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Let M be a closed, connected and oriented 3–manifold. This article is the first of a
five-part series that constructs an isomorphism between the Heegaard Floer homology
groups of M and the corresponding Seiberg–Witten Floer homology groups of M.

53C07, 53C15

1 Introduction

This article and its sequels describe an isomorphism between the Heegaard Floer
homology of a given closed, connected and oriented 3–manifold and the balanced
version of its Seiberg–Witten Floer homology. This article gives an overview of the
proof, leaving all but a few of the technical details to the sequels. What follows directly
sets the stage for a formal statement of the equivalence.

Let M be a closed, connected and oriented 3–manifold. As explained in the book [10]
by P B Kronheimer and T S Mrowka, given a SpinC structure s on M there are three
different flavors of balanced Seiberg–Witten Floer homology groups with coefficient
ring Z, denoted by HM�.M; s; cb/, bHM�.M; s; cb/ and zHM�.M; s; cb/. Each of
these groups is endowed with a relative grading by a certain quotient of the group Z

determined by the given SpinC structure, and a canonical ZŒU �˝
V�
.H1.M IZ/=tor/–

module structure. Moreover, these groups fit into a long exact sequence where the
homomorphisms respect the ZŒU �˝

V�
.H1.M IZ/=tor/–module structures.

The Heegaard Floer homology groups of M are graded abelian groups defined by
P Ozsváth and Z Szabó [19; 18]. These groups are also labeled by SpinC structures
on M, and given a SpinC structure s on M there are three different flavors of Hee-
gaard Floer homology groups. These are denoted by HF1.M; s/, HF�.M; s/ and
HFC.M; s/. Each of these groups admits a relative grading by the same group as
its Seiberg–Witten counterpart and a canonical ZŒU �˝

V�
.H1.M IZ/=tor/–module
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2830 Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

structure. Furthermore, these groups also fit into a long exact sequence where the
homomorphisms respect the ZŒU �˝

V�
.H1.M IZ/=tor/–module structures.

With the preceding understood, this article and its sequels [11; 12; 13; 14] prove the
following theorem:

Main Theorem Fix a SpinC structure s on M. There exists a commutative diagram

// HF�.M; s/ //

'

��

HF1.M; s/ //

'

��

HFC.M; s/

'

��

//

// bHM�.M; s; cb/ // HM�.M; s; cb/ // zHM�.M; s; cb/ //

where the vertical arrows are isomorphisms and the top and bottom rows are the
respective long exact sequences for Heegaard Floer homology and Seiberg–Witten
Floer homology. The vertical homomorphisms preserve the relative gradings and
intertwine the respective ZŒU �˝

V�
.H1.M IZ/=tor/–module structures.

Our proof of the Main Theorem invokes a third sort of homology theory for 3–manifolds.
This is a version of M Hutchings’ embedded contact homology (see [5]). The embedded
contact homology groups in the present context are defined with the choice of a stable
Hamiltonian structure. A stable Hamiltonian structure on a closed, oriented 3–manifold
is a pair .a; w/ where a is a 1–form, w is a closed 2–form such that a^w is nowhere
zero, and daD hw for some smooth function h. The embedded contact homology
groups are also labeled in part by the SpinC structures on the ambient manifold.
Moreover, they admit relative gradings that are analogous to those of the Heegaard
Floer homology groups, and an analogous module structure for the tensor product
of ZŒU � with the exterior product of the first homology modulo torsion. The version
used here is defined for a particular stable Hamiltonian structure and for certain SpinC

structures on the connect sum of M with certain number of copies of S1 �S2 . This
number is denoted in what follows by G ; it is the genus of a Heegaard surface for M

that is used to define the Heegaard Floer homology. We denote by Y the connect sum
with the orientation induced from M and by Y the connect sum with the orientation
induced from �M. Of interest here is the manifold Y . The details of our construction
of Y and the particular stable Hamiltonian structure are given in Section 1 of [11].
It suffices to say here that Y and its geometry are constructed using a chosen SpinC

