7-9) .'"˙ ; &"˙/j.x;z/ D

Z
R
ˇ".x

0/.'˙; &˙/j.x0Cx;z/ dx0:

Every " > 0 version of .'"˙ ; &"˙/ obeys (7-2)–(7-4). This is also the case for their
partial derivatives to any given order with respect to x . This understood, define for ">0

the mollified function '0" given by @x'"� where z � z� and �@x'"C where z � z� .
Lemma 7.5 holds for this function. Meanwhile, the family f'0"g">0 converges uniformly
as "! 0 on compact subsets of the domain R� Œe�8z�; zS � to the function @x' . This
understood, take the "! 0 limit of j@x'"j to see that the assertion of Lemma 7.5 holds
for @x' .

Part 4 This part says something about a priori estimates near the z D z� locus for
solutions to (7-2)–(7-4).

Lemma 7.7 Fix k 2 f1; 2; : : : g, then there exists a z�– and zS –independent constant
� � 1 with the following significance: Suppose that .'˙; &˙/ are smooth functions
that obey (7-2)–(7-4). Fix r� > 0 and rS > 0 such that j&Cj � rS for z > 1

2
zS and

j&�j � r� for z < 1
2

z� . Then the norms of the derivatives of .'�; &�/ to order k

where z > 1
4

z� and those of .'C; &C/ to order k where z < 1
4

zS are bounded by
�.r�z�k

� C rS z�k
S
/.
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Proof The argument given in the proof of Lemma 7.6 bounds j@x'�j where z 2�
1
4

z�; z�
�

by c0.r�z�1
� C rS z�1

S
/, and an analogous argument bounds j@x&Cj where

z 2
�
z�; 1

4
zS

�
. Much the same argument bounds j@k

x'�j by ck.r�z�k
� C rS z�k

S
/ for

z 2
�

1
4

z�; z�
�

and j@k
x&Cj by this same constant where z 2 Œz�; 1

4
zS �. An iterative

bootstrapping argument uses the bound for j@k
x'�j to obtain the desired bound on

j@k�1
x &�j, and it uses the bound for j@k

x&Cj to obtain the desired bound on j@k�1
x 'Cj.

What follows describes how this works for j@k�1
x &�j. The argument for j@k�1

x 'Cj is
identical but for the notation.

Note first that j@k�1
x &�j is a priori bounded by ck�1.r�z�kC1

� C rS z�kC1
S

/ where
z D 1

4
z� . This the case, note next that @z.@

k�1
x &�/ D @

k
x'� because of (7-2). The

assumed bound on @k
x'� implies that j@z@

k�1
x &�j� ck.r�z�k

� CrS z�k
S
/ where zD z� .

Granted that such is the case, use the fact that @k�1
x &� is harmonic to invoke the

maximum principle for the harmonic function

(7-10) .x; z/! .@k�1
x &�/j.x;z/�ck�1.r�z�kC1

� CrS z�kC1
S

/�ck.r�z�k
� CrS z�k

S /z

on R�
�

1
4

z�; z�
�

to obtain the desired upper bound on @k�1
x &� . The desired lower

bound is obtained by this argument by replacing &� with �&� .

Bounds on the partial derivatives to order k in both the variables x and z are obtained
via the Cauchy–Riemann equations from those for just the partial derivatives with
respect to x .

7D Proof of Proposition 7.3

The argument for the proposition when all p 2ƒ versions of �p are zero is very much
like that given in Section 4C for the proof of Lemma 4.3. This version of the argument
is given in the first six parts of this subsection. Part 7 adds what is needed to prove the
proposition when some p 2ƒ versions of �p are 1 or 2.

Part 1 This part derives an upper bound for the integral of the 2–form w over the
J –holomorphic submanifolds with boundary from any given element in M� . The
lemma below states such a bound:

Lemma 7.8 There exists a purely S –dependent � � 1 with the following significance:
Define the space M� using z� � ��1 , ı < ��2z� and a f�p D 0gp2ƒ pair from yZS.
Suppose that � 2 Œ0; 1� and C D fCS ; fCpgp2ƒg is a .J; �/–holomorphic submanifold.
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Let I �R denote an interval of length 1. ThenZ
CS

wC
X
p2ƒ

Z
Cp

w�� and
Z

CS\.I�Mı/

ds^d yaC
X
p2ƒ

Z
Cp\.I�HCp�\Mı//

ds^d ya��:

Meanwhile,
P

p2ƒ

R
Cp\.I�HCp� /

ds ^ hya � �� , where �� is a C– and � –independent
constant.

Proof The argument is much like that used for Lemma 4.5. To start, note that what
are essentially cosmetic modifications to the arguments used at the beginning of the
Lemma 4.5’s proof can be used to prove that the integrals in question are finite, and
that Stokes’ theorem in various guises can be used to compute them.

With the preceding in mind, use (1-6) to write the 2–form w as w Dw 0C
P

p2ƒ dbp
where any given p 2ƒ version of the 1–form bp has compact support in HCp and has
the form bpD x .1�3 cos2 �/ du�N

p
6f cos � sin2 � d� with N being the function

of u given by the rule u!N.u/D �.juj �RC ln ı�/. The form w 0 is zero on each
p2ƒ version of Cp , and its support on CS is disjoint from the boundary of CS . Given
that w 0 is closed, Stokes’ theorem with what is said in Corollary II.2.6 can be used to
see that its integral over CS differs by no more than c0ı from its integral over S.

Fix p 2 ƒ and use Stokes’ theorem to write the integral of dbp as the sum of the
integrals given in (4-9) as defined using .'; &/D .'p; &p/. As explained in the proof
of Lemma 4.5, the sum of the left-most two terms in the top bullet of (4-9) and the
two terms in the lower bullet of (4-9) are bounded by a purely S –dependent (or
K–compatible) constant. The as yet unspoken for terms in the top bullet of (4-9) are

(7-11)
Z

R�fyuDRC 1
2

ln z�g
&p d'p�

Z
R�fyuD�R� 1

2
ln z�g

&p d'p:

Meanwhile, integration by parts identifies the integral of bp over CS with the sum

(7-12)
Z
 0pC

Nh d� �

Z
 0p�

Nh d� �

Z
R�fyuDRC 1

2
ln z�g

&S d'S

C

Z
R�fyuD�R� 1

2
ln z�g

&S d'S ;

where  0pC and  0p� are the parts of the integral curves of v that extend pC and p� ,
and lie in the f � 1C z� and f < 2� z� parts of the radius 4ı� coordinate balls
centered on the index 1 and 2 critical points from p. The left-most two integrals
in (7-12) are zero as � is constant in the integral curve segments in question.
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To say more about the integrals in (7-11) and the two right-most integrals in (7-12)
note first that the corresponding yuDRC 1

2
ln z� integrals in (7-11) and in (7-12) come

with opposite signs. This is also the case for the corresponding yu D �R� 1
2

ln z�
integrals. With this understood, one can use (7-1) to identify the sum of the various
p 2ƒ versions of (7-11) and (7-12) with the sum

(7-13) �.1� �/
Z

R�fyuDRC 1
2

ln z�g
.&S0 d'S

� &p d&S0/

C .1� �/

Z
R�fyuD�R� 1

2
ln z�g

.&S0 d'S
� &p d'S0/:

The integrals in (7-13) of the 1–form &p d�S0 are bounded by cı2
� with c here denoting

a purely S –dependent (or K–compatible) constant. This is because j&pj �
4p
3
ı2
� and

because of what is said by the fourth bullet in Proposition 2.1, which implies that the
integral of jd'S0 j is finite on both R�

˚
yuDRC 1

2
ln z�

	
and R�

˚
yuD�R� 1

2
ln z�

	
.

Bounds are obtained below for the norms of the integrals that involve &S0 d'S by
writing them using Stokes’ theorem as the sum of two integrals whose integrands are
supported in the z � z� part of the radius 4ı� coordinate balls about p’s critical points.
The term with support in the index 1 critical point coordinate ball is

(7-14) �.1� �/

Z
z�z�

.&S0 dN ^ d'S
CN d&S0 ^ d'S /;

and the term with support in the index 2 critical point coordinate ball has the same
form but no minus sign in front. (Remember that N is given in terms of the variable u

by the rule N.u/D �.juj �RC ln ı�/, so it is zero where juj �R� ln ı�C 1.)

To deal with integral in (7-14), fix for the moment a number m>1 and use the triangle in-
equality to bound the integrand by the sum of m.j&S0 j2Cjd&S0 j2/.jdN j2CjN j2/ and
1
m jd'

S j2 . Let O denote any given open subset of the domain of the integral in (7-14).
The absolute value of the integral over O of the integrand in (7-14) is no greater than the
sum of the integrals over O of these two functions m.j&S0 j2Cjd&S0 j2/.jdN j2CjN j2/

and 1
m jd'

S j2 . The integral of the former over O has an upper bound that is independent
of O. This is because of what is said by the fourth bullet of Proposition 2.1 concerning
the exponential rate of convergence. As a consequence, the integral over O and
thus over the domain in (7-14) of the function m.j&S0 j2Cjd&S0 j2/.jdN j2CjN j2/

necessarily has an upper bound of the form mc� with c� being a purely S –dependent
(or K–compatible) number.
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Two facts are needed to deal with the integral of 1
m jd'

S j2 : first, the 2–form w on CS ,
when written in the radius 4ı� coordinate ball in terms of the pair .'S ; &S /, is given
by
p

6 .@x'
S@v&

S � @v'
S@x&

S / dx ^ dv . Second, the pair .'S ; &S / obeys the
Cauchy–Riemann equations as functions of .x; v/. These two facts imply that w can
be written on this part of CS as

p
6 .j@x'

S j2 C j@yu'
S j2/dx ^ dv . It follows as a

consequence that the integral of 1
m jd'

S j2 over the domain O is no greater than the
integral of 1

m w over O.

Taking m D 1000, it now follows from what was said in the preceding two paragraphs
that the integral in (7-14) is no greater than 1

1000

R
CS

w C c where c is a purely S –
dependent (or K–compatible) constant. This bound with those derived previously imply
that

(7-15)
Z

CS

w C
X
p2ƒ

Z
Cp

w � 1

1000

Z
CS

w C c;

with c being purely S –dependent (or K–compatible). The inequality in (7-15) implies
what is asserted by the first bullet of Lemma 7.8.

Turn now to the integrals of ds^ya . With the f 2 .1; 2/ part of M written as .1; 2/�†,
the form ya is dt with t the Euclidean coordinate on the .1; 2/ factor. This being
the case, the integral of ds ^ ya over CS \ .I �Mı/ is no greater than G and the
integral of ds ^ ya over the I �Mı part of any given p 2 ƒ version of Cp is no
greater than z� . Minor cosmetic changes to the arguments from Step 4 of the proof
of Proposition II.5.1 in Section II.5B give the bound on the integral of ds ^ ya over
the whole of Cp \ .I �HCp�/. Note that the integration by parts that is used in this
Step 4 does not lead to boundary terms because ya annihilates the tangent space to the
boundary of HCp� .

Part 2 This part supplies an upper bound for the distance in R� Œ1; 2��† from any
given M� version of CS and S. Here again, the f 2 .1; 2/ part of Mı is identified
with .1; 2/�†. This part of the section also supplies a positive bound for the function
1�3 cos2 � on any given M� and p2ƒ version of Cp . These bounds are summarized
in the respective lemmas that follow.

Lemma 7.9 There is a purely S –dependent (or K–compatible) � > 1 and , given
z� < ��1 , there exists �� > 1 that depends only on z� but is otherwise purely
S –dependent (or K–compatible) with the following significance: Define the space
M� using z� < ��1 , ı < ��2z� and a f�p D 0gp2ƒ pair from yZS. Suppose that
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.�; C D fCS ; fCpgp2ƒg/ 2M� . Then CS is the image via the exponential map eS of a
section of the radius 1

100
��1

S
�2

S
subbundle of N0 .

The next lemma concerns the function 1� 3 cos2 � on the various p 2 ƒ versions
of Cp .

Lemma 7.10 There is a purely S –dependent (or K–compatible) � > 1 and , given
z� < ��1 , there exists �� > 1 that depends only on z� but is otherwise purely S –
dependent (or K–compatible) with the following significance: Define M� using
z� <��1 and ı < ��1

� z� and a f�pD 0gp2ƒ pair from yZS. There exists ��� > 1 such
that if .�; C D fCS ; fCpgp2ƒg/ 2M� is a given element , then 1� 3 cos2 � is greater
than ��1

�� on all p 2ƒ versions of Cp .

The proofs of Lemmas 7.9 and 7.10 require a preliminary lemma to supply an a priori
bound on the norm of any p 2 ƒ version of j&S j on the common boundary of CS

and Cp . The proof of Lemma 7.10 requires in addition a bound for any p2ƒ version of
j&pj where z D e64ı2 . This is the content of the upcoming Lemma 7.11. Lemma 7.11
refers to the coordinate z that is defined on either component of the jyuj � RC ln ı
portion of HCp� by the rule z D e�2.R�jyuj/ .

Lemma 7.11 There is a purely S –dependent (or K–compatible) � > 1 and , given
z� < ��1 and " > 0, there exists �" > 1 that depends on z� and " but is otherwise
purely S –dependent (or K–compatible) such that the following is true: Define the
space M� using z� < ��1; ı < ��1

" z� and a f�p D 0gp2ƒ pair from yZS. Let .�; C D
fCS ; fCpgp2ƒg/ 2M� , and let p 2ƒ.

� The pair .'S ; &S / is such that j&S j � "ı2
� where z D z� , this the common

boundary of CS and Cp .

� The pair .'p; &p/ is such that j&pj � "ı2
� where z D e64ı2 .

This lemma is proved in Part 4. Given the lemma, what follows in this Part 2 is the
proof of Lemma 7.9. Part 3 contains the proof of Lemma 7.10.

Proof of Lemma 7.9 The proof has five steps.

Step 1 Write t on Œ1; 1CzS � as 1Cz with z 2 Œ0; zS �. Likewise write t as t D 2�z

on Œ2� zS ; 2� with z again in Œ0; zS �. Let cS > 1 denote the version of the constant �
that is supplied by Lemma 7.11. Given " > 0 and z� < min.c�1

S
zS ; "ı

2
�/, choose ı
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so that the conclusions of Lemma 7.11 can be invoked. Having made such choices,
fix p 2ƒ. The function &S0 that appears in p’s version of (7-1) has norm bounded
by cz� , where c � 1 is purely S –dependent (or K–compatible); this follows from
Proposition 2.1. It follows from what is said in Corollary II.2.6 that the jxj!1 limits
of j&S j are bounded by cı . As a consequence, these limits are bounded by c"ı2

� . Here
again, c is purely S –dependent (or K–compatible).

Step 2 The pair .'S ; &S / is a solution to the Cauchy–Riemann equations on the
domain R� Œz�; zS �. As a consequence, &S is a harmonic functions on this domain.
This is to say that it is annihilated by the Laplacian @2

x C @
2
z . With the preceding

understood, fix c > 1 and introduce the function

(7-16) z!
z� z�

zS � z�
.�2

S � c"ı2
�/C c"ı2

�:

This is a harmonic function on R� Œz�; zS �, and, if c � c with c purely S –dependent
(or K–compatible), then this function is greater than j&S j on the boundaries and at
large jxj. Granted that such is the case, the maximum principle demands that this
function be greater than j&S j on the whole of R� Œz�; zS �. Choose c in (7-16) so as
to be purely S –dependent (or K–compatible) and so that this last conclusion holds.

Step 3 Suppose now that there is no � as claimed by Lemma 7.9 so as to derive
some nonsense. Granted this assumption, there is a sequence f.Dn; �n/gnD1;2;::: of the
following sort: First, Dn is a data set with elements ..y‚n�; y‚nC/; z�n

; ın; x 0n
;Rn/

that is suitable for defining the geometry of Y and M� , and is such that the conclusions
of the top bullet in Lemma 7.11 can be invoked with "D 1

n
and z�n

2
�
0; 1

n
zS

�
and

ın �
1

n2 z�n
. Second, �n is a section of the bundle NS over the t 2 Œ1C z�n

; 2� z�n
�

part of S with the properties given in the list below:

(7-17) � �n is L2 –orthogonal to the t 2 Œ1Cz�n
; 2�z�n

� restriction of the elements
in the kernel of the operator DS .

� The norm of j�nj at some point in its domain is greater than 1
100
��1

S
�2

S
.

� The js j !1 limit of j�njis bounded by 1
n
ı2
� .

� The composition eS ı �n has J –holomorphic image.
� The absolute value of the �n analog of the function &S is bounded where

z 2 Œz�n
; zS � by the z D z�n

and "D 1
n

version of the function in (7-16).

As noted in Part 2 of Section II.6E, the third bullet in (7-17) implies that �D �n obeys
an equation with the schematic form

(7-18) x@�C r1.�/ � @�C r0.�/D 0;
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where the notation is that in (II.6-10). By way of a reminder, x@ signifies the d –bar
operator on sections of NS as defined using the hermitian metric to give the bundle a
holomorphic structure. What is written as @ is the adjoint operator. Meanwhile, the
map r1W N0!NS ˝Hom.T 1;0S IT 0;1S/ and the map r0W N0!NS ˝T 0;1S are
smooth, fiber-preserving maps that vanish along the zero section.

Step 4 The properties listed in Step 3 together with (7-18) imply via standard elliptic
regularity arguments that there is a subsequence of f�ngnD1;2;::: , hence renumbered
consecutively from 1, that is described either by Case 1, Case 2 or Case 3 given below.

Case 1 The subsequence converges uniformly on compact domains in S to a nontrivial
section of N0 over the whole of S with the following properties:

(a) It obeys (7-18) and the conditions in the second and third bullets of (II.6-12).

(b) Its norm is no greater than ��1
S
�2

S

(c) It is L2 –orthogonal to kernel.DS /

The first two conditions above imply that the section is described by Lemma II.6-6.
This understood, the third condition implies that the section is identically zero. Given
that the limit section is asserted to be nontrivial, Case 1 cannot describe f�ngnD1;2;::: .

Case 2 below uses terminology from Section 1G and Sections II.6C and II.6E.

Case 2 There is a negative point q 2 S n S and a sequence fqngnD1;2;::: � S0 of
points that converges in S to q such that j�nj.qn/ >

1
100
��1

S
�2

S
. Write a neighborhood

of q in S as in Part 4 of Section II.6E. This done, view �n on this part of S as
a C–valued function as done in Section II.6E. There is an unbounded, decreasing
sequence fxng 2 .�1;x0� such that the translated sequence with nth member �0n
given by �0njx D �njx�xn

converges on compact domains of R� Œ1; 2� to a nontrivial
function with the following properties:

(a) It is holomorphic.

(b) Its imaginary part vanishes on R� f1g.

(c) Its real part vanishes on R� f2g.

(d) It is bounded.

Properties (a)–(c) plus (II.6-18) are incompatible with property (d). This being the case,
the subsequence that is given at the end of Step 4 is not described by Case 2.
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Case 3 This is the analog of Case 2 where the point q is a positive point of S nS.
The analogous conclusion applies: the subsequence that is given at the end of Step 4 is
not described by Case 3 either.

Step 5 Neither Case 1 nor Case 2 nor Case 3 describe the subsequence given by Step 4.
This contradicts what is said at the end of Step 4. The contradiction is avoided if and
only if Lemma 7.9 is true.

Part 3 This part contains the:

Proof of Lemma 7.10 The proof has five steps.

Step 1 Let cS > 1 denote the larger of the versions of constant � that are supplied
by Lemmas 7.11 and 7.9. Given " > 0 and z� < max.c�1

S
zS ; "

2ı2
�/, choose ı <

.cS C �"2ı2
�
/�1z� so as to invoke the conclusions of Lemmas 7.11 and 7.9 using "2ı2

�

in lieu of ". Having made such a choice, suppose that there exists "� 2 .0; 1/ with the
following property:

(7-19) Let .�; C D fCS ; fCpgp2ƒg/ denote an element from the resulting version
of M�. Fix p 2ƒ. Then j&pj � .1� "�/

4

3
p

3
ı2
� where z D z�.

Granted (7-19), it then follows from (4-14) that 1� 3 cos2 � > c�1
0
"� on the boundary

of any .fCS ; fCpgp2ƒg; �/2M� and p2ƒ version of Cp . With a bound of this sort in
hand, a repeat of the arguments for Lemma 4.7 using Lemma 7.8 in lieu of Lemma 4.5
proves Lemma 7.10. The steps that follow give an existence proof for a suitable "� .

What with the top line in (7-1) and the top bullet of Lemma 7.11, the assertion made
by (7-19) holds automatically for � > c�1

0
"2 . This the case, only small values of � are

of any concern. Even so, no upper bound for � is assumed in the remaining steps.

Step 2 Fix r 2 .0; 1/ and let D�R�..1Cr /z�; zS / denote a disk of radius rz� . The
function j&S j is bounded by what is written in (7-16), and because &S is harmonic on D,
this implies that the norm of d&S at the center of D is no greater than c0.r�z�/�1"2ı4

� .
This with the Cauchy–Riemann equations implies that jd'S j is bounded where z D
.1C r /z� by c0.r�z�/�1"2ı4

� . Meanwhile, j&pj< 4

3
p

3
ı2
� . As &p is harmonic on the

domain R� Œı2; z��, it follows that jd&pj and thus jd'pj are bounded by c0z�1
� ı2
�

where z D 1
2

z� .

Step 3 Define a function '0 on R� Œe�8z�; zS � as follows: Set '0 D @x.'
p� 'S0/

on the z � z� part of this domain, and set '0 D �@x.'
S � 'S0/ on the z � z� part.
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Define next a function w of the coordinate z on R�
�

1
2

z�; .1C r /z�
�

by the rule

(7-20) z! w.z/D z�1
�

�
r�1"2ı4

�C z�1
� ı2
�.z� .1C r /z�/

�
:

The function w is harmonic and there exists a constant cw�c0 such that '0�cww is less
than zero where zD 1

2
z� and zD .1Cr /z� . As explained in the next step, the maximum

principle can be used to infer that '0 < cww at all points in R �
�

1
2

z�; .1C r /z�
�
.

Granted this, it then follows using Lemma 7.11 that

(7-21) j@x'
p
j � c0z�1

� .r�1"2ı4
�C r / where z D z�:

Thus, j@z&
pj � c0z�1

� .r�1"2ı4
�C r / where z D z� . Taking r D "ı2

� finds j@x&
pj �

c0z�1
� "ı2 .

Step 4 What follows considers the case when both limjxj!1j@x.'
p � 'S0/j and

limjxj!1j@x.'
S � 'S0/j are zero. The general case is handled using mollifiers as

done in the proof of Lemma 7.6. Granted this assumption about the jxj !1 limits, it
follows that the function '0� cww is negative at large jxj. This function is harmonic
where z ¤ z� and so it lacks local maxima and local minima in R�

�
1
2

z�; z�
�

and in
R� .z�; .1C r /z�/.

To see about local maxima or minima where z D z� , note that the function on R given
by

(7-22) x! q.x/D z�2
� ı2
�x

is a conjugate harmonic function for w when viewed as a z–independent function on
the domain R�

�
1
2

z�; .1C r /z�
�
. This is to say that the pair .q; w/ obey the Cauchy–

Riemann equations. This understood, define the function & 0 on R�
�

1
2

z�; .1C r /z�
�

by setting it to equal �.&p � cw�
�1q/ where z � z� , and to equal &S � cwq where

z � z� . With the pair .'0; & 0/ in hand, repeat the argument in the paragraph preceding
(7-6) with '0 playing the role of & and & 0 the role of �'0 to rule out local extreme
points for '0� cww .

An analogous argument with the signs of w and q reversed rules out local extreme
points for '0C cww .

Step 5 The lower bullet of Lemma 7.11 asserts that j&pj � "ı2
� where z D e64ı2 .

Meanwhile, Step 4 finds that j@z&
pj � c0z�1

� "ı2
� where z D z� . With this in mind,

let w now denote the x–independent function on R� Œ2ı2; z�� given by

(7-23) z! w.z/D z�C z�1
� z:
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There exists c0 � 1 such that the function &p � c0"ı
2
�w on R � Œ2ı2; z�� has the

following properties: It is negative where jxj � 1 and where z D e64ı2 . Meanwhile,
its z–derivative is negative where zDz� . Granted these facts, a version of the maximum
principle implies that &p < c0"ı

2
� where z D z� . The analogous argument using �&p

in lieu of &p proves that &p>�c0"ı
2
� where zD z� . A suitable choice of " establishes

what is asserted by (7-19).

Part 4 This part contains the:

Proof of Lemma 7.11 The proof has four steps. The first three steps prove the
assertion made by the lower bullet in the lemma.

Step 1 To prove the assertion made by the lower bullet, assume the contrary to generate
some nonsense. If lower bullet is false, there is a sequence f.Dn; .Cn; �n/gnD1;2;::: of the
following sort: First, Dn is a set with elements ..y‚n�; y‚nC/; z�n

; ın; x 0n
;Rn;Jn/ that

are suitable for defining the geometry of Y and the corresponding version of M� . This
data is such that the pair .y‚n�; y‚nC/ is a f�pD 0gp2ƒ element in yZS. The constants
z�n

and ın satisfy z�n
< 1

n
zS and ın < 1

n
z�n

. Meanwhile, .Cn D fCSn; fCpng/; �n/

is an element in the corresponding version of M� . In addition, there exists p 2ƒ such
that the Cpn version of the function &p has absolute value greater than "ı2

� at some
point where z D e64ı2

n .

For each n 2 f1; 2; : : : g, fix a point in Cpn where z D e64ı2
n and where j&pj � "ı2

� .
Let qn denote a given such point. The point qn projects to the ı D ın version of Mı

and the image lies in the radius 2ı� coordinate ball about one or the other of the critical
points from p. It follows from (4-14) that all sufficiently large n versions of qn project
in Mı so as to have coordinate radius greater than 1

25
"1=2ı� . The image of qn also

lies where the function f differs from either 1 or 2 by less than 1
n

z�n
.

For each n, let Un denote the following part of the union of the respective radius 2ı�

coordinate balls centered on the index 1 and index 2 critical points from p: It is the
part where the radius is greater than 1

100
"1=2ı� and where the function either jf �1j or

jf �2j is less than 1
2

z�n
. If n is large, Cpn\ .R�Un/ is a nonempty, J –holomorphic

submanifold; it is nonempty as it contains the point qn .

Pass to a subsequence so that after renumbering consecutively from 1, the projection
to Mı of the resulting set of points fqngnD1;2;::: lies very near one critical point
of p. For each n, let Cn � .Cpn\ .R�Un// denote the component that contains qn .
Translate Cn by a constant amount along the R factor in R�Un so that the point qn is
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moved to where the R coordinate is 0. Let fC 0ngnD1;2;::: denote the resulting, translated
sequence of submanifolds.

Step 2 This step reviews some relevant geometry. To start, let p 2 p denote the
critical point that is described at the end of the last step. The critical point p labels an
irreducible component of the locus C1C [ C2� in †. Use C to denote this irreducible
component. As noted in Section 1C, the circle C has an annular neighborhood, T ,
with the following property: The identification between f �1.1; 2/�M and .1; 2/�†
identifies the C–valued 1–form d� C idh on the part of f �1.1; 2/ \Mı in the
radius 2ı� coordinate ball centered on p with a 1–form on an annular neighborhood
of C in T . The latter 1–form is holomorphic of type .1; 0/.

Let yU denote the part of the radius 3
2
ı� coordinate ball centered on p where the radius

is greater than 1
100
"1=2ı� and where either jf � 1j< e�100ı2

� or jf � 2j< e100ı2
� as

the case may be. The map from yU to † that is given by the flow along the integral
curves of v identifies yU with .�e�100ı2

�; e
�100ı2

�/�U, where U � T can be written
as U1 nU2 where U1 is an annular neighborhood of C and where U2�U1 is a smaller
width annular neighborhood of C .

Let z denote the Euclidean coordinate on .�e�100ı2
�; e
�100ı2

�/. The identification
just described extends so as to identify R� yU with R� .�e�100ı2

�; e
�100ı2

�/�U. Let
x denote the Euclidean coordinate on the R factor. The identification just described
identifies T 1;0.R� yU / with the span of the pair .dxC idz; d�C idh/. This integrable
complex structure is observedly compatible with the symplectic form dx^dzCd�^dh .

Step 3 Each large n version of Un lies in yU ; it appears in the coordinates just defined
as the subset where z 2

�
�

1
2

z�n
; 1

2
z�n

�
. Given such large n, set ˛n D 2z�1

�n
e�100ı2

�

and define a diffeomorphism  W R�Un!R� yU by the rule

(7-24)  n.x; z; �; h/D .˛nx; ˛nz; �; h/:

This diffeomorphism is J –holomorphic.

It follows as a consequence that  n.C
0
n/ is a properly embedded, J –holomorphic

submanifold in R� yU. This submanifold sits entirely where 1� 3 cos2 � > 0, this
being the locus where z D 0. Even so the point  n.qn/ has distance bounded by c0

1
n

from this locus. Moreover,  n.qn/ has distance at least c�1
0

from the boundary of
the closure of R� yU inside R�Y . Note as well that  n.qn/ sits on the x D 0 locus.
Given that the 2–form w on yU appears as �2

p
6 dh ^d� , it follows from Lemma 7.8

that  �n w Dw . As a consequence, if I �R is any unit-length interval, there is an I –
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and n–independent bound on the integral of w over  n.C
0
n/\ .I �

yU /. Meanwhile,
the integral of dx ^ dz over  n.C

0
n/\ .I �

yU / is no greater than 2e�100ı2
� . Indeed,

this follows from the fact that the corresponding Cpn is given as a graph over the
jyuj �RC 1

2
ln z� part of R�HpC . To elaborate, dx ^ dz on I � yU is the pullback

via the projection map of its namesake on I � .�e�100ı2
�; e
�100ı2

�/. Meanwhile, the
projection to this product restricts to  n.C

0
n/\ .I �

yU / to define a 1-to-1 map into
I � .�e�100ı2

�; e
�100ı2

�/ because Cpn is a graph. This implies that the integral of the
2–form dx ^ dt over  n.C

0
n/\ .I �

yU / cannot be greater than its integral over the
whole of I � .�e�100ı2

�; e
�100ı2

�/, which is 2e�100ı2
� .

Granted these observations, invoke Proposition II.5.5 using the sequence f n.C
0
n/gn�1

to obtain a subsequence that converges on compact subsets of R� yU in the manner
dictated by Proposition II.5.5 to a weighted J –holomorphic subvariety in R� yU. Let
# denote this subvariety. Given what is said about  n.qn/, the set # must contain a
pair whose subvariety component is the x D 0, z D 0 locus in R� yU.

The latter conclusion constitutes the required nonsense because the existence of such
a pair in # has the same implications as its existence in the analogous version of #
given by Step 1: there is a circle in each large n version of Cpn whose image via
the projection to HCp� defines a nonzero generator of the latter’s first homology. This
nonsense proves what is asserted by the lower bullet of Lemma 7.11.

Step 4 With " chosen, fix z� and ı to invoke the lower bullet of Lemma 7.12 as
a guarantee that j&pj < 1

4
"ı2
� where z D 2ı2 . Require in addition that z� <

1
4
"sSı

2
�

and that ı is chosen less that c�1
0

e�100"ı2
� . Define the x–independent function w on

R� Œ2ı2; zS � by the rule

(7-25) z! 1
2
"ı2
�C zz�1

S �2
S :

Meanwhile, let & denote the function on R� Œ2ı2; zS � that is given by �&p�w where
z � z� and given by &S C .1� �/&S0 �w where z > z� . It follows from (7-1) that
this function is continuous across the z D z� locus. Meanwhile, the lower bullet of
Lemma 7.11 and Property 1 in Part 1 of Section 7A with Corollary II.2.6 imply that
& � 0 where z D e64ı2 , where z D zS and where jxj � 1. As & is a harmonic
function where z ¤ z� , it has no local maxima where z ¤ z� . As explained in a
moment, it has no local maxima where zD z� . Granted that such is the case, it follows
that &S � "ı2

� where z D z� .

To see why & has no local maxima where zD z� , define the function ' on the domain
R� Œ2ı2; zS � as follows: Set ' equal to 'p�xz�1

S
�2

S
where z � z� and set ' to equal
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�'S C .1� �/'S0 �xz�1
S
�2

S
where z � z� . Note that the pair .xz�1

S
�2

S
; w/ obey the

Cauchy–Riemann equations. This understood, repeat the argument in the paragraph
preceding (7-6) using the just-defined version of .'; &/ to rule out local maxima for &
on the z D z� locus.

To prove that &S � �"ı2
� where z D z� , repeat the preceding argument with the sign

of w reversed and with xzS�
2
S

added to 'p and to �'S C .1� �/'S0 rather than
subtracted when defining ' .

Part 5 This part proves that M� is compact in a topology that is slightly weaker
than the one defined at the outset of Section 7B. This topology is defined as follows:
The open neighborhoods of a given element .�; C D fCS ; fCpgp2ƒg/ are generated
by sets that are labeled by data of the form ."; �;V; I/ where " is a positive number,
� is a smooth, compactly supported 2–form on R� Y and V � R� Y is an open
set with compact closure. Meanwhile, I � Œ0; 1� is an open neighborhood of � . The
corresponding open set in M� consists of pairs of the form .� 0; C0 D fC 0

S
; fC 0pgp2ƒg/

with � 0 2 I and with C0 obeying

(7-26) � supz2C\V dist.z;C 0\V /C supz2C 0\V dist.z;C \V / < ",

�
ˇ̌R

C � �
R

C 0 �
ˇ̌
< ".

Part 6 to come proves convergence in Section 7B’s topology on M� and convergence
in the strong C1 topology as asserted by the two bullets of Proposition 7.3.

The arguments that follow assume that the data that defines the geometry of Y and
then M� is such that the conclusion of Lemma 7.11 holds with a given, small choice
for ". The arguments require " to be less than an S –independent, positive number. The
subsequent arguments also assume that the defining data is such that the conclusions of
Lemmas 7.9 and 7.10 hold.

To set up the arguments, suppose that f.�n; CnDfCSn; fCpngp2ƒg/gnD1;2;::: 2M� is a
given sequence. No generality is lost by taking a sequence for which the corresponding
sequence f�ngnD1;2;::: converges. Use � 2 Œ0; 1� to denote the limit. The six steps
that follow prove that this sequence has a subsequence that converges to some .J; �/–
holomorphic submanifold.

Step 1 Fix p 2ƒ and fix attention on one or the other of the jyuj �RC 1
2

ln z� � 8

parts of HCp� . Use the coordinates .x; z; �; h/ here. For each n 2 f1; 2; : : : g, write
the relevant part of CSn as a graph using functions .'S

n ; &
S
n /. Meanwhile, write the

relevant part of Cpn as a graph using functions .'pn; &
p
n/.
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Invoke Lemma 7.7 to conclude the following: The sequence f.�n; Cn/gnD1;2::: has a
subsequence (hence renumbered consecutively from 1) with the following property:
The sequence of pairs f.'S

n ; &
S
n /gnD1;2;::: and the sequence of pairs f.'pn; &

p
n/gnD1;2;:::

converge in the C1 topology on compact subsets of R�
�

1
4

z�; 1
4

zS

�
to respective

pairs denoted by .'S ; &S / and .'p; &p/. The latter obey (7-1).

In addition, the surface defined where z 2
�
z�; 1

4
zS

�
in R�Hp by the graph of the

pair .'S ; &S / when viewed as a surface in R� .1; 2/�† lies in the radius ��1
S
�2

S

tubular neighborhood of S. Meanwhile, the jyuj 2
�
RC 1

2
ln z�� ln 2;RC 1

2
z�
�

part
of the graph of the pair .'p; &p/ defines via ‰p a surface in portion of R�HCp� .

Step 2 Fix p 2 ƒ. For each n 2 f1; 2; : : : g, use .'pn; &
p
n/ to denote the pair that

defined Cpn as a graph over R�I� . It follows from Lemma 7.10 that the corresponding
positive integer sequence of coefficient functions that appear in the various .'; &/ 2
f.'

p
n; &

p
n/gnD1;2;::: versions of (3-4) are obtained from the restriction of their eponymous

brethren on X to a compact set. The partial derivatives of the latter set of functions to
any given order have uniformly bounded absolute values on such a compact set.

Granted these last observations, and granted the conclusions from Step 1, standard
elliptic regularity arguments in Chapter 6 of [12] can be applied to find a subsequence
of f.'pn; &

p
n/gnD1;2;::: , hence renumbered consecutively from 1, that converges in the

C1 topology on compact subsets of R�I� to a pair, .'p; &p/, that obeys (3-4). Given
Lemma 7.10, it follows that the graph of this pair is in the domain of the map ‰p and
so defines a J –holomorphic surface R�HCp� . Let Cp denote the latter surface.

Step 3 Each n 2 f1; 2; : : : g version of CSn is defined by a section, �n , of the
bundle NS over the t 2 Œ1C z�; 2� z�� part of S. As noted by Lemma 7.9, each CSn

is the image via eS of a section, �n , of the radius 1
100
��1

S
�2

S
subbundle in N0 .

The maps r0 and r1 that appear in (7-18) enjoy uniform bounds on their derivatives to
any given order on the radius 1

50
��1

S
�2

S
subbundle in N0 . As each � 2 f�ngnD1;2;:::

obeys (7-18), it follows using what is said in Step 1 with the aforementioned elliptic
regularity arguments from Chapter 6 in [12] that the sequence f�ngnD1;2;::: has a
subsequence (now renumbered consecutively from 1) that converges in C1.S IN0/

on compact subsets of the t 2
�
1C 1

2
z�; 2� 1

2
z�
�

part of S to a smooth section of N0

with norm no greater than 1
100
��1

S
�2

S
. Let � denote this section.

It follows from Lemma 7.9 that the composition eS ı� defines a J –holomorphic surface
in R�

�
1C 1

2
ln z�; 2� 1

2
ln z�

�
that lies in the radius ��1

S
�S tubular neighborhood
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of S. Let CS denote this surface. Meanwhile, Step 1 has the following additional
implication: the set CD fCS ; fCpgp2ƒg obeys the parameter � version of the matching
conditions given by (7-1).

Step 4 It follows from Steps 1–3 that .�; C/ satisfies all of the requirements for
membership in M� except perhaps for the conditions on the js j !1 limits of the
various surfaces that form C . This step with Steps 5 and 6 prove that this last requirement
is met. The assertion that any given sequence in M� has a subsequence that limits in
the manner described by Steps 1–3 to an element in M� verifies the claim that M� is
compact in the topology that is defined by (7-26).

To start the story on the large js j behavior, let � again denote the section of N0 over the
t 2 Œ1Cz�; 2�z�� part of S that defines CS . The manner of convergence of the sequence
f�ngnD1;2;::: to �, and the fact that CS and each submanifold from fCSngnD1;2;::: are
J –holomorphic, implies that the integral of w over CS is finite, and this limit is no
larger than the lim-sup of the sequence whose nth component is the integral of w
over CSn . As noted previously, Lemma 7.8 provides an upper bound for this lim-sup.

What with Lemma II.5.6, these last observations imply that each very large js j slice
of CS is very close to a union of curves in Œ1Cz�; 2�z���† whose members project
to points in †. Moreover, given that � lies in the radius 1

100
��1

S
�2

S
subbundle of N0 ,

the following must be true: If s � 1, then the corresponding set of components of the
large s slice of † has genus.†/ elements, and this set enjoys a 1-to-1 correspondence
with the points in C1C \ C2� that define the s !1 limit of S. This is such that
each component of a given constant s slice of CS lies in the radius c0

p
" ı� disk

neighborhood of the corresponding point in C1C \C2� . Indeed, this last bound on
the radius follows from Lemma 7.11 because the latter implies that any integral curve
segment in question has endpoints in the radius

p
" ı� coordinate ball centered on

some index 1 and index 2 critical point of f . Use the correspondence just described
to label the components of the large, constant s slices of CS js . Introduce now d.s/ to
denote the diameter of the image in † via projection from Œ1C z�; 2� z���† of the
component of CS js with a given label. Then lims!1 d.s/D 0.

There is the analogous story for the constant s � �1 slices. Each has genus.†/
components, and the components enjoy an analogous 1-to-1 correspondence with the
points in † that define the s !�1 limit of S.

Step 5 Fix p 2ƒ. This step considers the large s slices of Cp . Lemma 7.8 supplies
an upper bound for the sequence whose nth member is the integral of w over Cpn . The
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fact that the sequence f.'pn; &
p
n/gnD1;2;::: converges smoothly on compact domains in

R� I� to .'p; &p/ implies that the integral of w over Cp is finite. As a consequence,
each very large js j slice of Cp must be everywhere close to the segment of some
integral curve of v in the part of HCp� where yu 2 I� . When viewed via ‰p in terms of
the functions .'p; &p/, this means the following: If jxj is very large, then the function
yu! &p.x; yu/ on I� is nearly constant. In particular, this implies the following: given
r > 0, and then given s sufficiently large, there exists a segment  of an integral curve
of v in the yu 2 I� part of HCp such that

(7-27) sup
q2C pjs

dist.q;  /C sup
q2

dist.C p
js ;  / < r :

Fix a critical point in p so as to consider the corresponding version of (7-1). Fix some
x 2R with x� 1 so that the corresponding constant s D s.x/ slices of CS and Cp are
very near respective segments of integral curves of v . Given that j'S�'S0 j< c0

p
" ı�

at the given value of x on the common boundary of CS and Cp , the lower bullet in (7-1)
asserts that j'p�&S0 j � c0

p
" ı� at the given value of x on the boundary of I� . Let

x � HCp� denote the yu 2 I� part of an integral curve of v that lies very close to
the given constant s.x/ slice of Cp . The values of the angle � on the respective
boundary points of x and pC differ by at most c0

p
" ı� . This has the following

consequence: Let ��x denote the change in the angle � along x and let ��C

denote the corresponding angle change along pC . Then there exists m 2 Z such that

(7-28) j��x
���CC 2�mj � c0

p
" ı�:

To see that mD 0 in (7-28) if " < c�1
0

, note that the same constant s slice of any given
large n version of Cpn must be everywhere close to x also. This understood, define a
closed curve in Cpn as follows: this constant x slice of Cpn with the x0>x parts of the
boundary of Cpn and the arc pC concatenate to define a closed loop in HCp� . This loop
is null-homologous: it is homologous to the image via the projection from R�HCp� of
a loop in Cpn and the latter space is contractible. Such a loop is null-homologous if and
only if the integer m that appears in (7-28) is zero when " < c�1

0
. Note in particular

that this bound on " is purely S –dependent.

As usual, there is an analogous description of the s ��1 part of Cp .

Step 6 Let L � Œ0; 1/ denote the following set: A number D 2 Œ0; 1/ lies in L if the
following is true: Fix any p 2ƒ. Then for any given but sufficiently large s 2R, the
slice Cpjs has distance less than D from pC .
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What follows in a moment proves that 0 2 L . There is an analogous, s!�1 version
of L, and the analogous argument proves that the latter also contains 0. These last
facts with (7-1) imply that the constant s slices of CS and each p 2ƒ version of Cp

converge as s ! ˙1 to the segments of integral curves of v that are defined by
.y‚�; y‚C/. Given what is said by Steps 1–3, this means that .�; C/ 2M� .

To prove that 0 2 L , it is enough to prove the following: if D 2 L, then so is 1
2

D . To
see that such is the case, let TD � HCp� denote the yu 2 I� part of the radius D disk
neighborhood of pC . Let  � T2D denote an integral curve of v . It follows as a
consequence of (II.2-4) and (4-12) that

(7-29) jh.pC/� h. /j< c0x 0R�1D:

This last bound implies that all sufficiently large x values of &p are such that

(7-30)
ˇ̌
&p
jx � h.pC/

ˇ̌
� c0x 0R�1D:

Given (7-1), this last point implies that
ˇ̌
&S jx�h.pC/

ˇ̌
� c0x 0R�1D for all sufficiently

large x . Use this with (II.2-6) to deduce that any given p2ƒ version of
ˇ̌
.'S�'S0/jx

ˇ̌
is bounded by c0x 0R�1D for all sufficiently large x on the common boundary of CS

and Cp . What with (7-2), this implies that

(7-31)
ˇ̌
.'p�'S0/jx

ˇ̌
� c0x 0R�1D for all large x:

The preceding inequality has the following implication: If s is sufficiently large, then
there is a segment of an integral curve of v in the yu 2 I� part of Hp

C that is described
by some r � c0x 0R�1D version of (7-27). This implies in particular that 1

2
D 2 L.

As usual, the s !�1 limit of the constant s slices of C js behaves in an analogous
fashion.

Part 6 This step completes the proof of the f�p D 0gp2ƒ case of Proposition 7.3 by
verifying that the sequence f.�n; Cn D fCSn; fCpngp2ƒg/gnD1;2::: has a subsequence
that converges in the appropriate manner.

The upcoming Lemma 7.12 plays a central role in this argument. Lemma 7.12 assumes
that the data chosen to define the geometry of Y and M� is such that the conclusions
of Lemma 7.11 holds with a constant " chosen less than a certain purely S –dependent
constant. The data is also such that the conclusions of Lemmas 7.9 and 7.10 hold.

Let .‚�; ‚C/2Zech;M �Zech;M denote the pair that lies under f y‚�; y‚Cg. Since �p

is zero for all p 2ƒ, both lack integral curves of v from fyCp ; y
�
p gp2ƒ . Lemma 7.12
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and the subsequent arguments view the element ‚� as a set of segments of integral
curves of v written as f�S� ; fp�gp2ƒg, where �S� denotes the union of the parts
of the curves in ‚� where f 2 Œ1C z�; 2� z��. The set ‚C is likewise written as
f�SC ; fpCgp2ƒg.

Lemma 7.12 Given r >0, there exists sr >1 with the following significance: Suppose
that .�; C D fCS ; fCpgp2ƒgg/ is a given element from M� . If s < �sr , then

sup
q2.CS[.

S
p2ƒ Cp//js

dist
�

q;

�
�S� [

� [
p2ƒ

p�

���
C sup

q2.�S�[.
S

p2ƒ p�//
dist

��
CS [

� [
p2ƒ

Cp

��ˇ̌̌̌
s
; q

�
< r :

If s > sr , then

sup
q2.CS[.

S
p2ƒ Cp//js

dist
�

q;

�
�SC [

� [
p2ƒ

pC

���
C sup

q2.�SC
[.

S
p2ƒ pC//

dist
��

CS [

� [
p2ƒ

Cp

��ˇ̌̌̌
s
; q

�
< r :

Lemma 7.12 is proved in a moment.

Lemma 7.12 with what is said in Parts 1–5 imply that M� is compact in the topology
that is defined in Section 7B. Lemma 7.12 has the following additional implication:
Given the lemma, standard elliptic regularity arguments using (7-8) and the various
p2ƒ versions of (3-4) can be applied to prove that the topology as defined in Section 7A
on M� is the same as the strong C1 topology. To elaborate, these tools can be used to
bootstrap from the uniform L1 convergence that is asserted by Lemma 7.12 at large s
to prove strong convergence of the sort asserted by Proposition 7.3 but with respect
to some Hölder topology with exponent � > 0. The tools are used again with (7-8)
and (3-4) to prove the strong C 1C� convergence, then again to prove strong C 2C�

convergence, and so on. The sorts of tools needed can be found in Chapter 6 of [12].

This equivalence between the topology from Section 7A and the strong C1 topology
implies what is asserted by the two bullets of Proposition 7.3.

Proof of Lemma 7.12 Suppose that the lemma is false so as to generate nonsense.
Granted that such is the case, there exists r > 0 and a sequence f.�n; Cn/gnD1;2;::: of
the following sort: Each n 2 f1; 2; : : : g version of .�n; Cn/ is an element in M� and
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such that the condition stated by Lemma 7.12 fails to hold for s D sn � n with some
fixed choice of r . Given the conclusions of the preceding Parts 1–5 of this subsection,
no generality is lost by requiring that the sequence f.�n; Cn/gnD1;2;::: converge in the
topology on M� from Part 5 to the element .�; C/ 2M� . The derivation of nonsense
from the existence of such a sequence has two steps.

Step 1 Let y�C denote the HF-cycle that is used to define ‚C . Write f �1.1; 2/�M

as .1; 2/�† so as to identify this set of integral curves with a set given by .1; 2/� yq
with yq denoting a certain set of G distinct elements from C1C \ C2� . Let S� denote
the submanifold R� Œ1; 2�� yq� in R� Œ1; 2��†. This S� is a Lipshitz submanifold.

Introduce M�� to denote the S� version of the space M� as defined using y‚� for
both the s ! �1 and s ! 1 limit conditions on its constituent elements. For
any given � 2 Œ0; 1�, the set fR� �S� ; fR� p�gp2ƒg is a .J; �/–holomorphic sub-
manifold. Thus M�� is nonempty. These are the only elements in M�� . To prove
this, let .�; C D fCS ; fCpgp2ƒg/ denote a given element M�� . Compute the sum
whose constituent terms are the integral of w over CS and the integral of w over the
respective p2ƒ versions of Cp . If this sum is zero, then CDfR��S� ; fR�p�gp2ƒg.
The fact that this sum of integrals is indeed zero is proved in the next paragraph.