structure on M and the data that is used to define the corresponding Heegaard Floer
homology groups of M. (This data consists in part of a pointed Heegaard diagram
for M ; in particular, it determines the number G .) Use s to denote this SpinC structure.
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We consider a variant of embedded contact homology on Y that is defined for a SpinC

structure that corresponds in a natural way to the chosen SpinC structure s. This
variant is denoted by ech1 and it is of the sort described by Hutchings and Sullivan
[7, Definition 11.8]. The special geometry of Y is used to write the ech1 chain com-
plex and the differential using the chain complex and the differential for HF1.M; s/.
We say more about this in Section 2. Theorems 2.2–2.4 describe the relationship
between the relevant versions of embedded contact homology of Y and the Heegaard
Floer homology of M.

We also use the special geometry of Y to identify our ech1 chain complex with
a chain complex that computes the three flavors of a version of the Seiberg–Witten
Floer homology on Y with a particular local coefficient system. This is a version of
the sort of Seiberg–Witten Floer homology that is described in Section 3.7 of [10].
The relevant version of the Seiberg–Witten equations on Y and the chain complex
that computes the corresponding three homology groups are described in Section 3.
Theorem 3.3 states the relationship between the Seiberg–Witten Floer chain complex
and the chain complex for ech1 . Theorem 3.4 exploits Theorem 3.3 to identify the
relevant Seiberg–Witten Floer homology groups on Y with three homology groups
computed using the embedded contact homology chain complex on Y .

The identifications given by Theorems 2.4 and 3.4 between our version of embedded
contact homology on Y and the Heegaard Floer homology on M and our version of
Seiberg–Witten Floer homology on Y are used to write the latter groups in terms of the
former. Meanwhile, a connect sum formula is used to write these same Seiberg–Witten
Floer homology groups in terms of the groups HM�.M; s; cb/, bHM�.M; s; cb/ and
zHM�.M; s; cb/. The form of the connect sum formula is analogous to a corresponding
Heegaard Floer connect sum formula in [19] and was suggested to the second author by
Mrowka and Ozsváth. The connect sum formula is stated in Section 4. These identifi-
cations lead directly to a proof of the Main Theorem. In particular, our Main Theorem
follows directly from the upcoming Theorems 2.4, 3.4 and 4.1. To be more explicit, it
follows from these theorems that there exists a commutative diagram

//HF�.M; s/˝ yV ˝G //

'

��

HF1.M; s/˝ yV ˝G //

'

��

HFC.M; s/˝ yV ˝G

'

��

//

//bHM�.M; s; cb/˝ yV
˝G //HM�.M; s; cb/˝ yV

˝G //zHM�.M; s; cb/˝ yV
˝G //

where yV denotes the graded Z–module
V�

H 1.S1�S2IZ/. The latter is isomorphic
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to Z˚Z with the grading of the leftmost summand being 0 and that of the rightmost
summand being 1. Viewing the Z–module yV as

V�
H 1.S1�S2IZ/ defines the action

of H1.S
1 �S2IZ/ on yV by interior product. The arrows in the preceding diagram

are as follows: the top and the bottom rows are the respective long exact sequences
for Heegaard Floer and Seiberg–Witten Floer homologies tensored with the identity
homomorphism on yV ˝G . The vertical arrows are isomorphisms that preserve the
relative gradings and intertwine the ZŒU �˝

V��
H1.M IZ/=tor˚H1

�
#g S1�S2IZ

��
actions, whereby ZŒU �˝

V�
.H1.M IZ/=tor/ acts on the Floer homologies ignoring the

yV ˝G factors while H1

�
#g S1�S2IZ

�
acts on yV ˝G viewed as the exterior product of

G copies of yV ignoring the Floer homology factors. In the preceding, H1.M IZ/ and
H1

�
#g S1 �S2IZ

�
refer respectively to the first and second summands in a splitting

of H1.Y IZ/ as

H1.M IZ/˚H1

�
#g S1

�S2
IZ
�
˚H 1.S1

�S2
IZ/:

This splitting is realized by the choice of a set of GC1 points ° introduced in [11, Sec-
tion 1C, Parts 4 and 7]. (In particular, the element z0 2° is the basepoint in the pointed
Heegaard diagram.) This choice also assigns an ordered basis for H1

�
#g S1�S2IZ

�
,

which in turn specifies an isomorphism between
V�

H 1
�
#g S1 �S2IZ

�
and yV ˝G .