To see that the sum of integrals is zero, note that the form w is exact on a neighborhood
in Y of the union of the sets fHCp�gp2ƒ with a uniform radius tubular neighborhood
of the arcs that form �S� . This being the case, integration by parts as in the proof of
Lemma 7.8 writes the sum of the integrals of w over the constituents of C as a sum
of three terms: The first is the integral of the antiderivative 1–form over the union of
the curves that form ‚� . The second is minus the integral of this same 1–form over
the same union of curves. The third is itself a sum, this sum indexed by ƒ with any
given term given by (7-13). As both 'S0 and &S0 are constant in each p 2ƒ version
of (7-13), each p 2ƒ contribution to the third term is zero.

Step 2 For each n 2 f1; 2; : : : g, translate each element in Cn by �sn along the R

factor in either R� Œ1; 2��† or the appropriate p 2 ƒ version of R�HCp� . Let C0n
denote the corresponding set. Minor modifications of the arguments given in Parts 1–5
prove that the sequence f.� 0n; C0n/gnD1;2;::: converges in the topology given by (7-26) to
some element in the space M�� . Given the assumptions about the initial sequence, this
element cannot be .�; fR��S� ; fR� p�gp2ƒg/ as at least one of the submanifolds
of each n 2 f1; 2; : : : g version of C0n contains a point that has distance at least r from
a point in the corresponding submanifold from the set fR��S� ; fR� p�gp2ƒg. But
this is nonsense given what is said in Step 1.
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Part 7 This part adds what is needed to the arguments in Parts 1–6 so as to prove
Proposition 7.3 when some p 2ƒ versions of �p are 1 or 2. The arguments given in
Parts 1–6 can be seen as having three components. The first component is summarized
by Lemma 7.8; this component gives bounds on the integrals of w and ds ^ ya . The
second component is summarized by Lemma 7.11; this component controls the behavior
the relevant submanifolds where they intersect R�Mı . The final component controls
the behavior of the remaining portions of the constituent subvarieties. This component
comprises Lemmas 7.9 and 7.10 and Parts 5 and 6. The three steps that follow speak
to these three components in the case when some p 2ƒ versions of �p are 1 or 2.

Step 1 The analog of Lemma 7.8 in the general case makes the same assertion as the
original with the f�p D 0gp2ƒ condition omitted. The proof copies the arguments that
prove Lemma 6.1 to control the integral of w on the relevant parts of any given .�; C/
and p 2ƒ version of Cp and it copies what is said in Part 1’s proof of Lemma 7.8 to
control the integral of w over the .�; C/ version of CS . What is said in Part 1 with
regards to (7-13) holds whatever the value of �p .

Step 2 The analog of Lemma 7.11 in the general case is identical to its namesake
but for the absence of the f�p D 0gp2ƒ assumption. There is but one change in the
proof. The arguments for lemma when �p D 0 derive nonsense from a certain a
priori assumption about the sequence any given p 2ƒ nƒ� version of the sequence
fCpngnD1;2;::: as they find a loop in all large n versions of Cpn that generates the first
homology of R�HCp� . This nonsense comes from the fact that Cpn is contractible if
p 2ƒ nƒ� . The space Cpn is not contractible if �p ¤ 0, but even so the existence of
the corresponding loop in Cpn is nonsense: the loop in question sits in a component of
the juj> 0 part of Cpn , and each such component is contractible.

Step 3 The analog of Lemma 7.9 in the case when some p 2ƒ versions of �p are
nonzero is identical to its namesake but for the absence of the f�pD 0gp2ƒ assumption.
The proof of the analog is identical to that given for Lemma 7.9 with it understood that
Lemma 7.11 holds when various p 2ƒ versions of �p > 0.

The analog of Lemma 7.10 replaces the latter with two lemmas. The first one is much
like Lemma 6.3.

Lemma 7.13 There is a purely S –dependent (or K–compatible) � > 1 and given
z� < ��1 , there exists �� > 1 that depends only on z� but is otherwise purely S –
dependent (or K–compatible), and these have the following significance: Define M�
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using z� < ��1 , using ı < ��1
� z� and using a pair from yZS. There exists ��� > 1 and ,

given " 2 .0; 1�, there exists �" > 1 such that any given .�; C D fCS ; fCpgp2ƒg/ 2M�

has the properties listed next :

� If �p D 0, then 1� 3 cos2 � > ��1
�� .

� If �p > 0, then

(a) 1� 3 cos2 � > ��1
�� on the s < �� part of Cp .

(b) 1� 3 cos2 � > ��1
" on the juj � " part of Cp .

� If �p D 1 and mp D�1, then cos � > � 1p
3
C ��1
�� on the whole of Cp

� If �p D 1 and mp D 1, then cos � < 1p
3
� ��1
�� on the whole of Cp

Proof Given that the assertions of Lemma 7.11 are true when some p 2ƒ versions
of �p > 0, the proof of Lemma 7.13 is obtained by using the arguments for the proof
of Lemma 7.10 to prove what is asserted in the first bullet, and by using the arguments
for the proof of Lemma 6.3 or its .�p D 1; mp D 1/ or �p D 2 incarnations to prove
the assertions of the second and third bullets.

To set the stage for the second lemma, suppose for the sake of argument that p 2ƒ has
�p D 1 and mp D �1. There are, in this case, constants sp � 1 and c1p

2 R n 0 and
�1p
2R=2�Z with the following significance: The complement of a certain compact set

of the s � 1 part of Cp has two components. One is a strip diffeomorphic to Œsp;1/�I�

whose image via the projection to HCp� is very close to pC . The other is a cylinder
whose image via this projection lies in the tubular neighborhood UC of yCp that is
described in Section 5A. Let E denote this end of Cp . Reintroduce the coordinates
.sC; �C; �C;uC/ for R � UC as defined in (5-5). Then E sits in the sC 2 Œsp;1/
part of R�UC as a smooth, properly embedded submanifold with boundary on the
sC D sp slice. Furthermore, this intersection is given by the graph of a smooth map as
described in the first bullet of Proposition 5.1 with domain Œsp;1/�R=2�Z that has
the form depicted in (6-23) with c1 D cE and with y1C defined using �1 D �E. There
is a completely analogous picture when .�p D 1; mp D 1/ and when �p D 2.

Lemma 7.14 There is a purely S –dependent (or K–compatible) � > 1 and , given
z� < ��1 , there exists �� > 1 that depends only on z� but is otherwise purely S –
dependent (or K–compatible), and these have the following significance: Define M�

using z� < ��1 , using ı < ��1
� z� and using a pair from yZS. There exists ��� � 1

such that if .�; fCS ; fCpgp2ƒg/ is from M� and if p 2 ƒ is such that �p > 0, then
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sp < ��� and ��1
�� � jcE j � ��� for each end E � Cp whose constant s � 1 slices

converge as s !1 to either yCp or y�p .

Proof But for notation, the argument is the same as that used to prove Lemma 6.4.

With Lemmas 7.13 and 7.14 in hand, the remaining arguments for the third component
differ only cosmetically from the arguments given in Parts 5 and 6 of this section and
so no more will be said.

7E The structure of M�

There are four parts to this subsection; Part 4 contains the proofs of Propositions 7.1
and 7.2. Parts 1–3 set up the necessary machinery.

Part 1 Let .�; C D fCS ; fCpgp2ƒg/ denote a given element of M� . This step as-
sociates a certain Fredholm operator to .�; C/ whose cokernel provides a specific
version of Rn for use in Proposition 7.1. This operator is also used in the proof of
Proposition 7.2. The operator is denoted in what follows by DC .

A dense domain for DC consists of a direct sum of function spaces with the first
summand labeled by S and the others labeled by the set ƒ. An element in the
summand labeled by S is, among other things, a smooth and compactly supported
section of the normal bundle NS on the t 2 Œ1Cz�; 2�z�� part of S. These sections are
further constrained to be L2 –orthogonal to the restriction of the L2 kernel of (1-25)’s
operator DS to the t 2 Œ1Cz�; 2�z�� part of S. Meanwhile, any given p 2ƒ labeled
summand consists of a certain sort of compactly supported, smooth sections of the
normal bundle to Cp . The respective elements in the S –summand and any given p2ƒ

summand are further constrained on the common boundary of Cp and CS . The next
paragraph describes this constraint.

Write the intersection of CS with HCp as a graph in the manner of Property 4 in Part 1
of Section 7A so as to identify a section of the normal bundle of CS on either boundary
component as a map from R to R2 . Use x for the R coordinate. The coordinate z for
the Œz�; zS � factor is z D t �1 for the index 1 critical point side of HCp and z D 2� t
for the index 2 critical point side. With a section of S given, write the components
of the corresponding map as .x; z/! .'S 0 ; &S 0/j.x;z/ . View Cp via ‰p as a graph
in R�X in the manner of Property 2 in Part 2 of Section 7A, and use the 1–forms
.d y�; dh/ to identify the normal bundle with the product R2 –bundle. Having done so,
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a section of this normal bundle becomes a map to R2 from the domain in R� I� of
the pair .'p; &p/. Introduce the coordinate z D e�2.R�yu/ for the yu�RC ln ı part of
the domain and z D e�2.RCyu/ for the yu� �R� ln ı part. Granted this notation, the
following constraint holds where z D z� in either case:

(7-32) � &S 0 D �&p0 ,

� �'S 0 D 'p
0

.

What follows describes the operator DC . To start, DC acts diagonally with respect to
the labeling of the summands of the domain and range spaces. To define its action on
the S –labeled summand, write CS as in Section 7A in terms of a section of the normal
bundle over the t 2 Œ1C z�; 2� z�� part of S. Let � denote this section. The action
of DC on the S –labeled summand is that of an operator that is denoted in what follows
by D� . Let �0 denote a section of NS over the part of S where t 2 Œ1C z�; 2� z��.
The operator D� sends �0 to

(7-33) x@�0C r1.�/ � @�
0
C .r�0r1/j�@�C .r�0r0�/j�;

where the notation uses r�0 to denote the directional derivative along the fiber of NS

in the direction given by �0. The terms that involve r�0 are zeroth-order and R–linear.
By way of an example, the operator in (7-18) is the �D 0 version of (7-33).

To define the action of DC on the remaining summands, fix p 2 ƒ and let .'p; &p/

denote the pair that defines Cp . Use Dp to denote the .' D 'p; & D &p/ version of
the operator that is depicted in (3-6). With the elements in the p–labeled summand
viewed as maps from the relevant domain in R� I� to R2 , the action of DC on the
p–labeled summand is given by Dp .

To say slightly more about the operators from the set fD�; fDpgp2ƒg, keep in mind that
CS and each p 2ƒ version of Cp is J –holomorphic. This being the case, the normal
bundle of each can be viewed as a complex line bundle. Meanwhile, the Riemannian
metric defined by J and the compatible 2–form ds ^ yaCw endow these submanifolds
and their normal bundles with holomorphic structures. This understood, let N denote
the normal bundle to a given C 2 fCS ; fCpgp2ƒg but viewed now as a complex line
bundle. Writing CS in terms of the section � identifies the t 2 Œ1C z�; 2� z�� part of
the normal bundle NS with the CS version of N . The S –labeled part of the domain
of DC can be viewed as a section of this version of N. Do so and D� appears as
a first-order differential operator that maps C1.CS IN / to C1.CS IN ˝ T 0;1CS /

which has the schematic form of the operator in (1-25). Meanwhile, each p2ƒ version
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of Dp maps the space C1.CpIN / to C1.CpIN ˝T 0;1Cp/ and it also can be written
in the form depicted by (1-25).

The Banach space domain for DC is obtained by completing the dense domain described
above using the norm whose square is the sum of the squares of certain L2

1
–norms on

the constituent summands. The L2
1

–norm on the S –labeled summand is that defined
by the covariant derivative and metric on S. With CS viewed as the image of eS of
the section �, this is norm is equivalent to the one defined by the induced Riemannian
metric on T CS and the induced metric and covariant derivative for the normal bundle
of CS . The L2

1
–norm on any given p–labeled summand is defined using the induced

Riemannian metric for T Cp and the induced metric and covariant derivative for the
normal bundle to Cp .

The operator DC maps the Banach space just defined to the Banach space that is
defined by completing the respective space of compactly supported sections of each
C 2 fCS ; fCpgp2ƒg version of C1.C IN ˝ T 0;1C / using the induced L2 inner
products. In the case C D CS , this is the same as completing a space of compactly
supported sections of the appropriate bundle over the t 2 Œ1C z�; 2� z�� part of S

using the L2 –norm on S.

The respective domain and range Banach spaces for DC are denoted in what follows
by H� and L. The norm on H� is denoted by k � k1 , and the L2 –norm on either H�

or L is denoted by k � k. The operator DC defines a bounded operator from H� to L.

Respective domain and range Banach spaces with slightly stronger norms are also
needed in what follows. The domain version is denoted in what follows by H�� . The
norm that defines H�� is the sum of the L2

1
–norm defined above and the norm whose

square is given on each p 2ƒ–labeled summand by the Cp analog of (5-31), and is
given on the S –labeled summand by the analog of (5-31) for sections of the normal
bundle of S. Lemma 5.10 has an analog for S ; they assert that elements in H�� are
Hölder continuous and the associated map from H�� to the relevant Hölder space is
continuous. The strengthened range Hilbert space is denoted by L� ; the square of the
norm that defines this space is given on the various summands by replacing in (5-31)
the length of the covariant derivative of a given section with that of the section itself.
The operator DC defines also a bounded map from H�� to L� .

Part 2 The lemma that follows states what is needed concerning the operator DC .

Lemma 7.15 There is a purely S –dependent (or K–compatible) � � 1 such that if
M� is defined using �S � �

�1, z� � ��1, ı < ��2z� and any pair from yZS, then the
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following is true: Use any given .�; C/ 2M� to define the operator DC and the spaces
H� and L. The operator DC is a Fredholm operator from H� to L with index equal
to
P

p2ƒ�p . Moreover, elements in the kernel of DC are C1 elements in H�� , and
elements in the cokernel of DC are represented by smooth elements in L� .

The remainder of this Part 2 contains the:

Proof of Lemma 7.15 The proof of this lemma has five steps.

Step 1 Just as in Part 4 of Section II.6E and in the proofs of Propositions 3.2 and 5.7,
the assertion that DC has closed range and finite-dimensional kernel follows if there
exists a constant c > 1 such that the following two conditions hold:

(7-34) � kDChk
2 � c�1khk2

1
� ckhk2 for any h 2H� .

� There exists s1> 1 such that if h2H has S –summand with support where
js j > s1 and each ƒ–labeled summand has support where js j � s1 , then
kDChk

2 � c�1khk2 .

There is a purely S –dependent (or K–compatible) constant c > 1 such that if both
�S < c�1 and ı < c�1 , then the conditions in (7-34) hold for those h 2H� with the
following property: The closure of the support of h is disjoint from the boundary of the
submanifolds from C . Indeed, if a section of NS has compact support on the interior
of CS then this follows from what is said in Parts 3 and 4 of Section II.6E given that
what is denoted in (7-33) by r1 obeys jr1.�/j � c�1

0
j�j. If a section has support in

some p 2ƒ version of Cp , then this follows from Propositions 3.2 and 5.7.

To see about the top bullet in (7-34) when the support of the summands of h intersect
the boundaries of the defining domains, write C as fCS ; fCpgp2ƒg and fix attention on
a given p 2ƒ. Suppose that h 2H� is in the dense domain, and write its S –summand
near the intersection of R�Mı with R�HCp� as a pair of functions on the domain
R� Œz�; zS � as done in (7-32). These are denoted by .'S 0 ; &S 0/. Likewise, write an
element in the p–summand as a pair .'p

0

; &p0/, these being functions on R� Œı2; z��.
Both D� and Dp appear here as the Cauchy–Riemann operator that acts on a given
.'0; & 0/ to give .@x'

0�@z&
0; @x&

0C@z'
0/. Given that (7-32) holds, so does Lemma 7.4.

The conclusions of this lemma as applied for all p 2ƒ prove the top bullet in (7-34).

The argument for the second bullet in (7-34) when the closure of the support of a given
element in H� intersects the boundaries of the submanifolds from C occupies Steps 2
and 3 of what follows. These steps focus on the case where the respective summands
in a given element from the dense domain of H� have support where s ��1 on CS
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and each p 2ƒ version of Cp . With regards to Cp , no generality is lost by assuming
that there exists a purely S –dependent (or K–compatible) constant c � 1 such that the
support of the Cp–summand lies where 1� 3 cos2 � > c�1 . This is because of what
was said at the outset: (7-34) holds for sections which are supported on closed sets in
Cp ’s interior. But for notation, the argument works when the summands have support
where s � 1 on the various submanifolds from C .

Step 2 As in Part 4 of Section II.6E and the proofs of Propositions 3.2 and 5.7, the
second bullet in (7-34) is obeyed if a certain nonnegative-definite, quadratic form has
trivial kernel. The quadratic form is defined on a certain space of sections of the normal
bundle in Y to the union of the curves in ‚� . This step defines the relevant space of
sections and the quadratic form. The quadratic form in question is denoted by Q in
what follows and the domain by V� .

To give the definitions, first decompose the curves from ‚� that are not contained in a
single p2ƒ version of Cp so as to define a set of segments of the form f�S ; fp�gp2ƒg

where �S �Mı is the union of the G segments that form the intersection of the union
of the curves from ‚� with the f 2 Œ1C z�; 2� z�� part of Mı .

View the f 2 Œ1; 2� part of Mı as a subset of Œ1; 2��†. Doing so identifies �S as
Œ1; 2��ƒS where ƒS �† is a set of N distinct points. Fix a holomorphic coordinate
centered on each point in ƒS. Doing so identifies a section of the normal bundle of �S

with a pair of real functions on the interval Œ1C z�; 2� z��, these corresponding to the
real and imaginary parts of the complex coordinate. A section of the normal bundle
in Y to a segment from �S that concatenates with a given p2ƒ version of p� appears
at a shared endpoint as a pair of functions on Œz�; zS �, these denoted by .'S 0 ; &S 0/.

Fix p2ƒ and use the map ‰p to view p� as the locus in R�X where the coordinates
are such that x D 0 and h D h.p�/. Doing so identifies any given section of the
normal bundle to p� with a pair of functions on I� . Such a pair is written as .'p

0

; &p0/.
Near the boundary of I� these can be written as a pair of functions on the interval
Œı2; z�� by writing z on this integral as z D e�2.R�jyuj/ .

Given this notation, the domain, V� , for L consists of the direct sum of GC1 function
spaces, the first labeled by S and the others labeled by ƒ. The S –labeled summand
consists of a suitably constrained set of sections of the normal bundle to �S . Meanwhile,
any given p 2ƒ–labeled summand consists of a suitably constrained set of pairs of
functions on I� . The constraints on the components of the various summands are the
boundary constraints given by the various p 2ƒ versions of (7-32).
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The quadratic form Q is the sum of quadratic forms that are defined on the various
summands of V� . To define the contribution to this sum from the S –labeled summand,
view an element of the latter as a map from Œ1Cz�; 2�z�� to R2 suitably constrained
on its boundary. Let t ! �0.t / denote such a map. The value of the S –labeled
quadratic form on � is

(7-35) QS .�
0/D

Z 2�z�

1Cz�

ˇ̌̌
d

dt �
0
ˇ̌̌2

dt :

Let p denote a given element in ƒ. The contribution to Q from the summand labeled
by p is given by the expression in (3-15) with it understood that the coefficients a1� ,
a2� and b2� are defined using p� . In particular, b2� is the  D p� version of what
appears on the right-hand side of (3-11).

Step 3 Part 4 of Section II.6E and Section 3C prove that Q is positive definite in
the case � D 0. This understood, assume � > 0 in what follows. To see that Q is
positive definite when � > 0, suppose that h 2 V� and Q.h/ D 0. Fix p 2 ƒ and
write the corresponding component of h as .'p

0

; &p0/. It follows from (3-15) that
&p0 is constant along I� , and it follows from (3-17) that 'p

0

increases along I� . To
elaborate, let 'p

0

� denote the yu D �R� 1
2

ln z� value of 'p
0

and let 'p
0

C denote the
value at yuDRC 1

2
ln z� . Then (3-15) and (3-13) imply that

(7-36) '
p0

C�'
p0

� D cpx �1
0 R&p0 ;

where cp > c�1
0

. Let �0 denote the component of h in the S –summand of V� . It
follows from (7-35) that the latter is constant.

Let  2 �S denote the segment whose start point is the yu D RC 1
2

ln z� endpoint
of p� . Write �0 near the start point of  as .'�; &


�/, so as to see the implications

of what was just said. This pair of functions is independent of the parameter z on the
interval Œz�; zS �. The constraint in (7-32) demands that

(7-37) &� D �&
p0 and '� D �

�1'
p0

C:

The endpoint of  is the yuD �R� 1
2

ln z� boundary of some q 2 ƒ version of q .
Introduce the analogous pair .'C; &


C/. It follows from what is said in the proof of

Proposition II.2.7 that these are determined by .'�; &

�/ via a formula of the form

(7-38) &

C D�a&


� � b'


� and '


C D c&


�C d'


�;
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where the coefficients here are such that b ¤ 0 and such that

(7-39)
�

a b
c d

�
has determinant �1. Meanwhile, it follows from (7-32) that the pair .'q

0

� ; &
q0
� / is given

by

(7-40) &q0
D���1&


C and 'q

0

� D �'

C:

The simplest case to analyze is that where qD p and so the endpoint of  is the start
point of p� . If this is the case, then (7-36), (7-37), (7-38) and (7-40) require that

(7-41)
&p0
D a&

p0
C b �

�2.'p�C cpx �1
0 R&p0/;

'p
0

� D c �
2&p0
C d .'

p
�C cpx �1

0 R&p0/:

It follows from (7-41) that h¤ 0 if and only if the matrix

(7-42)
�

a C �
�2b cpx �1

0
R ��2b

�2c C d cpx �1
0

R d

�
has C1 as an eigenvalue. But its determinant is �1 and its trace is larger than c�1

0
x �1

0
R,

so one eigenvalue has norm greater than c�1
0

x 0R and the other has norm less than
c0x 0R�1 .

The argument in the general case is much the same. In this case, h¤ 0 if and only if
the product of some k 2 f1; : : : ; Gg versions of (7-42) have C1 as an eigenvalue. The
details of the linear algebra are straightforward and so left to the reader.

Step 4 Granted that DC has closed range, it follows that its cokernel is isomorphic to
the kernel of its adjoint, this a bounded operator from L to H� . The kernel of the latter
is isomorphic to the kernel of the formal, L2 adjoint of DC . The proof that such is the
case amounts to a standard application of linear, elliptic regularity arguments as applied
on the interiors of the domains of the summands of L and an appeal to Lemma 7.7
to deal with the boundary conditions for these domains. This formal L2 adjoint is
denoted by D#

C . The latter is elliptic, first-order and R–linear, with leading-order
symbol given by the adjoint of the x@ symbol. Its kernel obeys (7-32). The kernel of D#

C
is finite-dimensional if the D#

C version of (7-34) holds. The proof that such is the case
is, but for notation, identical to the proof just given for the DC version.

To see about the index of DC , fix � 0 2 Œ0; 1�. The operator DC also defines a bounded
map from H� 0 to L, and the argument given above that the map DC W H� ! L is
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Fredholm can be repeated using now the � 0 version of (7-32) to see that DC is a
Fredholm map from H� 0 to L also. Meanwhile, the family fH� 0g� 02Œ0;1� defines a
smooth, Banach space bundle over Œ0; 1�. The proof that this is so mimics what is said
in Step 3 of Part 3 in Section 5C. Granted this smoothness, and granted that the set
of Fredholm maps between Banach spaces is an open subset in the Banach space of
bounded maps, it follows that the index of DC as a map from any given � 0 version
of H� 0 is independent of � 0. In particular, the index of the H� version is the same as
its index on the H� 0D0 version.

The � 0 D 0 matching conditions do not couple the various summands that form H� 0 ;
they give separate conditions on each summand. As a consequence, the index of DC

on H� 0 is the sum of the indices of the operators on the various summands with certain
boundary conditions. The operator on the S –summand is D� with the boundary
conditions &S 0 D 0. The latter has index zero because it is given up to a term with small
norm by the operator discussed in Section II.6E on a restricted domain, the orthogonal
complement of its kernel. Meanwhile, any given p2ƒ version of Dp with the boundary
condition 'p

0

D 0 is of the form that is considered by Propositions 3.2 and 5.7, and
the latter have index �p . Thus, the index of the H� 0D0 version of DC is

P
p2ƒ�p .

Step 5 The assertion that elements in the kernel of DC are smooth and in H��

follows using standard linear elliptic estimates for smoothness in the interiors of the
submanifolds from C . Lemma 7.7 gives smoothness and the H�� –norm bound near
the boundaries. The same argument as applied to the formal L2 adjoint D#

C proves that
the elements in the kernel of the latter operator are smooth and are in L� . These last
remarks imply what is asserted by the last sentence in the statement of Lemma 7.15.

Part 3 This part of the subsection starts with a lemma that is used subsequently to
say more about the behavior at large js j of the various submanifolds from any given
.�; C/ from M� . The lemma is also invoked to prove both Propositions 7.1 and 7.2.

To set the notation for this lemma, a domain in CS [
�S

p2ƒ Cp

�
is said to be semi-

bounded when the coordinate s is unbounded from above and bounded from below,
or else unbounded from below and bounded from above. When U is a semibounded
domain, use H� IU;loc to denote the vector space whose elements are as follows: An
element in k consists of a set .kS ; fkpgp2ƒ/ where kS is a locally L2

1
section of the

normal bundle of CS \U, and where any given p 2ƒ version of kp is a section of the
normal bundle of Cp \U. Moreover, with the normal bundle of CS identified with
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the bundle NS over the t 2 Œ1C z�; 2� z�� part of S as in Part 1, the kS and various
p 2ƒ versions of kp obey (7-32) on the boundaries of their domain of definition.

Fix .C; �/ 2M� . Suppose U is a semibounded domain and that hD .hS ; fhpgp2ƒ/ 2

H� IU;loc and that it obeys an equation of the form

(7-43) DChC tŒh�C zD 0;

where z and tŒ � � are as follows: First, z is a fixed, smooth element in L. Meanwhile,
tŒ � �D .tS ; ftpgp2ƒ/ defines a map from a subspace of uniformly pointwise bounded
elements in H� IU Iloc to locally square-integrable sections of the appropriate bundles
over CS and the various p 2ƒ versions of Cp . The element tŒk� depends explicitly
on the domain coordinates and implicitly on the chosen k 2H� IU Iloc . It has smooth
dependence on the domain coordinates. Note that tŒk� need not be a local function of
the entries of k. The map k! tŒk� must have a certain additional requirement whose
statement uses the following notation: Let W denote an open set with closure in U.
Use k � kW to denote the L2 –norm on W , and k � kW I1 to denote the L2

1
–norm on W .

Finally, use k � kW I1 to denote the L1–norm on W . The additional requirement
involves parameters n � 1 and r > 0. What follows is the additional requirement:

(7-44) Suppose that W � U is a given semibounded subdomain, and suppose that h
and its first derivatives are square-integrable on W. Suppose in addition that
khkW I1 � n�1. Then ktŒh�k2

W
� .r C nkhkW I1/khk2W I1.

Assume that z and t are as just described.

Lemma 7.16 There exists � > n that such that if r < ��1 , then the following is true:
Suppose that h is defined on a semibounded domain where it obeys (7-43). Suppose in
addition that the entries of h have absolute value bounded by ��1 , and that their first
derivatives are bounded. Then h and its first derivatives are square-integrable on some
semibounded subdomain in its original domain of definition.

Proof Write the S –labeled component of h as �0 and each p2ƒ–labeled component
as .'p

0

; &p0/. This done, fix " > 0 and define h" as follows: its S –labeled component
is e�"js j�0 and any given p 2 ƒ–labeled component is e�"js j.'p

0

; &p0/. Note that h0

obeys (7-32). The assertion that h is pointwise bounded implies that h" is square-
integrable on a semibounded domain. The derivatives of h" are likewise square-
integrable on some semibounded domain.

Let m denote the supremum norm of h. Given (7-44), the fact that h obeys (7-43) has
the following implication: the restriction of h" to a suitable semibounded subdomain
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W � U obeys

(7-45) kDCh"k
2
W � c0.r C nm/kh"k2W I1C c0kzk

2:

Note that all of the integrals in (7-45) are finite. Reintroduce c and s1 from (7-34),
and suppose that W 0 �W is a semibounded subdomain such that js j> 100s1 at each
point, and such that each point in W 0 has distance at least 1 from some point in W .
Then (7-34), (7-44) and (7-45) imply that

(7-46) c�1
kh"k

2
W I1 �

�
c0.r C nm/� 1

100
c�4

�
kh"k

2
W I1Cw.h/C c0kzk

2;

where w.h/ is finite and "–independent. If r � c�1
0

c�4 and m < c�1
0

n�1c�4 , then
(7-46) supplies an "–independent bound for kh"k2W I1 . The existence of such a bound
implies that h is square-integrable on an unbounded domain.

The next lemma states one consequence of Lemma 7.16. To set the stage for this lemma,
decompose ‚� into segments so as to define a set f�S ; fp�gp2ƒ; fopgp2ƒg where �S

denotes a disjoint union of segments of integral curves of v in the f 2 Œ1C z�; 2� z�/
part of Mı , and where each p 2ƒ version of op is the subset of integral curves from
fyCp ; y

�
p gp2ƒ . If T � 1, then .�1;�T � � �S can be written as a section of the

normal bundle of S over the portion where both t 2 Œ1C z�; 2� z�� and s ��T . Use
�‚ to denote this section. Meanwhile, each p 2 ƒ version of .�1;�T �� p� can
be written via ‰p as the graph of a pair of functions, these denoted by .'p

‚
; &

p
‚
/. The

function &p
‚

is the constant value of h on p� and 'p
‚

is the function of yu that gives the
�–angle along p� . An analogous �‚ and set f.'p

‚
; &

p
‚
/gp2ƒ are defined using ‚C

with it understood that these are defined respectively where both t 2 Œ1C z�; 2� z��
and s � 1 on S and where x� 1 on each p 2ƒ version of R� I� .

Fix next a smooth function on
�

1
2

z�; 3
2

z�
�

with compact support and which is equal
to 1 where zD z� . Use ˇ here to denote the chosen function. Fix p 2ƒ and introduce
the functions .'S0 ; &S0/ on R that appear in (7-1). This data is used to modify �‚
and each p 2ƒ version of .'p

‚
; &

p
‚
/ near the common boundary of their domains of

definition. The modification requires writing �‚ where t differs from 1 or 2 by less
than zS as a pair of constant functions, .'S

‚
; &S
‚
/, on R� Œz�; zS /. Likewise, view

.'
p
‚
; &

p
‚
/ near the boundary of R � I� as constant functions on R � Œı2; z��. The

modification is given by the replacements

(7-47) � .'S
‚
; &S
‚
/! .1�ˇ/.'S

‚
; &S
‚
/Cˇ.'S0 ; &S0/,

� .'
p
‚
; &

p
‚
/! .1�ˇ/.'

p
‚
; &

p
‚
/Cˇ.'S0 ; &S0/.
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Let y�‚ and f.y'p
‚
; y&

p
‚
/gp2ƒ denote the modified versions. These obey (7-1).

To make contact with Lemma 7.16, fix .�; C/2M� and let � and f.'p; &p/gp2ƒ denote
the defining data for C , the former as described in Part 1 of Section 1A and each p 2ƒ

version of .'p; &p/ as described in Part 2 of Section 1A. Fix x� > 1 so as to be larger
than the absolute value of the R coordinates of the deleted yuD 0 points from R� I�

that define the domain of the �p > 0 versions of .'p; &p/.

Define hCD .hC;S ; fhC;pgp2ƒ/ with hC;S the section of NS over the t 2 Œ1Cz�; 2�z��
part of S given by ��y�‚ , and with any given p2ƒ version of hp being the map from
the domain of .'p; &p/ given by .x; yu/! �.x� � jxj C 2/.'p � y'

p
‚
; &p � y&

p
‚
/j.x;yu/ .

View hC;S as a section of the normal bundle of CS and view each p 2 ƒ version
of hC;p as a section of the normal bundle of Cp . This done, hC has support on two
disjoint, semibounded domains, one where s � 1 and the other where s � �1. It
obeys (7-32) on each. Moreover, given r > 0, there exists sr > 1 such that jhCj � r
where js j � sr .

This hC also obeys a version of (7-43) on an s � 1 semibounded domain, and also on
an s ��1 semibounded domain. This is a consequence of (II.6-10) and (3-4).

The function h! tŒh� in this case is a local function of h and its derivatives; this is to
say that its value at any given point is determined by the point in question and the value
of the relevant component of h and its derivatives at this same point. In particular the
relevant version of tŒ � � has the schematic form

(7-48) tŒh�D t1Œh� � rhC t0Œh�;

where any given component of t1 and t0 is a nonlinear, local, smooth function of the
corresponding component of h and the relevant domain coordinates. These functions
are such that:

(7-49) � jt1.h/j � c0 jhj and jt0.h/j � c0 jhj
2 .

� The first derivatives of t0. � / at hD 0 with respect to variations in h and
the domain variables are zero, and the analogous first derivatives of t1 and
the second derivatives of t0 are bounded by c0 where jhj � c�1

0
.

� In general, the derivatives of t0 and t1 with respect to variations in h and
the domain variables to any given order are bounded if jhj � c�1

0
.

In addition, the first derivatives of t0. � / at h D 0 are zero, and the first derivatives
of t1 and the second derivatives of t0 are bounded by c0 where jhj � c�1

0
.
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Granted this background, what follows gives the first of the promised applications of
Lemma 7.16.

Lemma 7.17 Let .�; C/ 2M� and define hC as above using either ‚� or ‚C . Then
hC and its derivatives to any given order are square-integrable on a semibounded
domain.

Proof The fact that hC is square-integrable follows from Lemma 7.16. The assertion
concerning its derivatives follows using standard elliptic regularity techniques with
Lemma 7.7 as applied to the version of (7-43) that uses (7-48) for t. (As before, the
elliptic regularity techniques from Chapter 6 in [12] will do the trick.)

Part 4 This part of the subsection contains the proofs of Propositions 7.1 and 7.2.
These are taken in order.

Proof of Proposition 7.1 The proof has four steps.

Step 1 This step sets the groundwork for an application of the implicit function
theorem. To this end, fix .�; C/ 2M� and let .� 0; C0/ 2M� denote an element in a
neighborhood of .�; C/ with the neighborhood chosen so that � 0 is very close to �
and so that each point in any submanifold from C0 is very close to the corresponding
submanifold from C and vice versa. Let f�; f.'p; &p/gp2ƒg denote the data that
defines C with � as described in Part 1 of Section 7A and with each p 2 ƒ version
of .'p; &p/ as described in Part 2 of Section 7A. A corresponding data set is used
to define .� 0; C0/, but the latter is written now as f�C �0; f.'pC 'p

0

; &pC &p0/gp2ƒ .
It is a consequence of the final assertion of Lemma 7.17 that �0 when viewed as a
section over CS of the latter’s normal bundle is a smooth, L2

1
section. Meanwhile,

Lemma 7.17 with the final assertion of Proposition 5.1 imply that each p 2ƒ version
of .'p

0

; &p0/ defines a smooth, L2
1

section of the normal bundle of Cp in R�HCp� .

Use h to denote the set f�0; .'p
0

; &p0/gp2ƒ . This version of h does not obey (7-32)
unless � D � 0 ; but if it did, then it would define an element in H�� , this a consequence
of Lemma 7.17 and Proposition 5.1. In any event, h obeys a version of (7-43) with
tŒ � � given by (7-48) with t0 and t1 described by (7-49).

The failure of (7-32) is rectified in the next step by incorporating � 0 � � in a new
definition of h and compensating with a corresponding .� 0��/–dependent term added
to tŒ � �. The resulting version of t is not a local function of h.
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Step 2 This step supplies the new definitions of h and t. To start, fix p 2ƒ and write
� near the common boundary of Cp and CS as functions .'S ; &S / on R� Œz�; zS � in
the manner of (7-1). Define �0 as above and write the latter near this same boundary
as a pair of functions .'S 0 ; &S 0/ on R � Œz�; zS �. View .'p; &p/ and also the pair
.'p
0

; &p0/ near this boundary as functions on R� Œı2; z��. In this guise, the primed
pairs obey the following where z D z� :

&S 0
D �&p0

C .� 0� �/.&p
C &p0

� &S0/;(7-50)

'p
0

D �'S 0
C .� 0� �/.'S

C'S 0
�'S0/:(7-51)

To obtain something that obeys (7-32), reintroduce the function ˇ from the proof of
Lemma 7.16 and (7-47). Define pairs .y'S 0 ; y&S 0/ and .y'p0 ; y&p0/ as follows:

(7-52) � y'S 0 D 'S 0 and y&S 0 D &S 0 � .� 0� �/ˇ.&pC &p0 � &S0/jz��.z�z�/ where
z > z� .

� y'p
0

D 'p
0

� .� 0� �/ˇ.'S C'S 0 �'S0/jz��.z�z�/ where z � z� .

Extend the latter as �0 and .'p
0

; &p0/ over the rest of their respective domains. Use
these to define the promised new version of h. The entries of this new version obey
(7-32) and it follows from Lemma 7.17 that this new version is in H�� .

This new version also obeys a version of (7-43), but with a nonlocal version of tŒ � � and
also with a z¤ 0 term proportional to .� 0� �/. To elaborate, the nonlocal version of t
is obtained from the version from Step 1 by adding a term that is supported near the
boundaries of CS and

S
p2ƒ Cp . Fix a given p 2ƒ. The portion of this term that lies

where z > z� is the pair of functions with respective left- and right-hand components

(7-53) .� 0� �/@z.ˇ&
p0
jz��.z�z�// and � .� 0� �/ˇ.@x&

p0/jz��.z�z�/:

The part that lies where z < z 0 has components

(7-54) �.� 0� �/ˇ.@x'
S 0/jz��.z�z�/ and .� 0� �/@z.ˇ'

S 0
jz��.z�z�//:

Meanwhile, the z term has support near these same boundaries, where it is given by
replacing &p0 with .&p� &S0/ in (7-53) and 'S 0 with .'S �'S0/ in (7-54).

Step 3 Given the preceding definition of t, it follows that the left-hand side of the
corresponding version of (7-43) defines a smooth map to L� from the product of a
ball about the origin in H�� with an interval centered on � 2 Œ0; 1�. Use F to denote
this map. The inverse function theorem finds a ball, B , about the origin in the kernel

Geometry & Topology, Volume 24 (2020)
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of DC , an interval, I, centered on � in Œ0; 1�, and a smooth map, bW B�I !H�� , and
these are such that:

(7-55) � b.0; �/D 0 and rHbj.0;�/ D 0.

� Suppose that .h0; �
0/ 2 B � I. Then h0 C b.h0; �

0/ 2 B and we have
.1�…/F.h0C b.h0; �

0/; � 0/D 0.

� Let B0 � B denote the concentric, half-radius ball. Suppose that .h; � 0/ 2
B0�I and suppose that .1�…/F.h0; � 0/D 0, then hD h0Cb.h0; �/ with
h0 2B.

A map, f, from B� I to the cokernel of DC is defined now by the rule

(7-56) .h0; �/! f..h0; �
0//D…F.h0C b.h0; �

0/; � 0/:

The map from B�I to B�I given by .h0; �
0/! .h0Cb.h0; �

0/; � 0/ embeds f�1.0/�B
homeomorphically onto an open set in B�I of solutions to (7-43) that contains B0�I.

This map f is the map required by Proposition 7.1, and the embedding just described
gives the homeomorphism ˆ.

Step 4 The claim made by the second bullet of Proposition 7.1 that M� is smooth
where f is a submersion and the claim that �I is a smooth on this same set are standard
consequences of the inverse function theorem as used in Step 3. The proof that p is
continuous follows from Proposition 5.1 and Lemma 5.2.

To see about the derivatives of p , let p 2 ƒ be such that �p > 0. For the sake of
argument, suppose that E � Cp is an end where the s � 1 portion maps to the tubular
neighborhood UC � Hp of the integral curve yCp via the projection from R�HCp� .
Use the coordinates .sC; �C; �C;uC/ for R �UC and parametrize the s � 1 part
of E as in Proposition 5.1. It is a consequence of Proposition 5.1 that the operator Dp

on E appears as an operator on the space of R2 –valued functions of the coordinates
.sC; �C/. An essentially verbatim repeat of the proof of the first bullet of Lemma 5.8
proves that the latter has the form D0Cd, where d is a first-order differential operator
on the space of maps from to R2 whose coefficients are bounded in absolute value
by c0e�s=c0 .

Now let h0 2 B � ker.DC/ denote a given element, and let r denote its norm. The Cp

component of h0 appears using this parametrization as a square-integrable map, yp ,
from the very large sC part of R�R=2�Z to R2 that obeys an equation that has the
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schematic form D0ypC dyp D 0. Granted that this is so, then the techniques used in
Section 2.3 in [7] can be employed to prove that yp can be written as in

(7-57) yp D r ..c e��1sC ; 0/C e/;

where c 2R and where jej � c0e�.�1C1=c0/sC . Meanwhile, (7-43), (7-48) and (7-49)
and the techniques from Section 2.3 in [7] can be employed in a straightforward manner
to see that bD b.h0; �

0/ from (7-55) can be written on E as a square-integrable map
from the very large sC part of R�R=2�Z to R2 that is bounded by c0.r 2C� 02/e��1sC .
Granted Lemma 5.2, this last observation implies that p is a C 1 map on M�smooth . The
proof that p has derivatives to any given order has a similar flavor and is omitted.

The assertions of the third bullet follows from (7-56) because the latter equation depicts
a version of f with the property that jf.h0/j � c0 jh0j

2 . It follows as a consequence that
f is a submersion at .0; �/ only if dim.cokernel.DC/� 1, and that if f is a submersion
at .0; �/ 2 B� I and d�I ¤ 0 at .0; �/, then cokernel.DC/D 0.

The proof of the fourth bullet starts with Propositions 2.1 and 2.2 for they jointly
asserted that ��1

1
.0/ is mapped diffeomorphically by the map p to �p2ƒ

�
��p

R
�

given bounds for z� and ı that are purely S –dependent (or K–compatible). Meanwhile,
Propositions 2.1, 3.2 and 5.7 imply that the DC along ��1

1
.0/ has trivial cokernel. This

fact with (7-56) implies what is asserted by the fourth bullet.

Proof of Proposition 7.2 The assertion made by the first bullet is proved in Section 3
of [10]. To prove item (a) of the second bullet, note first that given Propositions 3.2
and 5.7, it is enough to consider the case of the part of M� where � > 0. With this
restriction on � understood, the allowed variations of the almost complex structure
on the portion of R � Y in the f �1.Œ1C ı2

�; 2 � ı
2
��/ part of R �Mı constitute a

sufficiently large set for applying standard Smale–Sard arguments as done in Section 3
of [10]. In particular, straightforward modifications to the arguments from this same
section of [10] prove what is asserted by this item.

By way of a parenthetical remark, note that the variations in J that are allowed on
any

S
p2ƒR�Hp may not form a set that is large enough to invoke the Smale–Sard

theorem. This is because the almost complex structures here are constrained to be
invariant with respect to both the group of constant translations along the R factor and
the group of constant rotations of the angle � . The set of allowed variations of J on
the f 2 .1C ı2

�; 2� ı
2
�/ part of R�Mı is sufficiently large precisely because Lipshitz

allows almost complex structures on R � Œ1; 2� �† that depend on the coordinate
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t 2 Œ1; 2�. In fact, the set of t –independent almost complex structures is likely too small
for the applications in Section 3 of [10]. The assertion made by item (b) of the second
bullet is proved using the Smale–Sard theorem using the aforementioned arguments
from [10]. The details are also straightforward and also omitted.

8 Counting ech-HF submanifolds

The section starts with an existence assertion for ech-HF submanifolds, and then a
sort of uniqueness assertion. The existence result is stated as Proposition 8.1 and the
uniqueness result is stated by Proposition 8.2. These two propositions are in Section 8A.
Sections 8B–8F explain, among other things, how to count the ech-HF submanifolds
that are provided by Proposition 8.1.

8A Existence and uniqueness of ech-HF subvarieties

Fix a countable set in
�
�3.0; 1/

�
�.1;1/ of possible choices for the data .z�; ı; x 0;R/

and then choose JHF from Proposition 7.2’s residual set.

To set the stage for the upcoming Propositions 8.1 and 8.2, fix a finite or weakly compact
subset K � AHF . With K in hand, select the data set .z�; ı; x 0;R/ and the almost
complex structure J as described by Propositions 7.1–7.3 so that their conclusions can
be assumed.

Proposition 8.1 assumes implicitly that a submanifold S has been chosen from K and
choice of .y‚�; y‚C/ 2 yZS has been made so as to define the corresponding version
of M� . By way of a reminder, M� is a smooth manifold with boundary and �1 � p
is a smooth, proper map. Supposing that y 2�p2ƒ

�
��p

R
�

is a regular value of the
map p , use M�y to denote p�1.y/. The latter is a smooth, 1–dimensional manifold
with boundary. The fourth bullet of Proposition 7.1 asserts that there is one and only
one component with a boundary point on ��1

1
.0/. Meanwhile, it follows from what is

said in Proposition 7.2 that the differential of �I at each point in ��1
I
.1/ is surjective,

and it follows from Propositions 7.2 and 7.3 that there is at most a finite set of points
in ��1

I
.1/.

The manifold M�y is orientable because this is the case for any 1–manifold. Orientations
for the components of M�y are defined by requiring that �I be orientation-preserving
where it is increasing and orientation-reversing where it is decreasing.
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Assign to any ��1
1
.1/ point in M�y the weight C1 if the differential of �I at the point

is orientation-preserving, and assign �1 if not.

Proposition 8.1 The set ��1
1
.1/ in M�y is nonempty. Moreover, the sum of the ˙1

weights of these elements is equal to 1.

Given that the ��1
1
.1/ points in M�y are ech-HF submanifolds, this proposition supplies

an existence theorem for ech-HF submanifolds.

Proof of Proposition 8.1 If z� and ı are chosen small, then Proposition 7.3 asserts
that M�y is a compact, oriented 1–manifold with boundary. Each component has
either 0 or 2 boundary points. There is one component with a boundary point where
�I D 0 and the latter must have a second boundary point, thus where �I D 1. As �I

is in no case greater than 1 and as its differential is nonzero at this point, this point has
weight C1. There is a finite set of other components. Those with boundary points must
have both boundary points where �I D 1. As the differential of �I is nonzero at both
points, one must have weight C1 and the other weight �1. Granted this accounting,
the sum of the weights of the elements in M�y is equal to 1.

Proposition 8.2 uses K to denote the following subset of AHF : a Lipshitz submanifold S

is in K if and only if the operator DS has Fredholm index no greater than 1. The
quotient space K=R is finite, this a consequence of Lemma 5.4 and Corollary 7.2 in [10].
To say more about notation, suppose that .y‚0; y‚/ is a chosen pair from �2 Zech;M.
Given a data set .ı; x 0;R/ to define the geometry of Y , and given an almost complex
structure, J, subject to the constraints in Part 1 of Section 1C, the proposition refers to
the space M1.y‚

0; y‚/ defined in Part 2 of Section 1C. Any given element in M1.y‚
0; y‚/

will have a union of components that form an ech-HF submanifold. This ech-HF
submanifold part is either R–invariant or not. If the ech-HF submanifold part is R–
invariant, then this element must have a single component from some p 2ƒ version
of Proposition II.3.4’s moduli spaces Mp� and MpC . The element can also contain
R–invariant cylinder components from the set

S
p2ƒfR� y

C
p ;R� y

�
p g. If the ech-HF

submanifold is not R–invariant, then it sits in some .y‚�; y‚C/2�2 Zech;M version of
M1.y‚�; y‚C/ with .y‚�; y‚C/ as described in (2-2). The preceding observations about
M1.y‚

0; y‚/ follow from what is said in Propositions II.3.1–II.3.4 about ech indices.

Proposition 8.2 Fix the data .z�; ı; x 0;R/ and J as described by Propositions 7.1–
7.3 with a suitably large choice for their respective versions of � and �� , and with any
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choice of Lipshitz submanifold from K . Fix .y‚�; y‚C/ 2�2 Zech;M that obey (2-2)
and are such that M1.y‚�; y‚C/ ¤ ∅. Then

P
p2ƒ�p � 1 and what follows is

true: Let C denote a given ech-HF submanifold from M1.y‚�; y‚C/. There exists
a unique S 2 K such that .y‚�; y‚C/ 2 yZS, and there exists a unique .1; C/ in the
corresponding version of M� whose respective components are C ’s intersections with
the f �1.1C z�; 2� z�/ portion of R�Y and the various p 2ƒ versions of R�HCp� .