This choice is fixed throughout the entire series of papers, and the corresponding
splitting is always assumed implicitly.

By way of summary, our proof of the Main Theorem involves establishing the corre-
spondences

SW Floer homology of Y $ embedded contact homology of Y

l l

SW Floer homology of M ' Heegaard Floer homology of M

There is also a fourth flavor of the Seiberg–Witten Floer homology of M, defined
by the second author in [15]. This is denoted here by eHM.M; s/. The definition of
eHM.M; s/ was inspired by Ozsváth and Szabó’s definition in [19] of a fourth version
of Heegaard Floer homology, denoted by bHF.M; s/. It follows from our proof of the
Main Theorem that eHM.M; s/ is isomorphic to bHF.M; s/. The latter result, as well as
that zHM�.M; s; cb/ is isomorphic to HFC.M; s/, also follows from work of V Colin,
P Ghiggini and K Honda [2; 3; 4] using open book decompositions and Hutchings’
embedded contact homology for adapted contact forms (see also [1] for a summary).

The notion of using connect sums of M with S1 �S2 to relate the Heegaard Floer
homology on M with some version of Seiberg–Witten Floer homology has antecedents
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in the work of the second author [15] on an as yet unsuccessful strategy to prove the
Main Theorem. The appearance of the local coefficient version of Seiberg–Witten Floer
homology was foreseen and a version of the connect sum formula stated in Section 4
was proved in a somewhat different context by the second author in [15]. Bloom,
Mrowka and Ozsváth (personal communication) have proven a related connect sum
formula for applications in a more general context.

The relationship between ech1 on Y and a version of the Seiberg–Witten Floer
homology on Y is the analog here of the theorem by the third author proved in
[20; 21; 22; 23; 24] that equates Hutchings’ contact 1–form version of embedded
contact homology on a given 3–manifold to a version of this manifold’s Seiberg–
Witten Floer cohomology. This relationship also has antecedents in the theorem of
the second and third authors proved in [16] that equates Hutchings’ periodic Floer
homology for fibered 3–manifolds (see [6]) with a version of Seiberg–Witten Floer
cohomology.

The equivalence between various flavors of Heegaard Floer homology and Seiberg–
Witten Floer homology has been conjectured since the discovery of Heegaard Floer
homology. See for example Conjecture 1.1 in [18], Chapter 3.12 in [10] and Conjecture 1
of Kronheimer and Manolescu [9].
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Ozsváth and Zoltán Szabó for helpful thoughts, and we thank Peter Kronheimer and
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Eisenbud Fellowship, a Clay Senior Scholar Fellowship and also by the National
Science Foundation. Lee has also been supported by Hong Kong Research Grants
Council grants GRF-401913, 14316516, 14305541.

2 Heegaard Floer homology of M and ech of Y

This section describes the ech1 chain complex on Y and its relationship with the
Heegaard Floer chain complex on M. The first subsection to come summarizes the
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most salient features of the Heegaard Floer homology-related geometry of M. The
second subsection describes the ech1 related geometry on Y . The final subsection
explains the precise relationship between the ech1 chain complex and the relevant
Heegaard Floer chain complex. Fix once and for all a SpinC structure on M. This
chosen SpinC structure is denoted by s in what follows and in the subsequent sections
of this article.

2.1 Heegaard Floer geometry on M

The construction of the three Heegaard Floer homology groups HF1.M; s/, HF�.M; s/

and HFC.M; s/ requires data that consists in part of a pair .f; v/ where f W M ! Œ0; 3�

is a self-indexing Morse function with a single local maximum and a single local
minimum. We take our function f to have G � 1 index 1 critical points. It then has G

index 2 critical points and the level set f �1
�

3
2

�
is a smooth surface of genus G . This

surface is denoted by †. What is denoted by v is a suitably chosen pseudogradient
vector field for f which is smooth on the complement of the critical points of f and is
such that v.f /D 1. With the SpinC structure fixed, the pseudogradient vector field v

is chosen so as to result in what Ozsváth and Szabó call a strongly admissible Heegaard
diagram (see Definition 4.10 in [19]). The diagrams we use are of the kind constructed
in the proof of Lemma 5.4 in [19].

The integral curves of v can be used to identify f �1.1; 2/ with .1; 2/�† so that the
function f appears as the Euclidean coordinate on the .1; 2/ factor and v appears as
the corresponding Euclidean vector field. This view of f �1.1; 2/ led Robert Lipshitz
to interpret the Heegaard Floer chain complex as follows (see [17]). Introduce ZHF to
denote the set whose typical element is a collection of G integral curves of v that pair
the index 1 and index 2 critical points of f . Any given curve from such a collection
starts at an index 1 critical point of f and ends at an index 2 critical point of f .
However, no two curves share the same starting point or the same ending point. The
three Heegaard Floer chain complexes are constructed from the free module generated
by ZHF�Z. Any given element in the chain complex can be written as a formal linear
combination of elements on ZHF �Z with integer coefficients. This free module is
referred to in what follows as Z.ZHF �Z/.

The differential that defines the group HF1.M; s/ is a certain endomorphism of
Z.ZHF �Z/ whose square is equal to zero. Lipshitz explains in [17] how to compute
the differential from certain geometric data on R � Œ1; 2� � †. The latter requires
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the choice of a suitably constrained almost complex structure. The almost complex
structure is constrained in particular so as to be invariant under the action of R by
translations along the R factor and to map the Euclidean vector field on the Œ1; 2�
factor to that on the R factor. The almost complex structure is required to preserve
the tangent plane field to †. However, it need not be constant along the Œ1; 2� factor
except in certain prescribed annuli and disks. In particular, it should be constant near
the segments that correspond to the integral curves of v connecting the index 1 and
index 2 critical points of f .

As explained by Lipshitz in [17], the differential for the Heegaard Floer chain complex
can be computed using pseudoholomorphic, proper submanifolds with boundary in
R� Œ1; 2��†. These submanifolds exhibit appropriate behavior on the boundary. They
also have 2g strip-like ends such that the Euclidean coordinate of the R factor is
unbounded from above on G of these ends and it is unbounded from below on the
remaining G ends. The asymptotics on these ends with respect to the unbounded
Euclidean factor are suitably constrained by data from ZHF .

Let @HF denote the differential on Z.ZHF � Z/. The homology of the resulting
chain complex is HF1.M; s/. As explained by Ozsváth and Szabó [19], @HF pre-
serves the filtration on Z.ZHF �Z/ defined by the submodules freely generated by
ZHF � fi 2 Z j i � kg for any given k 2 Z. Granted that such is the case, @HF defines
a differential on the submodule Z.ZHF � fi 2 Z j i � �1g/ as well as on the quotient
Z.ZHF �Z/=Z.ZHF � fi 2 Z j i � �1g/. The homology of the former chain complex
gives HF�.M; s/, while the homology of the latter chain complex is HFC.M; s/.

Any SpinC structure on M has an associated class in H 2.M IZ/. The latter is said to
be the first Chern class of the SpinC structure. The first Chern class defines via the
canonical pairing a homomorphism from the group H2.M IZ/ into Z. The image of
the latter homomorphism, a subgroup of Z, is generated by an even integer p 2Z. The
Heegaard Floer chain complex for the given SpinC structure can be given a relative
Z=pZ grading so that the differential acts to decrease the grading by 1.