Proof Delete the assertion
P

p2ƒ�p � 1 from Proposition 8.2, and suppose that
the resulting weaker proposition is false. If this is the case, then there is a sequence
fDn;CngnD1;2;::: whose constituents will now be described. First, what is denoted
by Dn is a data set that can be written as ..y‚n�

y‚nC/; .z�n
; ın; x 0n

;Rn;Jn// where
z�n

< 1
n

and ın < n�2z�n
. The latter with x 0n

and Rn are suitable for defining the
geometry of Y . Meanwhile, Jn is an almost complex structure on the .ın; x 0n

;Rn/

version of R�Y as described in Section 1C. In addition Jn with .z�n
; ın; x 0n

;Rn/ are
such that Propositions 7.1–7.3 can be invoked using any Lipshitz submanifold from K .
Meanwhile, y‚n� and y‚nC are elements in the index n version of yZech;M that are
defined in part by respective HF-cycles that can be assumed to be independent of the
index n. The y‚n� and also y‚nC elements from fyCp y

�
p gp2ƒ are also independent

of n. What is denoted by Cn signifies an ech-HF submanifold defined by the data Dn

from a submanifold in M1.y‚n�
y‚nC/ but Cn is not from some ��1

1
.1/ element in

the index n version of M� . No generality is lost by assuming that Cn ’s version of the
set f�pgp2ƒ is independent of n. The twelve steps that follow derive nonsense with
such a sequence.

The assertion that
P

p2ƒ�p � 1 follows from Proposition 7.1 if M1.y‚�; y‚C/ has
an ech-HF submanifold from the corresponding version of M� .

Step 1 The submanifold Cn has a normal bundle which also inherits a holomorphic
line bundle structure. Use NCn

to denote this bundle. There is an associated first-order
operator that maps sections of NCn

to sections of NCn
˝T 0;1Cn . This operator also

has the form depicted on the right-hand side of (1-25). Use yDCn
to denote this operator.

This is Fredholm when mapping the L2
1

space of sections NCn
to the L2 space of

sections of NC˝T 0;1C. These respective domain and range spaces are denoted by H1

and L in what follows. Note that this Fredholm incarnation of yDCn
has index 1 and

trivial cokernel.

Step 2 What follows is a consequence of the assumption that fz�n
gnD1;2;::: has limit

zero: Given ", the conclusions of Proposition II.7.2 can be invoked for all sufficiently
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large n versions of Cn . This being the case, fix some small z� > 0. For n large,
z�n

will be less than z�n
. For such n, use HCp�n to denote the version of HCp� that is

defined using z� and the data set .ın; x 0n
;Rn/. Use ‰pn to denote the version of the

map ‰p that is defined using z� and the data set .ın; x 0n
;Rn;Jn/.

Proposition II.5.8 and Lemma II.4.7 can be invoked when n is large to conclude the
following: Fix p 2ƒ and let Cpn denote the intersection between Cn and R�HCp�n .
This is a smooth, properly embedded submanifold with boundary. Moreover, it is the
image via the map ‰pn of a graph in the .z�; ın; x 0n

;Rn;Jn/ version of R�X which
is defined by a map to R2 from the complement of �p points in R� I� where yuD 0.
This map has the form

(8-1) .x; yu/! .x; yu; y� D 'pn.x; yu/; hD &pn.x; yu//:

Note that Cpn obeys all of the requirements listed in Part 2 of Section 7A. Therefore,
the fact that Cn is not from the index n version of M� is not due to properties of its
intersection with R�HCp� .

Step 3 With n assumed large, introduce CSn to denote Cn ’s intersection with the
t 2 Œ1C z�; 2� z�� part of R�Mın

. When viewed in R� Œ1C z�; 2� z���†, this
CSn is a smooth, properly embedded submanifold with boundary. A neighborhood of
each component of the boundary of CSn can be depicted as a graph of the sort that
is described by Property 4 in Section 7A with the constant zS being n–dependent
now. Use .'Sn; &Sn/ to denote CSn ’s version of the functions .'S ; &S / that appear
in this Property 4. Note in particular that (7-1) holds by virtue of the fact that CSn

attaches seamlessly along its boundaries with the boundaries of
S

p2ƒ Cpn to give the
surface Cn . It follows from this last remark that Cn obeys the requirements from Part 3
in Section 7A for membership in the index n version of M� .

Granted this, and granted what is said in the final paragraph of Step 2, Cn ’s lack of
membership in the index n version of M� must be due to some property of CSn .
To see what this might be, view CSn as a submanifold in R� Œ1C z�; 2� z���†,
and suppose that there exists a Lipshitz submanifold, S 2 K such that Property 1 in
Part 1 of Section 7A is obeyed. If this is the case, then Proposition II.7.3 supplies a
K–compatible, and, in particular, n–independent constant c > 1 with the following
significance: If z� < c�1 , then both Properties 1 and 2 in Part 1 of Section 7A are
obeyed with some perhaps different choice for S from K . In any event, Property 1
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implies Property 3 in Part 1 of Section 7A, and Property 4 in Part 1 of Section 7A
follows if z� < c�1 as well.

These last observations lead to the following conclusion:

(8-2) There exists "� > 0 with the following significance: if z� < "�, then no suffi-
ciently large n version CSn lies entirely in the radius "� tubular neighborhood
of any submanifold from K.

This assertion leads to the desired nonsense as it is proved false in the upcoming Step 6.

Step 4 The restriction of NCn
to CSn is denoted by NSn and the restriction to Cpn

is denoted by Npn . Let � denote a given, smooth section of the bundle NCn
over Cn .

The restriction of the section � to CSn and to each p 2ƒ version of Cpn defines the
GC1–tuple .�S ; f�pgp2ƒ/ with �S denoting a section of NSn and with each p 2ƒ

version of Cpn denoting a section of Npn . Taking this view of C1.CnINCn
/ leads to

the equivalent definition of the space H as the L2
1

space of sections of NCn
given in

the next paragraph.

The space H is the completion of a subspace of

C1.CSn;NSn/˚

�M
p2ƒ

C1.Cpn;Npn/

�
:

The subspace consists of elements with compact support and with boundary values as
follows: Let .�S ; f�pgp2ƒ/ denote an element in the subspace. Given p 2ƒ, view a
neighborhood of CSn near a given critical point from p as in Step 3. With this view
understood, write �S on the corresponding zD z� boundary as a pair of functions of x ,
these denoted by .'S 0 ; &S 0/. Meanwhile, write �p on the contiguous boundary of Cpn

as a pair of functions of x , these denoted by .'p
0

; &p0/. Then &S 0 D&p0 and 'p
0

D&S 0 .
The relevant completion of this subspace is defined by the respective L2

1
–norms on the

spaces of compactly supported sections of NSn and each p 2ƒ version of Cpn .

The range space L for yDCn
can be viewed as the completion of the space of compactly

supported sections of C1.CSn;NSn˝T 0;1Sn/˚
�L

p2ƒ C1.Cpn;Npn˝T 0;1Cpn/
�

using the norm that is defined by the respective L2 –norms for each summand.

Use DSn to denote the restriction of yDCn
to CSn . Fix p 2 ƒ and view Cpn as

the graph of .'pn; &pn/. The restriction of the operator yDCn
to Cpn is given by the

hD .'pn; &pn/ version of (3-9) with the functions a1 , a2 and b defined by the index n

data set. The latter incarnation of yDCn
is denoted by Dpn in what follows.
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Step 5 For each � 2 Œ0; 1�, use H� now to denote the Banach space that is obtained
by the L2

1
completion of the subspace of compactly supported sections in

C1.CSn;NSn˝T 0;1Sn/˚

�M
p2ƒ

C1.Cpn;Npn˝T 0;1Cpn/

�
whose boundary values obey

(8-3) &S 0
D �&p0 and 'p

0

D �'S 0 :

The operator DCn
D .DSn; fDpngp2ƒ/ acts as a bounded operator from each � 2 Œ0; 1�

version of H� to L. The arguments for Lemma 7.15 can be used with almost no
changes to prove that DCn

defines a Fredholm operator from each � 2 Œ0; 1� version of
H� to L and that the index of each such Fredholm incarnation of DCn

is equal to the
Fredholm index of the � D 1 version, this being 1 since the � D 1 version is yDCn

.

Consider now the � D 0 version. The latter is a direct sum of GC1 Fredholm operators.
The first of these is DSn acting on the L2

1
completion of the subspace of compactly

supported sections of NSn that obey the following boundary condition: Write a given
section on a given boundary component as a pair of functions, .'S 0 ; &S 0/. Then the
boundary condition asserts only that &S 0 D 0. Note in particular that this boundary
condition makes no reference to any p2ƒ. The range space for this Fredholm operator
is the L2 completion of the space of compactly supported sections of NSn˝T 0;1CSn .
Use index.DSn/ in what follows to denote the Fredholm index of this Fredholm
incarnation of DSn .

Meanwhile, each p 2ƒ labels an operator in the aforementioned direct sum. The latter
is Dpn acting on the L2

1
completion of the space of compactly supported sections of Npn

whose boundary values are as follows: Write a section on the a boundary component
as .'p

0

; &p0/. Then 'p
0

D 0. Note that this condition makes no reference to S or to
the other elements in ƒ. The range space for this Fredholm incarnation of Dpn is
the L2 completion of the space of compactly supported sections of Npn˝T 0;1Cpn .
This incarnation of Dpn is described by Proposition 5.7; it has trivial cokernel and
kernel dimension equal to �p .

What was said in the three previous paragraphs gives

(8-4) index.DSn/C
X
p2ƒ

�p D 1:

This understood, it follows that index.DSn/� 1 and that index.DSn/� 0 if any p2ƒ

version of �p is positive.
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Step 6 Invoke Proposition II.7.2 and use Corollary 7.2 in [10] to find a subse-
quence of f.Dn;Cn/gnD1;2;::: (hence renumbered consecutively from 1) and a sequence
f"ngnD1;2;::: 2 .0; 1/ with the following three properties: The latter subsequence is
decreasing and converges in Œ0; 1� to 0. Second, Proposition II.7.2 applies to each Cn

with " D "n . Third, the various index n versions of the relevant broken, singular
admissible sets are identical. Let „ denote this set. The lemma that follows uses „ to
compute the number index.DSn/.

The notation used by the lemma writes a given element in „ as ..S; u/; #†/, where
.S; u/ denotes a Lipshitz subvariety and #† denotes a finite set of constant .s ; t /
slices of R� .1; 2/�†. A given slice can appear more than once in #† . The lemma
uses n† to denote the number of elements in #† . As noted in the paragraph prior to
Proposition 7.2, the subvariety pair .S; u/ has an associated Fredholm operator, this
denoted by DS .

Lemma 8.3 There exists an n–independent constant � > 1 such that if z� < ��1 and
if n is sufficiently large, then index.DSn/D

P
..S;u/;#†/2„.index.DS /C 2n†/.

This lemma is proved in a moment. Accept it for now.

What with (8-4), this lemma implies that either „ has just one component, and the
latter has #†D∅, or else there exists a non-R–invariant Lipshitz submanifold, S, with
index.DS /� 0. As this is precluded by Proposition 7.2, it follows as a consequence
that „ has but a single element with #† D∅.

Granted this last conclusion, invoke the second bullet of Proposition 7.3 to see that all
sufficiently large n versions of Cn violate what is asserted in (8-2). This observation
constitutes the desired nonsense.

Step 7 This step and Steps 8–10 contain the:

Proof of Lemma 8.3 Fix Z D ..S; u/; #†/ 2 „ and let jZj denote the union
of u.S/ with the curves from #† . Use the data given in Proposition II.7.2 to
obtain a subsequence of fCngnD1;2;::: , hence renumbered from 1, and a sequence
fsngnD1;2;::: with the following property: Fix n 2 f1; 2; : : : g and use Xn to denote
Œ�4n; 4n��

�
1C 1

n
; 2� 1

n

�
�†. View Xn for the moment as a subset of R�Mın

.
Translate the surface Cn by sn along the R factor of R� Œ1; 2��† so that each point
in Cn \ Xn has distance at most 1

n
from some point in jZj \ Xn , and vice versa.

Furthermore, if � is any 2–form on Xn with j�j � 1 and jr�j< n, then the integral
of � over Cn\Xn differs from

R
u.S/\Xn

�C
P
†02#†

R
†0 � by less than 1

n
.
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There exists, by assumption, a constant zS > 0 such that there are G components of the
t 2 Œ1; 1C zS � part of S and each is described by Property 5 in Part 1 of Section 1G.
The t 2 Œ2�zS ; 2� part of S consists of an analogous set of G components. Meanwhile,
there exists sS � 1 such that the js j > sS part of S is described by Property 6 in
Part 1 of Section 1G. Assume that z� < 10�4zS . Then the various components of the
sn –translate of CSn where t 2

�
1C z�; 1C 1

2
zS

�
, where t 2

�
2� 1

2
zS ; 2� z�

�
and

where js j 2 Œ2sS ; 2n� obey the conclusions of Property 1 of Part 1 in Section 7A.

Granted what was just said, the arguments in Section 4 of [10] will write index.DSn/

as a sum of various contributions that can be readily identified with the terms in
Lemma 8.3’s sum. To do this, focus again on a given ..S; u/; #†/ 2 „. Truncate
the sn –translate of CSn on the slices where js j D 3sn . The result, when n is large,
has 2G constant s boundary arcs that run from the t D 1 C z� boundary to the
t D 2 � z� boundary of R � Œ1 C z�; 2 � z�� � .T� \ TC/. Attach to each such
arc a properly embedded, infinite strip that is a graph over either the s � �3sn or
s � 3sn part of R� Œ1C z�; 2� z�� of a smooth map to T� \ TC that converges as
js j !1 at an exponential rate in js j to the nearby C�\ CC point. Let Zn denote the
resulting properly embedded submanifold with boundary in the manifold with boundary
R� Œ1Cz�; 2�z���†. This submanifold has a corresponding version of the operator
in (1-25) which is Fredholm when viewed as a linear map between the Zn analogs of
the Banach space domain and range spaces that were defined for DSn . The associated
Fredholm index is denoted in what follows by index.DZn

/.

Standard gluing theorems can be used to prove that index.DSn/ is the sum of the
various Z 2„ versions of index.DZn

/ when n is large. See for example, Lemma 9.6
in [7] for a statement in an analogous context but where the operator is defined on a
manifold without boundary. The corresponding lemma for the case at hand is proved
using arguments that differ only cosmetically. (These gluing theorems are geometric
expressions of the excision property that is obeyed by the index of Fredholm elliptic
operators on manifolds.)

The next steps explains why index.DZn
/D index.DS /C 2n† when n is large.

Step 8 Because the t 2 Œ1C z�; 1C zS � [ Œ2 � zS ; 2 � z�� part of Zn is a graph
over the analogous part of S which is very close to S when z�� 1, the arguments
from Section 4 of [10] and the erratum of [10] can be applied directly to Zn to prove
the equality index.DZn

/ D index.DS / C 2n† . To elaborate on this, first identify
R� Œ1Cz�; 2�z���† with R� Œ1; 2��† by the diffeomorphism from Œ1Cz�; 2�z��
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to Œ1; 2� that maps t to t�3z�
1�2z� . Use this diffeomorphism to identify Zn with a properly

embedded submanifold with boundary in R � Œ1; 2� �†. This submanifold can be
written as a graph over S very near R� f1g �† and very near R� f2g �†. As a
consequence, it can be isotoped very near these boundaries so that resulting submanifold
(to be denoted by Z0n ) agrees with S near the boundary components R� f1g �† and
R� f2g �†. This submanifold Z0n has a corresponding DZ0n when n is large that is
Fredholm. Its domain is defined by the same boundary conditions that define DS , and
its index is the same as that of DZn

. (This is because it can be readily homotoped
to DZn

through a 1–parameter family of first-order Fredholm operators.)

The surface Z0n defines a class (to be denoted by A0 ) in what Lipshitz denotes
by �.Ex; Ey/. The notation from [10] has Ex signifying a vector with G components,
the components being the points in CC \ C� that label the negative points of S nS.
Meanwhile, Ey is likewise a vector with G components, these being the points in
CC\ C� that label the positive points of S nS. (The closure S of S is described in
Section 1G.) The class A0 is what Lipshitz calls a positive class. In the present context,
this means that Z0n has only positive intersection numbers with a certain (finite) set of
holomorphic submanifolds in R� .1; 2/�†. These submanifolds all have the form
R � Œ1; 2� � fzg with z coming from a certain finite set in † n .T� [ TC/, and the
intersections are positive because Zn is holomorphic near the intersection points.

Lipshitz gives a formula for index.DZ0n/ at the beginning of the erratum of [10]:

(8-5) index.DZ0n/D G��.Z0n/C 2e.A0/;

with �.Z0n/ being the Euler characteristic of Z0n and with e.A0/ being what Lipshitz
calls the Euler measure of the class A0. (See also equation (6) in [10].) The definition
of e. � / is such that e.A0/ D e.S/C n†�.†/, which is e.S/C n†.2 � 2G/ (this
formula is invoked in the argument for Corollary 4.5 in [10].) Meanwhile, because Zn

is holomorphic, the Gromov convergence as n gets large that results in the pointwise
convergence of fZngnD1;2;::: to the union of S with n† constant .s ; t / copies of †
can be used to relate �.Z0n/ to �.S/. In particular, the formula that relates them has
the same form as that for a similar degeneration were each Zn and S a compact
holomorphic submanifold in some complex surface (for example, the product of two
Riemann surfaces). The relationship has the same form as in the compact case because
each of the n† copies of † intersects S in a set with compact closure in the interior
of S. The relation is

(8-6) �.Z0n/D �.S/C n† 2G� 2n†.G� 1/:
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More is said by way of an explanation for this formula in a moment. What was
said about e.A0/ being e.S/C n†.2� 2G/ in conjunction with the formula in (8-6)
and writes index.DZ0n/ as G � �.S/ C 2e.S/ C 2n† . This identifies index.DZ0n/

with index.DS /C 2n† because S has its corresponding version of (8-5) that asserts
index.DS /D G��.S/C 2e.S/.

Step 9 The argument for (8-6) is simplest when each of the constant .s ; t / versions
of † that appear in #† have multiplicity 1. In this event, the first homology of Z0n is
related to that of S (because of the manner of the Gromov convergence) as follows:
The surface S contributes H1.S/ homology classes to H1.Z0n/. This accounts for
the �.S/ factor in (8-6). Meanwhile, each copy of † adds 2G additional homology
cycles (which accounts for the n†2G factor in (8-6)). In addition, all but one of the
intersection points between S and † add 2 new homology cycles, and the surface S

has G intersections (counted with multiplicity) with each constant .s ; t / version of †.
(This accounts for the 2n†.G� 1/ factor in (8-6).)

Step 10 The argument for (8-6) in the general case is (co)homological. By way of
some background for what is to come, suppose for the moment that Z is a compact,
pseudoholomorphic surface in an almost complex 4–manifold. Let ŒZ� denote the
pushforward of Z ’s fundamental class to the homology of the 4–manifold and let ye
denote the Poincaré dual of ŒZ�. This is a 2–dimensional cohomology class in the
ambient 4–manifold. The adjunction formula says that ��.Z/ D ye.ŒZ�/C c1.ŒZ�/

with c1 denoting the first Chern class of .2; 0/ part of the complexified cotangent
bundle of the ambient manifold. An analog of the adjunction formula in what follows
obtains (8-6).

Let X denote the manifold with corners Œ�3sn; 3sn�� Œ1C z�; 2� z���† and let Zn0

denote the part of Zn in X. This is the part of Zn that is a properly embedded, pseudo-
holomorphic submanifold. Also, if n is large, then Zn0

has transversal intersection
with the boundary and corners of X. Introduce by way of notation SX to denote S \X.
This is a properly embedded submanifold with boundary also. The submanifold Zn0

near @X is very close to SX when n is large. In particular, it can be written near @X
as the image of SX near @X of an isotopy that preserves @X and moves points only a
very small amount.

The Poincaré dual of the fundamental class of Zn0
is a class in H 2.X IZ/, which will

be denoted by yen in what follows. The intersection number between Zn0
and any given

compact, oriented surface in the interior of X gives the pairing between yen and the
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pushforward to H2.X IZ/ of the fundamental class of the surface. The pairings of yen

with the fundamental classes of Zn0
and S are not a priori defined because the latter

have boundaries. Even so, pairings with these fundamental classes can be defined as
the intersection numbers between an allowed isotopic copy of Zn0

with the original
and, likewise, with S. The only a priori constraint on the isotopic copy of Zn0

is that
it should be disjoint on @X from Zn0

and S. This is the case, for example, if the
boundary of the isotopic copy is disjoint from Œ�3sn; 3sn�� Œ1Cz�; 2�z���.T�[TC/.
However, additional constraints are described in the next paragraph.

The isotopic copy of Zn0
can and should be constructed from the time 1 flow of a vector

field on a neighborhood of @X in X that is tangent to @X along @X. It is important
for what follows to choose this vector field so that it is normal to Zn0

along @Zn0

and normal to SX along @SX. The time 1 flow of the vector field should also have
two additional properties: First, it should define an isotopy that pushes the boundary
of SX out of Œ�3sn; 3sn�� Œ1Cz�; 2�z��� .T�[ TC/. Second, the boundaries of the
isotopic versions of Zn0

and SX must remain isotopic in the complement in @X of the
boundary of the domain Œ�3sn; 3sn�� Œ1C z�; 2� z��� .T�[ TC/. Let @� denote the
vector field in question. Such a vector field and isotopy can be constructed to have the
desired properties for SX and then, for large n, it will also have the desired properties
for Zn0

because Zn0
is very close to SX near @X when n is large.

By virtue of what is said in Sections II.6B and II.6C, the vector field can be constructed
using cutoff functions from local lifts of a vector field on a neighborhood of T�[ TC

in †. See Figure 4 for a schematic picture.

Figure 4

In this diagram, the top vertical line segment indicates the image in † of the projection
of part of @S that is mapped to C� , and the left horizontal line segment indicates the
corresponding image in † of the part of @S that is mapped to CC . Their intersection is
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a point in C�\CC . The arrows indicate the direction of a vector field that can be lifted
to give @� near the relevant boundary components of @SX (which is very near @S if
z� is small.) (If another part of @S projects to this same neighborhood of C�\ CC ,
then its image will appear as a 180ı rotation of the preceding picture, in which case
the 180ı rotated arrows indicate the direction of a vector field that can be lifted to give
@� near this other part of @S.)

Let Zn1
denote the isotopic version of Zn0

that is described in the preceding paragraphs,
and let SX1

denote the corresponding isotopic version of SX. What follows is a
consequence of @Zn1

being isotopic to @SX1
in the complement in @X of the part of @X

from Œ�3sn; 3sn��Œ1Cz�; 2�z���.T�[TC/: the intersection numbers of Zn1
and SX1

with Zn0
obey the formula hZn1

;Zn0
i D hSX1

;Zn0
iC n†h†;Zn0

i. (Here and below
h ; i denotes the intersection number between, oriented, 2–dimensional submanifolds
of X that intersect only in the interior of X.) Meanwhile, the fact that @Zn0

is isotopic
to @SX in the part of @X from Œ�3sn; 3sn� � Œ1C z�; 2 � z�� � .T� [ TC/ has the
following implication: The number hSX1

;Zn0
i C n†h†;Zn0

i, which is hZn1
;Zn0
i,

is the same as hSX1
;SX iC 2n†h†;SX i. (Keep in mind that h†;†i D 0.)

Step 11 Fix a properly embedded, oriented surface with boundary (and corners) in X
whose fundamental class is Poincaré dual to the first Chern class of T 2;0X (which is
isomorphic to the pullback via the projection of T 1;0†). This surface can and should
be chosen so that it is disjoint near @X from Œ�3sn; 3sn�� Œ1Cz�; 2�z��� .T�[ TC/.
Denote such a surface by S. By definition, there is a section of T 2;0X that is
nowhere zero on X n S and vanishes transversely along S. Denote this section
by s. Because of the @X constraint, there are well-defined intersection numbers
between the surface Y and both Zn0

and Sn0
. These intersection numbers are used to

define the pairing between c1.T
2;0X / and Zn0

and SX. These are related by the rule
hS;Zn0

i D hS;SX iC n†hS; †i. (Note in this regard that hS; †i D 2G� 2.)

Step 12 Now the interior of S is pseudoholomorphic and this implies the following
version of the adjunction formula: ��.S/ D hSX1

;Si C hS;Si C RS with RS

denoting an integer correction term that can be computed directly from the homotopy
class along @SX of the nonzero section s of T 2;0X n 0 and the homotopy class of
the nonzero vector normal vector field @� along @Zn . By the same token, the number
��.Zn/DhZn1

;ZniChS;ZniCRn with Rn denoting an integer correction term that
can be computed directly from the homotopy class along @Zn of the nonzero section s

of T 2;0X n 0 and the homotopy class of the nonzero vector field @� along @Zn . Now,
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the key point is that @SX is isotopic to @Zn along @X and that this isotopy identifies the
respective homotopy classes of s and the respective homotopy classes of @� when n is
sufficiently large. This implies that RSDRn (keep in mind that both of these correction
factors are integers). Therefore, the writing of hZn1

;Zni as hSX1
;SX iC 2n†h†;SX i

and the writing of hS;Zni as hS;SX iCn†hS; †i gives the formula in (8-6) because
h†;SX i D G and hS; †i D 2G� 2.