The action of Z on ZHF�Z that translates the Z factor by �1 induces an endomorphism
of Z.ZHF �Z/ that commutes with @HF and decreases the grading by 2. The induced
endomorphism of HF1.M; s/, HF�.M; s/ and HFC.M; s/ is the U –map. As noted
in the introduction, there is also a commuting action of

V�
.H1.M IZ/=tor/ on these

groups. This action is induced by endomorphisms of the module Z.ZHF �Z/ that
anticommute with @HF and decrease the grading by 1.
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2.2 Embedded contact geometry on Y

The manifold Y is obtained from M by a surgery that first excises small radius Euclid-
ean balls around the critical points of f and subsequently sutures GC 1 1–handles,
copies of Œ�1; 1��S2 , to the resulting 2.GC 1/ boundary 2–spheres. The result is
diffeomorphic to M #

�
#GC1 S1 �S2

�
. This surgery is done so that the respective

spheres around the index 0 and index 3 critical points of f connect through one of
the attached handles, and the spheres around any given index 1 critical point connects
through a handle to the sphere around one of the index 2 critical points of f . The
handle that connects the spheres around the index 0 and index 3 critical points of f is
denoted by H0 . The set of G pairs of index 1 and index 2 critical points of f that are
defined by the remaining G handles is denoted by ƒ. Given p 2ƒ, the corresponding
1–handle is denoted by Hp . The complement in Y of the handles is identified with
the complement in M of the small radius balls around the critical points of f . The
corresponding parts of Y and M are denoted by M• . The manifold Y is oriented so
that the induced orientation on M• is the opposite of the orientation of M.

The data .M; f; v/ are then used to construct a pair .a; w/ of a 1–form and a closed
2–form on Y such that a^w > 0 at all points, and such that da is in the span of w .
A pair with these properties is said to be a stable Hamiltonian structure. The 2–form
w is chosen so as to be positive on the cross-sectional spheres in H0 and to define an
area form on the level sets of f in M• .

The 2–form w is closed and so defines a de Rham cohomology class on Y . To say
more about this class, use the Mayer–Vietoris sequence to identify H2.Y IZ/ with

H2.M IZ/˚H2.H0IZ/˚

�M
p2ƒ

H2.HpIZ/

�
:

To elaborate, the identification with the above direct sum follows from an application
of the Mayer–Vietoris sequence to the union

M•[H0[

� [
p2ƒ

Hp

�
using the fact that H2.M IZ/ can be seen as a subgroup of H2.M•IZ/ via the part of
the long exact sequence for the pair .M;M•/,

0!H3.M IZ/!H3.M;M•IZ/!H2.M•IZ/!H2.M IZ/! 0:
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Note that Hk.M;M•IZ/D 0 if k ¤ 3 by the excision theorem, and that H2.M IZ/

is free abelian. With the above identification understood, the cohomology class of the
form w is determined by the linear functional that it defines on the various summands.
This linear functional pairs with the generator of H2.H0IZ/ that is defined by the
cross-sectional spheres in H0 oriented by w to give 2. It has pairing zero with any
p2ƒ version of the summands H2.HpIZ/, and it restricts to the H2.M IZ/ summand
so as to give the pairing on M that is defined by the first Chern class of s. The strong
admissibility of the chosen Heegaard diagram on M is needed to construct a pair
.a; w/ with all of these listed properties.

The kernel of w is generated by a nowhere-zero vector field, denoted by v. The
construction of .a; w/ is such that v is normal to the cross-sectional spheres in H0

and such that vD v on M• . The vector field v is normalized so that a.v/D 1.

The embedded contact homology chain complex on Y is defined using a set Z described
as follows. An element ‚ 2 Z is a finite set of pairs of the form .”;m/ where ” is a
closed integral curve of the vector field v and m 2 Z. The collections of pairs in Z
with certain constraints on the allowed integer components are used to define embedded
contact homology. The precise constraints are described in [5]. The relevant subset
of Z here is denoted by Zech .

The elements in Z are labeled in part by the SpinC structures on Y . The SpinC

structure of a given element ‚ 2 Z is determined by data consisting of the 2–plane
field kernel.a/ � T Y and a class that ‚ defines in H1.Y IZ/. What follows is the
definition of this class. Use v to orient its closed integral curves so as to view them
as closed 1–cycles. If ” is such a curve, use Œ”� to denote the corresponding 1–cycle.
The cycle

P
.”;n/2‚ nŒ”� is then the desired class in H1.Y IZ/. The first Chern class

of the corresponding SpinC structure is

(2-1) eK�1 C 2
X

.”;n/2‚

nŒ”�Pd;

where Œ”�Pd denotes the class in H 2.Y IZ/ that is the Poincaré dual of Œ”�, and where
eK�1 is the Euler class of the oriented 2–plane field defined by kernel.a/� T Y with
the orientation given by w .

Our constructions give a natural 1–1 correspondence between the set of SpinC struc-
tures on M and the set of SpinC structures on Y that obey the following constraints:
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(2-2) � The first Chern class has pairing 2 with the cross-sectional spheres in H0 .

� The first Chern class has pairing 0 with the cross-sectional spheres in Hp

for any p 2ƒ.

With the preceding understood, of particular interest in what follows is the subset
Zech;M � Zech of elements whose first Chern class obeys (2-2) and which correspond
to the chosen SpinC structure on M.

The pair .a; w/ is constructed so as to obtain an essentially explicit description of the
set Zech;M , which we summarize in the next theorem. The latter uses O to denote the
set f0; 1;�1; f1;�1gg.

Theorem 2.1 The set Zech;M is in 1–1 correspondence with ZHF �
Q

p2ƒ.Z� O/,
and this correspondence is canonical given the choice for 0 in each p 2ƒ factor of Z.
This identification preserves the labeling by SpinC structures.

This theorem is proved in [11, Proposition 2.8]. The remarks that follow say something
about how the asserted identification comes about.

Remark 1 The vector field v is normal to the cross-sectional spheres in H0 and, as
a consequence, the class eK�1 has pairing 2 with these spheres. It also means that
the integral curves of v through H0 have transverse intersections with these spheres
with positive local intersection number. These observations with those of the first
bullet in (2-2) imply that no curve that contributes to a collection from Zech;M can
intersect H0 .

Remark 2 The vector field v on M• is the pseudogradient vector field v. This implies
that any integral curve of v that intersects either the f � 1 or the f � 2 part of M•

must cross H0 . As a consequence, a given integral curve that appears in an element
from Zech;M and intersects M• does so as an integral curve of v that is very near an
integral curve that connects an index 1 critical point of f with an index 2 critical
point of f .

Remark 3 The class eK�1 has pairing �2 with the cross-sectional spheres in
S

p2ƒHp

with respect to a suitable orientation. This and the second bullet of (2-2) imply that
the collection of curves from any given element in Zech;M must have intersection
number 1 with the cross-sectional spheres in

S
p2ƒHp .

Remark 4 The geometry in the 1–handles labeled by ƒ is such that an integral curve
that has intersection number �1 with any cross-sectional sphere in these handles will
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intersect either the f � 1 or the f � 2 part of M• . This together with Remark 3 has
the following consequence. Suppose that ‚ 2 Zech;M . Then there is precisely one
segment in each Hp from the union of the integral curves from ‚ that enters the handle
or leaves the handle. Moreover, this segment must cross the handle from the index 2

critical point end towards the index 1 critical point end.

Remark 5 What is said in Remarks 2 and 4 implies that any given element in Zech;M

defines a canonical corresponding element in ZHF .

Remark 6 The factor of
Q

p2ƒ.Z� O/ in Theorem 2.1 labels the possible ways in
which a given element in ZHF can be extended over

S
p2ƒHp so as to define an

element in Zech;M . In particular, there are precisely two closed integral curves of v
that lie entirely in any given Hp . One lies north of the equatorial circle in the central
cross-sectional sphere of Hp , and the other lies south of this circle. The factor O labels
whether a pair from ‚ contains none of these curves, just the one on the northern
hemisphere, just the one on the southern hemisphere, or both of these curves. The
segment that crosses the handle with positive intersection number does so very near
the equator in each cross-sectional sphere. The Z factor describes the number of times
this segment winds around the equator as it traverses the handle.

Remark 7 Any given ‚ 2 Zech;M contains only pairs of the form .”; 1/, which
follows from Remarks 4 and 6. This is consistent with Hutchings’ constraints on the set
of generators of the embedded contact homology chain complex because the linearized
return map of ” is hyperbolic.