8B Quillen’s construction and orientations

As explained in [6; 5; 7, Section 9], the differential for embedded contact homology
is defined using certain dimension one moduli spaces of J –holomorphic subvarieties
in R � Y . The definition involves a ˙1 weight that is defined by comparing two
orientations that can be defined for these moduli spaces. The first is defined by the R

action that is induced by the constant translations along the R factor of R�Y . The
second is defined using notions that were introduced by Quillen [15] about determinant
line bundles for parametrized families of Fredholm operators. Section 9 uses what
is said here and in Sections 8C–8E to show that the weight used for the embedded
contact homology differential differs by a purely S –dependent sign from the weight
used in Proposition 8.1. This subsection describes the relevant version of Quillen’s
construction of orientations. The story is told in five parts.

Part 1 To say more about the Fredholm operator that is used to define the differ-
ential for embedded contact homology, fix .� D 1; C/ 2M� and let C denote the
corresponding ech-HF submanifold. The operator in question is the operator DC from
Lemma 7.15 acting here on a slightly larger domain. The range space is the same as
for the original. The domain is denoted here by HS . The space HS is defined just
as H�D1 in Part 1 of Section 7E but for the following: Elements in the S –labeled
summand of H��D1 are required to be L2 –orthogonal on the t 2 Œ1Cz�; 2�z�� part
of S to the restriction of the kernel of DS . This last condition is not imposed on the
elements in the S –labeled summand of HS . In any case the � D 1 version of (7-32) is
imposed. If z� � c�1 with c � 1 purely S –dependent (of K–compatible), then there
is a canonical isomorphism between HS and kernel.DS /˚H�D1 .

This version of DC with domain HS is denoted in what follows by yDC . The notation
here is meant to indicate that the latter operator can be defined intrinsically as an
operator on C. As noted in the proof of Proposition 8.2, it has the form of what is
depicted on the right-hand side of (1-25). This intrinsic definition identifies the domain
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Hilbert space with the space of L2
1

sections of C ’s normal bundle and the range
Hilbert space to the space of L2 sections of the tensor product of this normal bundle
with T 0;1C. This intrinsic definition does not reference (7-32).

Part 2 This part of the subsection summarizes Quillen’s construction. To start, suppose
for the moment that H1 and H2 are Hilbert spaces and DW H1!H2 is a Fredholm
operator with positive index and trivial cokernel. Define Det.D/ to be the real line
given by the top exterior power of the kernel of D.

Suppose next that Y denotes a smooth, finite-dimensional manifold and that H1 and H2

are Hilbert space bundles over Y. (Most of what is said here generalizes readily to
the case when Y is a Hilbert manifold.) Let D now denote a continuous section of
Hom.H1;H2/ whose restriction to each fiber is Fredholm. What follows describes a
real line bundle that is defined over Y in a canonical fashion by D. To this end, note
first that the manifold Y has a locally finite cover with the following property: Let
U � Y denote a set from this cover. Then there exist a nonnegative integer, n, and a
bundle homomorphism LW U �R2n!H2jU such that

(8-7) DCLW H1jU ˚ .U �R2n/!H2jU

restricts to each fiber as a linear map with positive index and trivial cokernel. This
understood, define the real line bundle DetjU !U to be the bundle whose fiber at any
given y 2 Y is the top exterior power of the kernel of .LCD/jy . As explained by
Quillen, different choices for the integer n and, given n, for the homomorphism L,
subject to the condition that D C L have positive index and trivial cokernel, give
canonically isomorphic versions of DetjU . It follows as a consequence that these
line bundles over the open sets of the given cover patch together over the pairwise
intersections to define a real line bundle over Y. It also follows (by taking subdivisions)
that two covers of Y with the requisite properties supply isomorphic bundles. This
being the case, the construction just described defines from D a canonical real line
bundle over Y. This is the bundle Det.

The particular version of Det that is used in the definition of the embedded contact
homology differential is defined over the moduli spaces of ech-HF submanifolds. Let
C denote the ech-HF submanifold that is associated to a given pair .1; C/ 2M� . The
fiber of the relevant version of Det over C is the determinant line of the operator yDC .

Part 3 The versions of Det that arise in what follows are orientable. This part of the
subsection sets up the conventions that are used in the subsequent parts that concern
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choices of orientations. If V and V 0 denote an ordered pair of oriented vector spaces,
then their direct sum has a canonical orientation that is obtained as follows: Let n and n0

denote the respective dimensions of V and V 0. Choose respective bases fv1; : : : ; vng

for V 0 and fv0
1
; : : : ; v0n0g for V 0 such that v1 ^ � � � ^ vn defines the orientation for

det.V / D
Vn

V and v0
1
^ � � � ^ v0n0 defines the orientation for det.V 0/ D

Vn0
V 0. The

orientation for det.V ˚V 0/D
VnCn0

.V ˚V 0/ is defined by

(8-8) v1 ^ � � � ^ vn ^ v
0
1 ^ � � � ^ v

0
n0 :

The oriented tensor product of the lines det.V / and det.V 0/ is defined to be the line
det.V ˚ V 0/ with the orientation given by (8-8). This oriented line is denoted by
det.V /˝ det.V 0/. The oriented lines det.V 0/˝ det.V / and det.V /˝ det.V 0/ are
isomorphic as oriented lines if and only if nn0 is an even number.

It follows as a consequence of what was just said that ordering issues are minimized
in any given situation when one or both of V and V 0 have even dimensions; this is
why (8-7) uses only even-dimensional Euclidean spaces. In particular, the restriction to
even dimensions in (8-7) makes it easier to compare orientations for Det.

What follows is meant to provide an abstract but relevant illustration. The vector
space R2n in here and in subsequent parts of this subsection always denotes the
eponymous vector space with a standard orientation, chosen once and for all time.
Suppose that D is a Fredholm operator with trivial cokernel and positive index. Choose
an orientation for kernel.D/ so as to orient the line Det.D/. Let H2 denote the range
space for D, let n denote any given positive integer and let LW R2n ! H2 denote
any given map. The kernel of DCL is canonically isomorphic to kernel.D/˚R2n ,
and so the oriented line det.kernel.D// is canonically isomorphic as an oriented line
to det.kernel.D˚L//. As a consequence, the orientation on Det.D/ defined via its
identification with det.kernel.D// is the same as that defined by its identification with
det.kernel.D˚L//.

For example, suppose now that D has trivial cokernel and zero index. Fix nonnegative
integers n and n0 whose sum is at least 1, and fix linear maps LW R2n ! H2 and
L0W R2n0!H2 . The kernel of .DCL/CL0W .H1˚R2n/˚R2n0!H2 is canonically
isomorphic to R2n˚R2n0 and the kernel of .DCL0/CLW .H1˚R2n0/˚R2n!H2

is canonically isomorphic to R2n0 ˚R2n . The orientation on Det.D/ that comes by
identifying the latter with the oriented, top exterior power of R2n˚R2n0 is the same
as that defined by identifying Det.D/ with the top exterior power of R2n0 ˚R2n .
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To end this illustration, suppose that D0 is a second Fredholm operator with trivial
cokernel and positive index. Orient kernel.D0/ so as to orient the line Det.kernel.D0//
and so orient Det.D0/. Because the integer 2n in (8-7) is even, the orientation of the
oriented line Det.D/˝Det.D0/ is insensitive to the choice for n and L in (8-7) when
defining Det.D/ subject to the constraint that DCL has positive index and trivial
cokernel.

Part 4 Suppose .� D 1; C/ 2 M� and let C denote the corresponding ech-HF
submanifold. As noted in Part 1, the operator that is used to define the embedded
contact homology differential is the intrinsically defined operator yDC . Of particu-
lar concern with regards to the differential is a certain orientation for the real line
Det.yDC /. The operator yDC can be viewed as the operator DC with domain space
HS D kernel.DS /˚H�D1 . It follows as a consequence of what is said in Parts 2
and 3 that

(8-9) Det.yDC /DDet.DS /˝Det.DC/:

This understood, orientations for the line Det.DS / and for the line Det.DC/ orient
the line of interest, Det.yDC /. The rest of this Part 4 explains how to relate the line
Det.DC/, and thus the line Det.yDC /, to Proposition 8.1.

Suppose that .�; C/ is any given pair in M� . Use DC in this case to denote the operator
from Lemma 7.15 acting on the Banach space H� . The range Banach space is C ’s
version of L. These respective Banach spaces are the fibers over M� of a pair of
smooth, Banach space bundles, H1 and H2 . Meanwhile, the various .�; C/ versions
of DC define the fibers of a section, D, of Hom.H1;H2/ which is Fredholm on each
fiber. Note in this regard that the smooth variation can be proved using what is said
in Step 3 from Part 4 of Section 7D (with arguments that mimic those from Step 3
from Part 3 of Section 5C). The section D has its associated determinant line bundle,
Det.D/!M� . The .� D 1; C/ version of Det.DC/ that appears in (8-9) is the fiber
over .1; C/ of Det.D/.

Hold on to Det.D/ for a moment and reintroduce the map F as in (7-55). The
differential of F at the point .�; 0/ defines a Fredholm map from R�H� ! L of the
form DCCLC where LC W R!L is a linear map. Given the choice for J, the operator
DCCLC has trivial cokernel and kernel dimension equal to

P
p2ƒ�pC1. This kernel

is canonically isomorphic to TM� . To summarize,

(8-10) kernel.DC CLC/D kernel.F�/D TM�j.�;C/:
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The differential of �1 at .�; C/ appears here as the restriction to kernel.DCCLC/ of
the projection map from R�H� to the R factor. Meanwhile,

Vtopkernel.DC CLC/

is the line Det.DC CLC/. Thus, an orientation for TM�j.�;C/ is induced from an
orientation for Det.DCCLC/ and vice versa.

At a point .�; C/ where � is a regular value of �1 , the determinant line Det.DCCLC/

is isomorphic to R˝Det.DC /. As the differential of �1 at .�; C/ is an isomorphism,
the differential of �1 at .�; C/ identifies the R factor in this tensor product as the
oriented line .�1;1/. Reintroduce now the line Det.D/!M� . It follows as a
consequence of what was just said that an orientation for the line Det.D/ defines an
orientation for the �1 D � level set in M� , and in particular for the � D 1 boundary
of M� . Note in this regard that this level set is a union of points when each p 2 ƒ

version of �p are zero. Meanwhile, an orientation of a point is, by definition, a choice
of C1 or �1. The C1 appears if the orientation of TM� given by Det.D/ at the point
in question is that given by the differential of �1 . By the same token, the orientation
given by Det.D/ to the � D 0 point in M� is C1 if the orientation of TM� at this
point agrees with that given by the differential of �1 .

Part 5 Suppose that
P

p2ƒ�pD 0. An orientation for Det.D/ induces an orientation
on TM�j�D1 which agrees or not with that used in Proposition 8.1; but agreement or
not is the same at all points in M�j�D1 . It follows from (8-10) that agreement occurs
if and only if there is agreement for the sole point of M�j�D0 . Meanwhile, Section 8C
describes a completely canonical orientation for Det.D/ when

P
p2ƒ�p D 0. As can

be seen readily from the definition in Section 8C, the resulting orientation for M�j�D0

agrees with that used in Proposition 8.1. This being the case, the Det.D/ orientation
for M�j�D0 also agrees with Proposition 8.1’s orientation when

P
p2ƒ�p D 0.

In the case
P

p2ƒ�p > 0, choose once and for all an ordering of ƒ� up to even
permutations. Such a choice orients

�
�p2ƒ� R

�
. Suppose that y 2

�
�p2ƒ� R

�
is a

regular value of the map p . Then the tangent space to M�y is isomorphic at any given
point .�; C/ to the kernel of the p ’s differential. Meanwhile, the normal bundle of M�y
in M� is mapped isomorphically by p ’s differential to

�
�p2ƒ� R

�
. This understood,

Proposition 8.1’s orientation for M�y and p ’s orientation of the normal bundle to M�y
orients the tangent space to any given smooth level set of �1 and in particular the tangent
space to M�j�D1 . Granted this last observation, (8-10) implies that the orientation of
M�j�D1 given by the differential of �1 � p either agrees with or disagrees with the
orientation induced by an orientation of Det.D/; but agreement or not is the same at all
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points. Moreover, agreement occurs if and only if the corresponding two orientations
of M�j�D0 agree.

Meanwhile, Section 8D describes a completely canonical orientation for the line
Det.D/!M� which consistently orients the level sets of �1 in M� . A look ahead
at what is said in Section 8D shows that this Det.D/ orientation for M�j�D0 agrees
with the one defined by Proposition 8.1 and so the Det.D/ orientation for M�j�D1

also agrees with Proposition 8.1’s orientation of M�j�D1 .

8C The canonical orientation when f�p D 0gp2ƒ

This subsection describes the promised canonical orientation for Det.D/ in the case
when all p 2ƒ versions of �p are zero. The description has four parts.

Part 1 The Banach space H� in this case can be viewed as a completion of a
dense domain whose typical element is written as .�0

S
; f.'p

0

; &p0/gp2ƒ/ where �0
S

is
a compactly supported section of NS over the t 2 Œ1C z�; 2� z�� part of S that is
orthogonal to the restriction of the kernel of DS . Meanwhile, each p 2ƒ version of
.'p
0

; &p0/ is a compactly supported map from R� I� to R2 . The parameter � enters
through the boundary constraint in (7-32). The Banach space norm is that induced by
the L2

1
–norm on sections of the t 2 Œ1C z�; 2� z�� part of S and the L2

1
–norm on

maps from R�I� . Meanwhile, the range space L is the corresponding L2 completion
of a dense domain with typical element .�#

S
; f.'p#; 'p#/gp2ƒ/ where �#

S
is a section

of an appropriate 2–plane bundle of the t 2 Œ1C z�; 2� z�� part of S, and where each
p 2ƒ version of .'p#; &p#/ is a map from R� I� to R2 . The Banach space norm is
the norm induced by the L2 –norm on the t 2 Œ1Cz�; 2�z�� part of S and on R�I� .

As can be seen from preceding descriptions, the Banach space H� depends only on �
(with S fixed) and the Banach space L depends only on S. What is done in Step 3
from Part 3 of Section 5C can be mimicked to see that the assignment to � 2 Œ0; 1� of
the Banach space H� defines a smooth Banach space bundle over the interval Œ0; 1�.
The latter’s �1 –pullback over M� is the Banach space bundle H1 that was defined in
Part 4 of the previous subsection. Meanwhile, the bundle H2 from this same Part 4 is
the product bundle M� �L.

Part 2 The Hilbert space bundles H1 and H2 extend over the product M� � Œ0; 1�
as follows: The bundle H2 extends as the product bundle. The bundle H1 extends as
the pullback via the projection to the square Œ0; 1�� Œ0; 1� of the bundle whose fiber
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at any given point .�; r/ is the Hilbert space Hr� . The homomorphism D from H1

to H2 over M� given by .�; C/!DC extends over M�� Œ0; 1� so that the restriction
to each fiber is Fredholm. The section at a given ..�; C/; r/ is the operator DC with
the parameter � in (7-32) replaced by r� . This extended bundle homomorphism is
also denoted by D. An orientation over M� � f0g for the associated real line bundle
Det.D/ defines an orientation for Det.D/ over the whole of M�� Œ0; 1� and thus over
M� � f1g. Of course, the converse of this last assertion is also true.

To define an orientation for Det.D/ over M� � f0g, fix .�; C/ 2M� . The version
of DC on H0 is a direct sum of operators. In particular, there is one for each p 2ƒ. In
each case, it is a version of (3-5) with coefficients that obey (3-6) and are given by (3-9).
The elements in the dense domain of this p–summand operator are constrained to obey
the boundary conditions in (3-7). There is the remaining S –labeled summand. The
relevant operator here is that depicted in (7-33) with domain given by the orthogonal
complement of the restriction kernel of DS to the part of S where t 2 Œ1Cz�; 2�z��.
Elements in the domain also obey the � D 0 version of the top line in (7-32).

As explained in Step 1 from Section 3D, each p 2ƒ version of (3-5) in the aforemen-
tioned direct sum is homotopic through a family of Fredholm operators to a canonical
operator, this given by (3-22) with the homotopy given by (3-21). The operators in
this family all have trivial kernel and cokernel. This understood, then, a once and
forever choice for the orientation of the determinant line of the operator in (3-22) with
boundary conditions given by (3-7) orients the determinant line for each of p 2 ƒ

version of (3-5).

Part 3 This part elaborates on what was said at the end of Part 2. To start, introduce O
to denote the set whose elements are 6–tuples of functions on R� I� that are of the
form .a1; a2; b1; b2/ which are suitable for use in (3-5). In particular, they must obey
the constraints in (3-6). No generality is lost for what follows by restricting to the case
where the integrals in the third bullet are negative. The set O is given the topology
that is induced by its inclusions into two topological function spaces of maps from
R�I� to R6 . The first topology is the C1–Fréchet space topology with it understood
that convergence means convergence in the various C k topologies on compact subsets.
The second topology is the strong C 1 topology. The space O with this topology is
contractible since the constraints in (3-6) form a convex set.

Each point in O defines an operator to which Proposition 3.2 applies. In particular,
each such operator has trivial kernel and cokernel. Let Det denote the corresponding
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determinant line bundle. It follows from what is said in Part 2 of the previous subsection
that this version of Det has a canonical identification with the oriented line

V2R2 . Use
this orientation. Such a choice gives the determinant line of the operators parametrized
by the elements in O a canonical orientation. Note that the space O and the line
Det see nothing of the spaces M and Y or their geometry. They do depend on the
parameters z� and R only to the extent that these define I� . Even so, the allowed
choices form a contractible set, so the orientation of Det just described is truly canonical
and universal.

Part 4 As noted, the other operator that enters the direct sum giving DC on H0 is
depicted in (7-33) but acting on the orthogonal complement of restriction of the kernel
of DS to the t 2 Œ1C z�; 2� z�� part of S. The boundary conditions are given by the
� D 0 version of the top line in (7-32). This operator with the domain as indicated
is denoted here by D�0

. Meanwhile, D?
S

is used here to denote the restriction of
the operator DS (given in (II.6-11)) to the orthogonal complement of its kernel. The
boundary conditions are given by (6-12). The Fredholm version needed here is the one
described in Part 3 of Section II.6E.

The operator D?
S

has trivial kernel and cokernel. As noted previously, this is the case
for D�0

when z� < c�1 , where c is purely S –dependent (or K–compatible). It is a
straightforward task to prove that D�0

is homotopic via an essentially canonical family
of Fredholm operators to D?

S
with each operator in the family having trivial kernel and

cokernel. The details are omitted but for the following description of the family: The
family is the concatenation of two 1–parameter families. The first modifies the operator
on the fixed domain via the family parametrized by Œ0; 1� with the � 2 Œ0; 1� version of
the operator defined by (7-33) with �� replacing �. The version with �D 0 is the
restriction of the operator DS to the t 2 Œ1C z�; 2� z�� part of S. The second part of
the homotopy keeps the operator fixed as DS but changes the domain Hilbert space
by introducing a parameter � 2 Œ0; 1� and restricting DS to the Œ1C�z�; 2��z��
portion of S. The boundary conditions that define any given � < 1 Hilbert space are
the t D 1C�z� and t D 2��z� analogs of those for the �D 1 member. Likewise,
the orthogonality condition with regards to the kernel of DS is changed only to the
extent that the orthogonality is defined by integration over the t 2 Œ1C�z�; 2��z��
part of S.

Granted all of this, it then follows that the line bundle Det.D/ along f0g �M� has
a completely canonical orientation given a choice of orientation for the determinant
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line of the operator D?
S

. It follows from what is said in Part 2 of the previous
subsection that such an orientation is canonically defined by identifying Det.D?

S
/

with
V2R2 . Moreover, it follows as a consequence of what is said in Parts 2 and 3 of

the previous subsection that this orientation for Det.D?
S
/ is induced from an orientation

for Det.DS / that comes by writing DS as DS DD?
S
CLS , where LS is the map

from kernel.DS / to the range of DS that sends all elements to zero.

Part 5 Given what is said in Part 3 of Section 5B, the respective orientations for
Det.D?

S
/ and for each p 2ƒ version of the determinant line of the operator in (3-5)

defines a completely canonical orientation for Det.D/ along M� � f0g. As noted
above, the latter defines a completely canonical orientation for Det.D/ on M�� Œ0; 1�,
and thus to Det.D/ along M� � f1g. The latter is the canonical orientation promised
in Part 5 of the previous subsection.

8D Canonical orientations when
P

p2ƒ�p > 0

This subsection describes the promised canonical orientation for Det.D/!M� in the
general case. The description that follows has three parts.

Part 1 An orientation for Det.D/!M� is defined by first extending the family
of operators to a family with parameter space M� � Œ0; 1�. This extension is defined
by making the domain for any given ..�; C/; r/ version of the operator depend on
the parameter for the extra Œ0; 1� factor. The range space is kept constant, and the
operator itself stays as DC . To say more about the r –dependence of the domain, fix a
pair ..�; C/; r/ 2M� � Œ0; 1�. The domain for the corresponding Fredholm operator is
identical to that when r D 1 but for one item: the boundary conditions in (7-32) replace
� with r� . This extended family defines a homomorphism over M� � Œ0; 1� between
the corresponding extensions of the Banach space bundles H1 and H2 . The respective
extensions of these bundles over M� � Œ0; 1� are also denoted by H1 and H2 , and
the homomorphism between them by D. The latter version of D has its associated
determinant line, Det.D/. Because the factor Œ0; 1� is contractible, an orientation for
Det.D/jrD0 canonically induces one for Det.D/jrD1 and thus for the line of interest,
Det.D/!M� .

Part 2 To define a canonical orientation for Det.D/ over the r D 0 boundary of
M�� Œ0; 1�, focus for the moment on a given pair ..�; C D fCS ; fCpgp2ƒg/; r D 0/ on
this boundary. The relevant version of (7-32) is such that there is no coupling between
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the summands that define the domain space for the operator DC . As such, the kernel
and cokernel of DC is the direct sum of the respective kernel and cokernel for the
operator D�0

from Part 4 of the previous subsection, and the respective kernels and
cokernels for each C 2 fCpgp2ƒ version of an operator that is described either by
Proposition 3.2 or by Proposition 5.7.

Part 4 of the previous subsection asserts that D�0
is homotopic through a family of

Fredholm operators with trivial kernel and trivial cokernel to the operator D?
S

. In
particular, this same Part 4 finds that Det.D�0

/ is canonically isomorphic to Det.D?
S
/

and thus canonically oriented by the identification Det.D?
S
/D

V2R2 from Part 2 of
Section 8B.

Meanwhile, if p 2ƒ and �p D 0, then the corresponding C D Cp contribution to DC

is an operator that is described in Parts 2 and 3 of the previous subsection. In particular,
these parts of Section 8C endow the corresponding determinant line with a completely
canonical orientation by identifying it with

V2R2 .

In the case when �p > 0, the contribution of Cp to DC is an operator of the sort that
is described by Proposition 5.7. Use D in what follows to denote this operator. What
follows describes an absolutely canonical orientation for Det.D/.

Proposition 5.7 asserts that D has �p–dimensional kernel and trivial cokernel. This
being the case, its determinant line is oriented by an orientation of its kernel. To
orient the kernel of D, suppose that E � R�HCp� is an end of Cp whose constant s
slices converge as s !1 to yCp , this the

�
yuD 0; cos � D 1p

3

�
integral curve of v .

Reintroduce the notation from Sections 5A and 5C so as to talk about the kernel of D

on E. As explained in Step 5 of Part 4 from Section 5C, if �p D 1 and mp D�1, or
if �p D 2, there is an element in the kernel of D that can be written at large values
of sC on E as a map from the large sC part of R�R=2�Z to R2 that has the form

(8-11) .sC; �C/! cE.e��1sC ; 0/C cEe;

where cE 2R and where jej � c0e�.�1C1=c0/sC .

In the case �p D 1 and mp D�1, the kernel of D is oriented by the unique element
with cE D 1. In the case �p D 1 and mp D 1, there is an analogous orientation for the
kernel of D, this defined by the cE D 1 element with cE now defined by the analog
of (8-11) for the end of Cp whose constant s slices converge to y�p as s !1.

If �p D 2, what is said in Step 5 of Part 4 of Section 5C implies that the kernel of D

has a unique basis of the form .yC; y�/ with the following properties: The element yC
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is given by the cE D 1 version of (8-11) on the end of Cp whose constant s slices
converge to yCp as s ! 1. Meanwhile, jyCj � c0e�.�1C1=c0/s on the end of Cp

whose large s slices converge to y�p as s !1. The situation is reversed for y� ; it
is given by the cE D 1 version of (8-11) on the end of Cp whose constant s slices
converge to y�p as s !1, and it is bounded in absolute value by c0e�.�1C1=c0/s on
the end whose constant s slices converge to yCp as s !1.

The canonical nature of these orientations is explained in Part 3.

Part 3 This part of the subsection explains the sense in which Part 2’s orientation for
the kernel of D is completely canonical.

To put things in a sufficiently general framework, use O now to denote the set whose
elements have the form .D;Q; pC ; p� ; hD .'; &/;D/ with entries as follows: What
is denoted by D is a data set .z�; ı; x 0;R/ that can be used to define Hp and the
subspace HCp� . Meanwhile, Q�R consists of a single point if �p D 1; it consists of
two labeled points if �p D 2, one point labeled with a plus sign and the other with a
minus sign. The pair pC and p� are integral curves of v in HCp� with one boundary
point on the u < 0 boundary of HCp� and the other boundary point is on the u > 0

boundary. What is denoted by h signifies a smooth map from .R� I�/ nQ to R2 of
the sort that is described at the start of Section 5C; and D denotes an operator of the
sort described by Proposition 5.7. The next two paragraphs define a topology for O.

Let yoD .D;Q; pC ; p� ; hD .'; &/;D/ denote a given element in O. A basis for the
neighborhoods of yo is indexed by .";V;W/ where the notation is as follows: First, " is
a positive number, and less than 10�4 times the distance between the points from Q if
�p D 2. The definition of V and W requires the introduction of the set Q" �R� I� ,
this the set of points with distance less than " from Q. What is denoted by V is an open
neighborhood of .'; &/ in the C1–Fréchet topology on the space of smooth maps
from .R� I�/ nQ" to R2 . To describe W, let .a1; a2; b1; b2/ denote the coefficient
functions that define D via (3-5).

What is denoted by W is an open neighborhood of .a1; a2; b1; b2/ in the C1–Fréchet
topology on the space of maps from the domain .R� I�/ nQ" to R4 .

Let U � O denote the neighborhood of yo with the given indexing set. A point
yo0 D .D0;Q0; . 0pC ; 

0
p�
/h0;D0/ from O lies in U when the conditions listed next are

met. Each entry of D0 has distance less than " from the corresponding entry of D .
Corresponding points from Q and Q0 have distance less than 10�1=4" from each
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other, and each of the endpoints of  0pC and  0p� has distance less than " from the
corresponding endpoint of the respective segments pC and p . The map h0 from
.R� I�/ nQ0 to R2 lies in V, and the map from this same domain to R4 given by
sending any given .x; yu/ to the D0 version of .a1; a2; b1; b2/ lies in W.

It follows from what is said in Proposition 5.1, Lemmas 5.9 and 3.3 and Steps 3–4 in
Section 3C that the assignment to any given data set yo 2O of its operator D defines
a continuous section of a vector bundle over O of the form Hom.H1;H2/ where
H1 and H2 are Banach space bundles over O. Let D denote here this section of
Hom.H1;H2/. There is the corresponding determinant line bundle, Det.D/!O.

The lemma that follows makes the salient observations about O and Det.D/.

Lemma 8.4 Define the space O as above.

� The line bundle Det.D/!O is orientable.

� O is path connected if �p D 1 and it has two path connected components if
�p D 2. In the latter case the components are distinguished by whether the C
labeled point from Q is greater than or less than the � labeled point.

This lemma is proved in a moment. The next paragraph explains how this lemma
leads to a canonical orientation for the versions of Det.D/ that arise in Part 2 of this
subsection.

Let yo 2O and let D denote yo’s operator. Proposition 5.7 guarantees that D has trivial
cokernel and �p–dimensional kernel. The paragraph subsequent to (5-11) at the end
of Part 2 can be repeated to define a canonical basis for the kernel of D. Lemma 8.4
guarantees that the various yo 2O versions of this basis define a canonical isomorphism
between Det.D/ and the oriented product bundle O �R. It is in this sense that the
versions of Det.D/ from Part 2 have a completely canonical orientation.

Proof of Lemma 8.4 To prove the first bullet, look first at Proposition 5.7 to see that
each yo2O version of D has �p–dimensional kernel. This being the case, these kernels
fit together as yo varies in O to define a �p–dimensional vector bundle ker.D/!O.
The basis given in the paragraphs subsequent to (5-11) define an isomorphism from
this bundle to the product bundle.

The proof of the second bullet has eight steps. The first step reviews some background
material. In the �p D 1 case, the remaining seven steps construct a continuous path
parametrized by Œ0; 7� that starts at a given element yo2O and ends at any given second
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element yo0 2O. If �p D 2, these same steps construct a continuous path parametrized
by Œ0; 6� that starts at a given element yo 2 O and ends at any given second element
yo0 2 O with the following property: Let Q and Q0 denote the respective yo and yo0

versions of the ˙ labeled points in R. The labels of the largest points in Q and Q0

agree. These last seven steps construct the desired path as an end-to-end concatenation
of seven Œ0; 1�–parametrized paths. By way of notation, each step writes the start
point of its segment as .D; Q; pC ; p� ; hD .'; &/; D/. They all write the point yo0 in
similar fashion using primes to distinguish respective components that differ.

Step 1 Suppose that E is an end in yo’s submanifold Ch whose constant s slices
converge to yCp as s !1. Use E 0 to denote the corresponding end of Ch0 . Param-
etrize both as in Section 5A and Proposition 5.1; use y and y0 denote the respective
parametrizing maps. The map y is defined in part by data .cnD1; �nD1/, where
cnD1 2R n 0 and �1 2R=2�Z. The constant c1 can be assumed positive, for if not,
there is an equivalent parametrization with �1 replaced by �1C� and c1 replaced
by �c1 . Let c0

1
> 0 and �0

1
denote the corresponding y0 versions of these parameters

with c 0
1
> 0 also. There are corresponding versions of c1 and c 0

1
when the respective

constant s slices of E and E 0 converge to y�p as s !1.

Step 2 The first path moves yo’s subset Q to the corresponding yo0 subset Q0. Such a
path is readily constructed from a compactly supported isotopy of R� I� that moves
only the R coordinate of any given point, moves a neighborhood of each point from Q

by a rigid translation, and takes Q to Q0. The � D 1 member of this path is now
denoted by yo.

Step 3 This step constructs a Œ0; 1�–parametrized path �!yo� in O whose �D0 mem-
ber is yo and whose �D1 member is given by yo1D .D; Q; pC ; p� ; h1D .'1; &1/; D1/

where .'1; &1/ D .'; &/ except in very small radius disks about the point or points
in Q. In a somewhat small radius disk .'1; &1/ D .'

0; & 0/. Likewise, D1 D D on
the first disk and D1 D D0 on the smaller radius disk. To do this write Ch and Ch0

on corresponding ends E and E 0 using the maps y and y0 as in Step 1. Let .c1; �1/

and e1 denote the data that appears in Proposition 5.1’s depiction of y, and let .c 0
1
; �0

1
/

and e0
1

denote the corresponding y0 data set. Write �0
1
D �1 C � with � 2 Œ0; 2�/.

Set �1� D �1 C �� for � 2 Œ0; 1�. Meanwhile, set c1� D c1 C �.c 01 � c1/ and set
e1� D e1C �.e

0
1
� e1/ so as to define

(8-12) ��� D˛y.e
��1sCCe1; 0/Cc1�e

��11sC.cos.�C��1� /; r11 sin n.�C��1� //

C e1� :
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The arguments from the Steps 1–3 of the proof of Proposition 5.1 can be used in an
almost verbatim fashion to find s� > 1 and a smooth, Œ0; 1�–parametrized family of
maps, � ! q�� W Œs�;1/�R=2�Z! R2 , with the following three properties: First,
y� D y�� C q�� obeys (5-7). Second, jy� � y�� j �

1
1000

minfc1; c2ge
��11sC . Third,

q�0 D q�1 D 0.

Given the family fy�g�2Œ0;1� , use what is said in Lemma 5.3 to write each � 2 Œ0; 1�
version as a map .x; yu/! .'� ; &� /j.x;yu/ with image R2 and domain the complement
of the given point from Q in a small radius disk in R� I� about this point. Use r to
denote the radius of this disk and use �r to denote the function on R� I� given by
the rule .x; yu/! �

�
4
r ..x�y/2C yu2/1=2� 1

�
. If Q has two points, do this for both.

Extend the corresponding family of maps defined in the radius r disk or disks about
the points in Q over the whole of .R� I�/ nQ as h on the complement of the disk
or disks and as the relevant .'� ; &� / version of h� D .1��r/.'; &/C�r .'� ; &� / in
each disk. Use fh�g�2Œ0;1� to denote this family of maps from .R�I�/nQ to R2 and
for each � 2 Œ0; 1�. Use D� to denote the h� version of (3-9) and use yo� to denote
.D;Q; pC ; p� ; h� ;D� /. The assignment �!yo� defines a continuous path in O with
the desired � D 0 and � D 1 members. Use yo 2 O henceforth to denote the � D 1

member of this family.

Step 4 Use cutoff functions in the manner of Parts 1–3 of Section 6A to construct a
continuous, Œ0; 1�–parametrized path � ! yo� D .D;Q; � ; p� ; h� ;D� / in O whose
� D 0 member is yo and whose � D 1 member is such that p� and 1 have the same
respective � angles at their endpoints, but are such that the respective change in �
differs by �2� . Meanwhile, each � 2 Œ0; 1� version of h� agrees with h in the radius 1

2

disk or disks centered on the points in Q. In addition, the yuD�R� 1
2

ln z� boundary
values of h1 have constant y� component, and the corresponding yu D RC 1

2
ln z�

component winds once around R=2�Z in the anticlockwise direction as x varies
from �1 to 1. By way of a parenthetical remark, the ‰p–image of the graph in
R � X of h� can be guaranteed J –holomorphic only where js j � 1. The needed
modifications to what is done in Parts 1–3 of Section 6A are straightforward and are
omitted. What is denoted by D� is the h� version of the operator in (3-9). Use yo 2O
now to denote the � D 1 member of this path.

Step 5 Cutoff functions in the manner of Parts 1–3 of Section 6A are now used to
construct a continuous, Œ0; 1�–parametrized path � ! yo� D .D� ;Q; � ; p�;� ; h� ;D� /

in O whose � D 0 member is yo and whose � D 1 member is such that D�D1 D D0.
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Meanwhile, the � angles of the boundary points of both p�;� and � are independent
of � ; Lemma II.2.2 is invoked to arrange this. The restriction of h� to a very small
disk or disks centered on the point or points in Q is also independent of � . As in the
previous steps, D� denotes the h� version of (3-9). Use yo now to denote the � D 1

member of this path.

Step 6 The constructions in Parts 1–3 of Section 6A are used yet again, this time to
construct a continuous, Œ0; 1�–parametrized path � ! yo� D .D0;Q; � ; p�;� ; h� ;D� /

which is such that p�;�D1 D 
0
p�

and �D1 is the  0p� analog of what is denoted by
1 in Step 4. This is done by moving the endpoints while invoking Lemma II.2.2. The
map h� restricts to a very small radius disk or disks centered on the point or points
in Q to be independent of � . As before, D� denotes the h� version of (3-9). Use
yo 2O henceforth to denote the � D 1 member of this fifth segment.

Step 7 The construction in Step 4 is run in reverse to construct a Œ0; 1�–parametrized
path �!yo� in O that moves pC so that yo1D .D

0;Q;  0pC ; 
0
p�
; h1;D1/ with the path

such that each � 2 Œ0; 1� member of h� is again independent of � on some small radius
disk or disks centered on the point or points in Q. The operator D� is the h� version
of (3-9). As in the previous steps, use yo 2O to denote the � D 1 version of this path.

Step 8 This final leg of the path, denoted by Œ0; 1�! yo� , is a family of data sets
that have the form .D0;Q;  0pC ; 

0
p�
; h� ;D� /. The � D 1 member is yo0. The family is

defined using a suitable 1–parameter family of cutoff functions to homotope h to h0.
The details are omitted as they contain no novelties.

8E Canonical orientations for Mp˙

Proposition II.3.4 introduces for each p 2ƒ a pair of moduli spaces, MpC and Mp� ,
whose constituents are embedded disks in the part of the yu D 0 locus of R �Hp

where 1� 3 cos2 � < 0. Those in MpC sit where cos � > 1p
3

and their constant s
slices converge as s !1 in an isotopic fashion to yCp . Those in Mp� sit where
cos � < � 1p

3
and their constant s slices converge as s !�1 to y�p . What follows

talks solely about MpC as the Mp� story is identical save for changing � to � � � .

Let C 2MpC denote a given curve. By way of a reminder from Section II.3C, the
curve C is invariant under the action of S1 that rotates the angle � on Hp and so the
vector field @� is tangent to C. The vector field depicted in (II.3-10) is proportional
to J@� and so is also tangent to C also. This being the case, C is foliated by the
integral curves of the latter vector field except for the single point on C where it and @�
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are zero. This point is the � D 0 point on C and the infimum of s on C. The latter point
is the only critical point of s on � . Use y 2R to denote this point. The association
to each curve in MpC of the minimum of s on the curve defines an R–equivariant
diffeomorphism from MpC to R.

Let UC � Hp denote the tubular neighborhood of yCp that is described in Part 2 of
Section 5A. The s�y part of the given curve C lies in R�UC and so can be described
using the coordinates .sC; �C; �C;uC/ as defined in (5-5). As such, it appears as the
graph of a function .sC; �C/! .sC; �C; a; b/, where yD .a; b/ is given by (5-8) with
˛ D ˛y < 0.

Since C is not R–invariant, the normal projection of the vector field @s along C

supplies a canonical element to the kernel of C ’s version of the operator DC . Denote
the latter by �C . Since the vector field in (3-10) is not proportional to @s along C, this
canonical element �C is nowhere zero.

To say more about �C , use (5-5) with (5-8) to identify the normal bundle to C along
C \ .R�UC/ with the product bundle using the 1–forms .d�C; duC/. Granted this
identification, and with C \ .R � UC/ parametrized as a graph in the manner just
described, it follows from (5-8) that �C appears as a map from the sC� 1 part of
R�R=2�Z to R2 that can be written as

(8-13) .sC; �C/!��C ˛y.e
��1sC C e; 0/;

where jej � j˛y j e
�.�1C1=c0/sC .

A parenthetical remark subsequent to Proposition II.3.4 asserts that the cokernel of DC

is trivial. This assertion is proved in a moment. It implies that the kernel of DC is
1–dimensional, this being the span of �C . The identification between the kernel of DC

and the tangent space at C to MpC gives the canonical section �C , and this section
defines the desired canonical orientation.

To see why cokernel.DC /D 0, first identify the cokernel with the kernel of C ’s formal
L2 adjoint. This done, use the previously described parametrizations of C and C ’s
normal bundle on C \ .R�UC/ to view an element in the cokernel of this adjoint
operator as a map from the sC� 1 portion of R�R=2�Z to R2 . To see what such
an element looks like, view DC on this part of C as an operator of the form D0C d

with D0 as in (5-1) and with d a first-order operator on the space of maps from this
large sC portion of R�R=2�Z to R2 with �–invariant coefficients that are bounded
in absolute value by c0 j˛y je

�.�1C1=c0/sC . With DC written as D0C d, an element in
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the kernel of DC ’s formal L2 adjoint can be written on C ’s intersection with R�UC

as

(8-14) .sC; �C/! c0.0; e
��2sC C e0/C cn.yn�j.�sC;�C/C en/;

where the notation is as follows: First, c0 2 R, cn 2 R and one of these is not
zero. Meanwhile, y�n is as defined in (5-4). What is written as e0 in (8-14) is
�–independent and obeys je0j � c0e�.�2C1=c0/sC , and what is written as en obeys
jenj � c0e�.�2nC1=c0/sC .

Granted that a cokernel element is a section of N ˝ T 0;1C, and granted that C is
a disk, the claim that the cokernel of DC is trivial follows from (8-14) because the
latter forces any nonzero element in the kernel of C ’s adjoint to vanish at some point
on C with positive local degree. This sort of vanishing is not possible by virtue of
the fact that the formal L2 adjoint of DC differs from that of x@ by a zeroth-order
endomorphism.

8F Canonical orientations for the Iech D 1 moduli spaces

Assume that the defining data for the geometry of Y and R�Y are such that what is
said in Sections 1–7 and 8A–8E hold. This subsection defines a canonical orientation
for the IechD 1 moduli spaces, fM1.y‚

0; y‚/gy‚0;y‚2yZech;M
. The desired orientations are

defined with the help of a given orientation for the real line bundle over AHF1 whose
fiber over any given surface S is the determinant line for the operator DS . This line
bundle is denoted by Det. yD/. A given orientation for Det. yD/ is assumed in the four
parts that follow. Also needed is a chosen ordering for the set ƒ. The resulting ordered
set is written as fp1; : : : ; pGg when the ordering is relevant.

Part 1 Fix a pair .y‚0; y‚/2 yZech;M� yZech;M and write these two elements respectively
as ..y�0; k 0/; .k0p; O0p/p2ƒ/ and ..y�; k/; .kp; Op/p2ƒ/. It follows from Propositions 8.1
and 8.2 that the moduli space M1.y‚

0; y‚/ is nonempty if and only if one of the two
conditions listed in the upcoming (8-15) hold. By way of notation, (8-15) introduces
AHF1..y�

0; k 0/; .y�; k// to denote the space of Lipshitz submanifolds with the following
three properties: If S 2AHF1..y�

0; k 0/; .y�; k//, then the constant s slices of S converge
in an isotopic fashion as s !1 to the arcs that form y� , and they converge in an
isotopic fashion as s !�1 to the arcs that form y�0. In addition, the surface S has
intersection number k � k 0 with the arc  .z0/ . Finally, the operator DS has Fredholm
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index 1. The following also uses �p to denote the number of elements in a given
p 2ƒ version of Op :

(8-15) � AHF1..y�
0; k 0/; .y�; k// ¤ ∅ and each p 2 ƒ version of .kp; Op/ equals

.k0p; O0p/.

� .y�0; k 0/D .y�; k/ and there exists precisely one p 2ƒ such that .kp; Op/¤

.k0p; O0p/. In this case, �0p D�p� 1 and one of the following holds:

(a) k0p D kp .

(b) k0p D kp˙ 1.

The upcoming Part 2 specifies the desired orientations for the case of the first bullet
in (8-15), Part 3 considers the case of item (a) of the second bullet, and Part 4 speaks
to the case of item (b) of the second bullet.

Part 2 Suppose that M1.y‚
0; y‚/ is described by the first bullet in (8-15). Any given

element # 2M1.y‚
0; y‚/ is a disjoint union of components with some union from a

version of M� that is defined by a surface S 2AHF1 . The other components are R–
invariant cylinders of the form R� yCp or R� y�p for various p 2ƒ. The contribution
to # from any given p depends on Op ; either none, one or both of these p–labeled
cylinders can be present.

Let C D .1;C / denote M� part of # . This submanifold may also be a union of
components, but in any event, precisely one such component is not R–invariant. In
any event, the tangent space to the curve C is canonically identified with the kernel of
the corresponding version of the operator yDC and it is therefore oriented by a choice
of orientation for the line Det.yDC /. The desired orientation for the latter is supplied
by (8-9) using the given orientation for Det.DS / and the canonical orientations for
the line Det.DC/ given in Section 8C.

Part 3 Suppose that M1.y‚
0; y‚/ is described by item (a) of the second bullet in (8-15).

This version of M1.y‚
0; y‚/ contains but a single R–orbit. Let # denote a given point

on this orbit. The element # has some union of R–invariant components that define
an element in a version of M� . The latter is defined by an HF-cycle. Part 5 in
Section II.2B associates an orientation sign, either C1 or �1, to each integral v in
this cycle. Let NC denote the number of positive orientation signs.

The given point # also contains a union of R–invariant cylinders, each of the form
R � yCp0 or R � y�p0 for various p0 2 ƒ n p. The contribution to # from any given
such p0 depends on Op0 ; either none, one or both of these p–labeled cylinders can be
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present. The nature of the remaining components depends on which of the cases listed
below occurs:

(8-16) � O0p D f0g and Op D f1g.

� O0p D f�1g and Op D f1;�1g.

� O0p D f0g and Op D f�1g.

� O0p D f1g and Op D f1;�1g.

In the case of the first bullet, the pair p contributes to # an element from Proposition
II.3.4’s moduli space MpC ; and in the case of the second bullet, it contributes such
an element and also the cylinder R� y�p . In either case, let CC denote the element
from MpC . The tangent space at # of M1.y‚

0; y‚/ is canonically isomorphic to that
of MpC at CC . Meanwhile, TMpC has its canonical orientation from Section 8E.
Use o to denote the orientation for TM1.y‚

0; y‚/ that comes from this canonical
orientation for TMpC . This may or may not be the desired orientation. To say if
it is or not, introduce k 2 f1; : : : ; Gg to denote the label for p when ƒ is written as
fp1; : : : ; pGg and introduce N to denote N D

P
1�k0<k �k0 . The desired orientation

for TM1.y‚
0; y‚/ is .�1/NCCN o.

In the case of the third bullet, the pair p contributes to # an element from Proposition
II.3.4’s moduli space Mp� ; and in the case of the fourth bullet, it contributes such
an element and also the cylinder R� yCp . In either case, let C denote the element
from Mp� . The tangent space at # of M1.y‚

0; y‚/ is canonically isomorphic to that
of Mp� at C. The tangent bundle to Mp� also has a canonical orientation from
Section 8E. Use o now to denote the orientation for TM1.y‚

0; y‚/ that comes from this
canonical orientation for TMp� . Reintroduce k 2 f1; : : : ; Gg to denote the label for p
when ƒ is written as fp1; : : : ; pGg and N D

P
1�k0<k �k0 . The desired orientation

for TM1.y‚
0; y‚/ is .�1/NCCN o in the case of the third bullet in (8-16) and it is

.�1/NCCNC1o in the case of the fourth bullet.

Part 4 This part deals with item (b) of the second bullet in (8-15). Consider first
the case where k0p D kpC 1. In this case, either the first or the second bullet in (8-16)
holds. In any event, a given # from M1.y‚

0; y‚/ consists of a union of components.
Some subset of these define an element C D .1;C / from a version of M� . The
pair p contributes the R–invariant cylinder R� y�p if and only if the second bullet
in (8-16) is relevant. The various p0 2 ƒ n p contribute either none, one or both R–
invariant cylinders from the set fR� y�p0 ;R� y

C
p0 g, this depending as usual on Op0 .

This understood, the tangent space to M1.y‚
0; y‚/ at # is canonically isomorphic to
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the kernel of the operator yDC . The latter is oriented via (8-9) using the given orientation
for the relevant version of S and the canonical orientations supplied by Sections 8C
and 8D for Det.DC/. Note in this regard that S is R–invariant and so DS has trivial
kernel and cokernel. Use o to denote the orientation for TM1.y‚

0; y‚/ at # that comes
via the aforementioned identification with the kernel of yDC . Use k again to denote the
label for p when ƒ is written as f1; : : : ; Gg and use N again to denote

P
1�k0<k �k0 .

The desired orientation for # ’s component of TM1.y‚
0; y‚/ is .�1/NCCN o.

Suppose next that k0pD kp�1. The story here is almost identical to that just told but for
two salient and very much related changes. First, either the third or the fourth bullets
in (8-16) hold. In the case of the fourth bullet the element # contains the R–invariant
cylinder R� yCp . In either case, let o again denote the orientation for TM1.y‚

0; y‚/

at # that comes via the canonical identification with the kernel of the relevant version
of yDC with it understood that the kernel of the latter is oriented using (8-9) as before.
Reintroduce the integer N . The desired orientation for # ’s component of TM1.y‚

0; y‚/

is .�1/NCCN o if the third bullet of (8-16) is relevant, and it is .�1/NCCNC1o if the
fourth bullet in (8-16) is relevant.

8G Coherent orientations

The definition of the Heegaard Floer differential requires the specification of an orienta-
tion for the low-dimensional components of AHF . There are constraints on the choice
that are described in Section 6 of [10]. A choice that obeys the constraints is said to be
a coherent system of orientations. The definition of the embedded contact homology
differential likewise requires the specification of suitably constrained orientations for
the low-dimensional components of Mech . Orientations that obey the latter constraints
are also said to constitute a coherent system. The constraints are given in Section 9.5
of [7]. Proposition 8.5 in the upcoming Part 2 of this subsection makes a precise the
assertion that a coherent system of orientations for AHF leads to a suitably compatible
coherent system of orientations for Mech . Part 1 of the subsection sets up the needed
background information.

Part 1 A closed integral curve of v is said to be hyperbolic if the associated linearized
return map in SL.2IR/ has two real eigenvalues with neither equal to 1 or �1. The
integral curve is said to be positive when these eigenvalues are positive.

As noted previously, Section 9.5 in [7] defines what is meant by a coherent orientation
for the components of Mech . There are four constraints which are labeled (OR1)–(OR4)
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3208 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

in this section of [7]. Those labeled (OR1) and (OR4) are normalization constraints
that set the orientation in specific instances. The salient constraints are those expressed
by (OR2) and (OR3). The former asserts that the orientation should be compatible
with end-to-end concatenation of the subvarieties in Mech . The condition expressed
by (OR3) constrains the orientation over the components of Mech whose elements
consist of disjoint unions of two or more submanifolds. This (OR3) constraint requires
an a priori choice of ordering for the ends of any given element whose constant s slices
converge as s!1 to positive hyperbolic integral curves of v . Also needed is a choice
of ordering for those ends that converge as s !�1 to positive hyperbolic integral
curves of v .

Section 8F describes orientations for fM1.y‚
0; y‚/gy‚0;y‚2yZech;M

, these being the 1–
dimensional components of Mech . The definition in Section 8F makes no reference to an
ordering of the relevant ends of the constituent submanifolds. Even so, Proposition 8.5
refers to the Section 8F orientations when describing a coherent system of orientations
for Mech . This referral implicitly invokes the ordering given in a moment for the ends
of the elements in fM1.y‚

0; y‚/gy‚0;y‚2yZech;M
.

It proves useful to first define an ordering for the positive hyperbolic integral curves
of v in any given element from Zech;M. To this end, let ‚ denote a given element
from Zech;M and let ‚C �‚ denote the subset of positive, hyperbolic integral curves.
Introduce ‚ech;M �‚ to denote the subset of closed integral curves of v that cross
one or more of the handles fHpgp2ƒ . Given  2‚ech;M , let n denote the smallest of
the labels of those p 2ƒ with Hp\  ¤∅. Order ‚ech;M so that the corresponding
ordered set of integers fn g2‚ech;M is increasing. Use ‚Cech;M �‚ech;M to denote
the corresponding ordered subset of positive hyperbolic elements. Let o‚;p denote the
subset from the set fyCp ; y

�
p g that come from ‚. If this set has two elements, order it

as just written. Use this convention to order ‚C as

(8-17) ‚C D f‚Cech;M ; op1
; : : : ; opGg:

Let y‚0 and y‚ denote elements in yZech;M and let C denote a given element in
M1.y‚

0; y‚/. What follows directly describes the convention for the ordering of C ’s
ends for the case described by the first bullet in (8-15). The submanifold C may have
more than one component, but only one is not R–invariant. The remaining components
are R–invariant cylinders. Some union of the latter with the component that is not
R–invariant defines an ech-HF submanifold. Write this ech-HF submanifold as C1[C2

with C1 denoting the non-R–invariant component. The desired ordering places the
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ends of C1 before those of C2 . Meanwhile, the ends of C1 are ordered amongst
themselves so as to be consistent with the ordering of the relevant ‚ or ‚0 version
of (8-17)’s set ‚Cech;M , and likewise those of C2 . All of the remaining R–invariant
cylinders in C are from the set fR� yCp ;R� y

�
p gp2ƒ . Their ends are ordered after the

ends from C1[C2 . The union of the respective s � 1 and s ��1 ends from these
sorts of R–invariant cylinders is then ordered so as to be consistent with the ordering
given by the relevant version of (8-17)’s ordered set fop1

; : : : ; opGg.

The convention in the case described by the second bullet in (8-16) orders the relevant
subset of s � 1 ends of C so as to give the ordering in (8-17), and likewise for the
s ��1 ends of C.

Part 2 This part explains how a coherent system of orientations for AHF leads to
one for Mech and in particular for the components of fM1.y‚

0; y‚/gy‚0;y‚2yZech;M
. The

assertion that such is the case is given by Proposition 8.5. The proposition refers to the
notion from Section 2A of a weakly compact K �AHF . As noted in [10] and implied
by Lemma II.6.6, the tangent space to AHF at any given Lipshitz submanifold S has a
canonical identification with the kernel of the corresponding operator DS . This being
the case, an orientation for the tangent space of AHF is neither more nor less than an
orientation for the real line bundle Det. yD/!AHF .

Proposition 8.5 Suppose that a coherent system of orientations has been chosen for
AHF and thus for the line bundle Det. yD/. There exists a weakly compact set K �AHF

that contains all elements in AHF1 and has the following significance: Choose a K–
compatible data set DD .z�; ı; x 0;R/ from the collection described in Proposition 7.2
for a suitable choice of � , and choose the almost complex structure on R�Y pursuant
to the constraints in Proposition 7.1–7.3, 8.1 and 8.2. Use this data to define Zech;M

and Mech . There exists a coherent system of orientations for Mech whose restriction to
fM1.y‚

0; y‚/gy‚0;y‚2yZech;M
agrees with that defined in Section 8F using the orientations

given by Det. yD/.

Proof With the goal a proof of Theorem 1.1, coherent orientation systems are needed
only for the one-dimensional components and certain two-dimensional components of
AHF and Mech . To keep this long paper from being even longer, the coherence for the
orientations of Mech will be verified only for these relevant components.

The various p 2ƒ versions of yCp and y�p are all positive hyperbolic closed integral
curves of v . Proposition II.2.7 characterizes the other positive hyperbolic integral curves
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of v that can appear in any given element from Zech;M. With the preceding understood,
it is a straightforward task to verify that the orientations for the various elements in
fM1.y‚

0; y‚/gy‚0;y‚2yZech;M
given in Section 8F using Part 1’s ordering of the relevant

ends of the constituent submanifolds obey the (OR3) constraint from Section 9.5 in [7].
The (OR3) constraint is the only relevant constraint on the 1–dimensional components
of Mech .

Consider next the case where C �Mech is a 2–dimensional component. There are two
sorts of components to consider. The first is the union of cross-sectional 2–sphere in
the handle H0 with R–invariant cylinders. The sphere component is oriented using the
convention (OR1) from Section 9.5 of [7]. The constraint in (OR3) of [7] is obeyed as
long as the ordering for the set of s� 1 ends is the same as that for the set of s��1

ends. The other constraints in Section 9.5 of [7] are not relevant.

The other sort of 2–dimensional component contains submanifolds that lie entirely in
R� .Mı [

�S
p2ƒHp

�
. The only salient constraint to consider for this case is that

given by (OR2). The concern with (OR2) arises when a 2–dimensional component
of Mech has the following property: For fixed " > 0, the component has two or more
open subsets that are described by Proposition II.7.2 using distinct versions of „ of
the form fZ1;Z2g where Z1Df.S1; u1/;∅/ and Z2Df.S2; u2/;∅g are such that S1

and S2 come from AHF1 . What with Lemma 9.6 in [7], the end-to-end concatenation
using any such version of „ orients the relevant component. The constraint (OR2)
requires that all such orientations agree.

To see about (OR2), note that end-to-end concatenations of the pair S1 and S2 from
any given such „ supply Lipshitz submanifolds in a 2–dimensional component of AHF .
The construction is described in Appendix B of [10]. Moreover, what is said in this
appendix implies a Heegaard Floer version of Lemma 9.6 in [7]. This analog orients
the relevant 2–dimensional component of AHF given orientations for Det.S1/ and
Det.S2/. With the preceding understood, suppose for a moment that all relevant
versions of „ define in this way the same 2–dimensional component of AHF . The
corresponding set of orientations for this component will agree if the orientations for the
components of AHF constitute a coherent system. Meanwhile, an appropriate choice
for the set K has the following property: having chosen a 2–dimensional component
of Mech , then there is but one 2–dimensional components of AHF .

Granted the preceding, a straightforward modification to what is said in Step 3 in the
proof of Proposition 7.1 for a suitable version of (7-43) proves the following: if the
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set K and Proposition 7.2’s constant � are chosen appropriately, then the isomorphism
given by (8-9) is compatible with respect to end-to-end concatenations of ech-HF
subvarieties on the one hand and Heegaard Floer subvarieties from AHF1 on the other.
This fact implies that the (OR2) constraint in Section 9.5 of [7] is obeyed by the
2–dimensional components of Mech .

9 Proof of Theorem 1.1

This section uses the results from the previous two sections to prove the assertions
made by the various bullets in Theorem 1.1.

9A The grading of the ech chain complex

This section addresses the assertion made by the fourth bullet of Theorem 1.1. The
proof of this fourth bullet has five parts.

Part 1 Suppose that .y‚0; y‚/ is an ordered pair of elements from yZech;M. The grading
difference grech.

y‚0/� grech.
y‚/ is equal modulo the integer pM to �1 times the ech

index I. � / of a suitable relative 2–cycle. In particular, suppose that k 2 f0; 1; 2 : : : g

and that C is an element in Mk.y‚
0; y‚/. Then the aforementioned grading difference

is equal to �k modulo pM . The formula in Definition 4.3 of [4] defines I.C /.

In some of the cases considered in the subsequent parts of the proof, the integer I.C /

is equal to the Fredholm index that is defined in equation (4.3) of [4], this being a
consequence of the fact that all integral curves of v from elements in Zech;M are
hyperbolic. The equivalence between the ech index and the Fredholm index is used at
times in the arguments that follow.

Part 2 Suppose that .y‚0; y‚/ lie over the same element, ‚2Zech;M. As such, they can
be written respectively as ..y�0; k 0/; .kp; Op/p2ƒ/ and ..y�0; k/; .kp; Op/p2ƒ/. If k > k 0,
then there is an ech-subvariety in M2.k�k0/.y‚

0; y‚/ which is a union of an R–invariant
part and k�k 0 distinct spheres from Proposition II.3.1’s moduli space M0 . It follows
as a consequence that grech.

y‚0/�grech.
y‚/D 2.k 0�k/. Granted this fact, it is enough

to consider the assertion of the fourth bullet only for those cases where k D k 0.

Part 3 Suppose that .y‚0; y‚/ are given respectively as ..y�; k/; .kp; O0p/p2ƒ/ and
..y�; k/; .kp; Op/p2ƒ/. Suppose in addition that there is but one p 2ƒ where O0p ¤ Op
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and that one of the following conditions hold:

(9-1)

8<:
Op D f1;�1g;

Op D f�1g and Op0 D f0g;

Op D f1g and Op0 D f0g:

Let k denote the integer gr.Op/� gr.O0p/ 2 f1; 2g. There is in this case an element in
Mk.y‚

0; y‚/, this being a union of R–invariant cylinders with either one element from
Proposition II.3.4’s moduli space MpC , or one element from the latter’s Mp� in the
case k D 1, or one from each in the case k D 2. It follows as a consequence that the
ech grading difference grech.

y‚0/� grech.
y‚/ is equal to gr.O0p/� gr.Op/.

Given what was said in Part 3, repeated applications of this last observation justify the
assertion that it is sufficient to consider the assertion of fourth bullet of Theorem 1.1
only for cases with k D k 0 and with all p 2ƒ versions of O0p and Op equal.

Part 4 Suppose that .y‚0; y‚/ are given respectively as ..y�; k/; .k0p; Op/p2ƒ/ and
..y�; k/; .kp; Op/p2ƒ/. Suppose in addition that each p 2 ƒ version of Op D f0g,
and that there is but one p 2 ƒ with k0p ¤ kp . Let q 2 L denote the exception and
take k0q D kqC 1. Introduce y‚00 to denote ..y�; k/; .kq; Oq D f1g/; .kp; Op/p2ƒnq/. It
follows from Proposition 8.1 that M1.y‚

0; y‚00/¤∅ and so grech.
y‚0/D grech.

y‚00/�1.
Meanwhile, it follows from what is said in Part 3 that M1.y‚; y‚

00/¤ ∅ also. Thus,
grech.

y‚/ also equals grech.
y‚00/� 1.

Repeated applications of this last observation justify the assertion that it is enough to
consider the fourth bullet only for cases with k D k 0 and with all p 2ƒ versions of
.kp; Op/ equal to .k0p; O0p/.

Part 5 Fix n 2 f0; 1; 2; : : : g and suppose that .y‚0; y‚/ are given respectively by
..y�; k/; .kp; Op/p2ƒ/ and by ..y�0; k � n/; .kp; Op/p2ƒ/. It follows from Lemma 4.1
in [10] that there exists n and an almost complex structure J 0HF for R � Œ1; 2� �†

with the following properties: First, both depend only on the Heegaard Floer data.
Second, J 0HF obeys Lipshitz’s requirements and those in Section II.6.1. Third, there
is a J 0HF version of a Lipshitz submanifold, S 0, whose constant s slices converge in
an isotopic fashion to the arcs in y� as s !1, and to the arcs in y�0 as s ! �1.
Fourth, this Lipshitz submanifold has intersection number n with the f 2 Œ1; 2� part
of the curve  .z0/ that is described in the fifth bullet of Part 2 in Section 1B. Fifth,
the corresponding operator D0

S
has trivial cokernel. Let � denote the Fredholm index

of D0
S

.

Geometry & Topology, Volume 24 (2020)



HFD HM , III 3213

Given that n, J 0HF and S depend only on the Heegaard Floer data, it follows that the
data set .z�; ı; x 0;R/ can be taken without loss of generality so that the following
is true: there is an almost complex structure J 0 for R�Y that is of the sort defined
in Section 1C whose restriction to R �Mı is J 0HF , and is such that Propositions
7.1–7.3, 8.1 and 8.2 can be invoked using the Lipshitz submanifold S 0. In particular,
Proposition 8.1 implies that M1.y‚

0; y‚/¤∅.

This last observation implies that degech.
y‚0/� degech.

y‚/D grHF.y�
0/� grHF.y�/� 2n.

The assertion from of the fourth bullet follows from this and what is said in Parts 2–4.

9B The ech differential

This subsection proves the assertion made by the first bullet in Theorem 1.1. By way
of a reminder the endomorphism on the chain complex Z. yZech;M / that defines the
differential has the form depicted in (1-19); thus saying something about the differential
requires saying something about the various integers from the relevant version of the
set fN y‚0;y‚gy‚0;y‚2yZech;M

. The definition of any given N y‚0;y‚ is reviewed in Part 1 of
what follows. Parts 2–4 say what is needed about these integers to deduce the first
bullet of Theorem 1.1.

Part 1 Fix .y‚0; y‚/ 2 yZech;M � yZech;M. The corresponding integer N y‚0;y‚ that is
used in (1-19) to define the embedded contact homology differential is given by a
sum that is indexed by the components of M1.y‚

0; y‚/=R whereby each component
contributes either C1 or �1. Whether C1 or �1 is determined by comparing two
orientations of the given component. To say more, keep in mind that each component
of M1.y‚

0; y‚/ is a 1–dimensional manifold with a free action of R, with the action
given by the constant translations along the R factor of R�Y . The generator of this
action is a nowhere-zero vector field on each component. This vector field defines
an orientation for each component, this denoted by yoech;R . The second orientation is
given by a coherent orientation for Mech . The latter orientation is denoted by yoech;Q .
Write yoech;R as NC yoech;Q with NC 2 f1;�1g. The assignment C ! NC is a locally
constant, f1;�1g–valued function on M1.y‚

0; y‚/. The value of this function NC

on C ’s component of M1.y‚
0; y‚/ is the component’s contribution to the sum that

defines N y‚0;y‚ .

Part 2 There is an analogous definition of the endomorphism of Z.ZHF �Z/ that
defines the differential for Heegaard Floer homology. To elaborate, any given endo-
morphism of Z.ZHF �Z/ is defined by its action on the generating set, and so by a
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rule of the form

(9-2) .y�0; k 0/!
X

.y�;k/2ZHF�Z

M.y�0;k0/;.y�;k/.y�; k/;

where M � ; � is in all cases an integer. The paragraphs that follow define these integers
when the endomorphism in question is the differential @HF .

Fix ordered pairs .y�0; k 0/ and .y�; k/ of elements from ZHF � Z. Having done so,
reintroduce the subspace AHF1..y�

0; k 0/; .y�; k//�AHF from Part 1 of Section 8F. The
integer M.y�0;k0/;.y�;k/ for the version of (9-2) that defines the differential for Heegaard
Floer homology is a sum that is indexed by the components of AHF1..y�

0; k 0/; .y�; k//

with each component contributing either C1 or �1.

To define these ˙1 contributions, note that AHF1..y�
0; k 0/; .y�; k// has a finite set of

components, with each a copy of R. Each such copy of R is a free orbit of the R

action that comes from the constant translations along the R factor of R� Œ1; 2��†.
The generator of this R action orients each component. This orientation is denoted
by yoHF;R . A second orientation is that supplied by a given coherent orientation for AHF .
This orientation is denoted by yoHF;Q . Let S 2 AHF1..y�

0; k 0/; .y�; k// denote a given
surface and write yoHF;R at S as ZSyoHF;Q where ZS 2 f�1; 1g is constant on the
component of S in AHF1..y�

0; k 0/; .y�; k//=R. The value of ZS is this component’s
contribution to M.y�0;k0/;.y�;k/ .

Part 3 Fix a coherent system of orientations for AHF to define the coefficients in the
version of (9-2) that defines the Heegaard Floer differential. Use this same coherent
system in Proposition 8.5 to define the coherent system of orientations that is used to
define the embedded contact homology differential.

Fix a pair, .y‚0; y‚/, from yZech;M. The corresponding N y‚0;y‚ is zero unless M1.y‚
0; y‚/

is nonempty and therefore .y‚0; y‚/ is described by (8-15). Consider first the case
given by the first bullet in (8-15). It follows from Proposition 7.2 that the elements in
M1.y‚

0; y‚/ are labeled in part by the surfaces in AHF1..y�
0; k 0/; .y�; k//. Let S denote a

given such surface and let MS
1
.y‚0; y‚/�M1.y‚

0; y‚/ denote the corresponding subset.
It follows directly from Propositions 8.1, 8.2 and 8.5 plus what is said in Part 5 of
Section 8B that

(9-3)
X

C2MS
1
.y‚0;y‚/=R

NC
D ZS :

This implies directly that N y‚0;y‚ D M.y�0;k0/;.y�;k/ .
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Write Z. yZech;M / as Z. yZech;M / D Z.ZHF � Z/ ˝
�N

p2ƒZ.Z � O/
�

as done in
Theorem 1.1. The conclusion of the preceding paragraph implies that writing Z. yZech;M /

in this way makes @ech appear as @ech D @HF C L with L acting solely on the�N
p2ƒZ.Z� O/

�
factor.

Part 4 The endomorphism L is defined by those Ny‚0;y‚ with .y‚0; y‚/ as described in
the second bullet of (8-15). It follows that L can be written as

P
p2ƒLp where Lp

acts only on the p 2ƒ factor of Z.Z� O/ in Z.ZHF �Z/˝
�N

p2ƒZ.Z� O/
�
. This

is because there is but one pair p 2ƒ with .kp; Op/¤ .k
0
p; O0p/. Moreover, the relevant

version of Lp acts on the given generator .kp; Op/ to give an integer-weighted sum of
generators with the weight being zero unless �0pD�p�1 in which case either item (a)
or item (b) in (8-15) must occur. This being the case, it follows from Propositions 8.1
and 8.2 with what is said in Part 5 of Section 8B that the corresponding integer weight
is either 1 or �1.

Consider first the case when item (a) of the second bullet is obeyed. Proposition 8.5
and what is said in Part 3 of Section 8B determine these signs:

(9-4) � In the case of the first three bullets in (8-16), the sign is .�1/NCCN .

� In the case of the fourth bullet in (8-16), the sign is .�1/NCCNC1 .

Suppose next that item (b) of the second bullet holds. Proposition 8.5 and what is said
in Part 4 of Section 8F determine that the sign is again given by (9-4). Note in this
regard that the fourth bullet in (8-16) can occur only if k0p D kp� 1.

What is written in (9-4) is consistent with what is claimed by Theorem 1.1 if and only
if the integers NC are such that .�1/NC D ".�1/degHF.y�;k/ with " 2 f�1; 1g being
independent of both y� and k . Since the Heegaard Floer degree changes by an even
integer as k varies, it is enough to verify that this is so for any given value of k . That
such is the case follows from Proposition 4.8 in [10] and equation (9) in [10]. The
latter expresses an equality that was derived by J Rasmussen in [17].

9C The endomorphisms from the second and third bullets of Theorem 1.1

The assertion made by the second bullet about the action of the U –map on the chain
complex Z.ZHF �Z/˝

�N
p2ƒZ.Z� O/

�
follows directly from what is said in the

first paragraph of Part 2 in Section 9B. The assertions about the endomorphisms in
the third bullet of Theorem 1.1 are discussed in the subsequent two parts of this
subsection. The first part briefly reviews the definitions of the coefficients that appear
in the corresponding versions of (1-19).
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Part 1 This part of the subsection explains how to the endomorphisms in the third
bullet of Theorem 1.1 are defined. To this end, let O{ denote one of the cycles from
the set fO{pgp2ƒg and let QO{ech denote the corresponding endomorphism of Z. yZech;M /.
This endomorphism is described by a version of (1-19), and thus defined by the integers
fN y‚0;y‚gy‚0;y‚2yZech;M

. Let .y‚0; y‚/ denote a given pair from yZech;M. The corresponding
integer N y‚0;y‚ is nonzero only if M1.y‚

0; y‚/ is nonempty. Each component in the
latter set contributes an integer to a sum whose value is N y‚0;y‚ . This understood, let
C �M1.y‚

0; y‚/ denote a given element, and let ŒC � denote the corresponding relative
2–cycle in H2.Y I Œ‚�� Œ‚

0�/ defined by the image of C in Y via the projection from
R�Y . The cycle O{ has been chosen so as to be disjoint from the integral curves of v
that appear in elements from Zech;M, and so there is a well-defined pairing between
O{ and ŒC � with values in Z. Use hO{; ŒC �i to denote this pairing. Reintroduce the
sign NC 2 f1;�1g from Part 1 of Section 9C. The contribution of C ’s component in
M1.y‚

0; y‚/ to the sum for N y‚0;y‚ is hO{; ŒC �iNC.

By way of comparison, what follows summarizes from Section 8 of [10] the Hee-
gaard Floer version of the endomorphisms that are defined by the cycles from the set
fŒ .z0/�; fO{.z/gz2°nz0

g. Let O{ now denote one of the cycles from the latter set, and let
QO{HF denote the corresponding endomorphism. This endomorphism is defined by a ver-
sion of (9-2). A given coefficient M.y�0;k0/;.y�;k/ is nonzero only if AHF1..y�

0; k 0/; .y�; k//

is nonempty. If so, then each component of this space contributes an integer to a sum
whose value is M.y�0;k0/;.y�;k/ . Let S denote a given Lipshitz surface from this space.
The image of S in †� Œ0; 1� via the projection from R�†� Œ0; 1� has a well-defined
intersection pairing with O{ , this denoted by hO{;Si. Reintroduce ZS 2 f1;�1g from
Part 1 of Section 9B. The component of S contributes hO{;SiZS to the sum that
computes M.y�0;k0/;.y�;k/ .

Part 2 Consider first the statements made by items (a) and (b) of the third bullet in
Theorem 1.1. To this end, fix y‚0 and y‚ from yZech;M. Given S 2AHF1..y�

0; k 0/; .y�; k//,
reintroduce from Part 3 in Section 9B the subspace MS

1
.y‚0; y‚/. Given the definitions

in Part 1, the assertion made by item (b) of the third bullet in Theorem 1.1 follows from
(9-3) if hO{; ŒC �i D hO{;Si when C 2MS

1
.y‚0; y‚/. The latter equality is a consequence

of Proposition 8.2.

Consider next the statement made by item (c) of the third bullet in Theorem 1.1. To this
end, fix p 2ƒ so as to see about the action of the O{ D O{p version of QO{ . The cycle O{p is
disjoint from Mı [

�S
p02ƒnp Hp

�
and as a consequence, it must act as IpCy�p . This
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being the case, at issue is the precise form for y�p . The cycle O{p lies in the cos � > 1p
3

of Hp , and as a consequence any given integer N y‚0;y‚ from the QO{ version of (1-19) is
zero unless y‚0 and y‚ are described by item (a) of the second bullet in (8-15) and the
first two bullets in (8-16). With this point understood, item (c) of the third bullet in
Theorem 1.1 follows directly from Propositions 8.1 and 8.5 plus what is said in Part 5
of Section 8B.
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