Any given ‚2Z has a length, namely
P
.”;n/2‚ n

R
” a. With this in mind, parametrize

an element in Zech;M by its corresponding ZHF �
Q

p2ƒ.Z� O/ label. As it turns out,
the length of a given element is bounded from below by a fixed multiple of the sum
of the absolute values of the integers from the

Q
p2ƒ.Z� O/ factor. This observation

motivates the introduction of a filtration of the set Zech;M by a nested sequence of
finite sets

(2-3) Zech;M
1
� Zech;M

2
� � � � � Zech;M

L
� � � � � Zech;M :

The set Zech;M
L contains the following sorts of elements. Write a given ‚ 2 Zech;M

using Theorem 2.1 as ‚ D .y¤; .mp; Op/p2ƒ/ with y¤ 2 ZHF and with each p 2 ƒ

version of .mp; Op/ denoting a pair in Z � O . Then, ‚ 2 Zech;M
L if and only ifP

p2ƒ.jmpj C 2jOpj/ < L, where jOpj denotes the sum of the absolute values of the
elements of Op .
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2.3 The ech1 chain complex and its homology

The chain complex for ech1 is a twisted version of embedded contact homology as
described in Section 11 of [7] and in [5]. The definition of twisted embedded contact
homology in [7] requires the choice of a subgroup of H2.Y IZ/. The subgroup used
here is H2.M IZ/˚

�L
p2ƒH2.HpIZ/

�
seen as a subgroup of H2.Y IZ/ via the

Mayer–Vietoris sequence. The corresponding chain complex is viewed here as the free
module generated by the elements of a certain principal H2.H0IZ/–bundle over the
discrete set Zech;M . The latter bundle is denoted in what follows by yZech;M and the
free module that it generates by Z. yZech;M /. Here is the precise definition: A given
element in Z. yZech;M / is a formal, integer-weighted sum of finitely many elements
from yZech;M . The action of H2.H0IZ/ ' Z on yZech;M induces a corresponding
H2.H0IZ/ action on the module Z. yZech;M / and endows it with the structure of a
ZŒt ; t�1�–module. Here, t acts as the class represented by the cross-sectional spheres
in H0 . The module Z. yZech;M / has a relative embedded contact homology grading by
the same cyclic group that grades the corresponding ZHF labels.

The differential for the ech1 chain complex is constructed using a certain endomor-
phism of Z. yZech;M / which decreases the relative grading by 1 and has square equal
to zero. The U –map and the action of

V�
.H1.M IZ/=tor/ on the embedded contact

homology are likewise given by endomorphisms of Z. yZech;M /. Let T denote any one
of these endomorphisms. The endomorphism T is defined by its action on generators
of Z. yZech;M /. Meanwhile, its action on any given generator can be written as a finite
sum

(2-4) T y‚D
X

y‚2Z. yZech;M /

zy‚0 y‚ y‚
0;

where the coefficients zy‚0 y‚ are integers.

The integer coefficients in (2-4) are constructed using pseudoholomorphic submanifolds
in R�Y that are defined by a suitably constrained almost complex structure on the
latter. The almost complex structure is chosen so as to have various special properties.
The most salient features are listed below. The notation uses s to denote the Euclidean
coordinate on the R factor of R�Y .

(2-5) � The almost complex structure is invariant under translations along the R

factor of R�Y and it maps @
@s

to v.

� The almost complex structure tames the 2–form ds ^ aCw .
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� The complement in Y of the union of closed integral curves of v in each Hp

is foliated by pseudoholomorphic submanifolds. The leaves intersect M• as
level sets of f and they intersect H0 as the cross-sectional spheres.

� The almost complex structure is constrained to conform up to the change in
orientation to that used by Lipshitz on the relevant part of R�M• .

The conditions in the first two bullets above are standard requirements for defining
embedded contact homology. The condition in the third bullet is very special to the
geometry at hand. In particular, it severely constrains the sorts of pseudoholomorphic
submanifolds that contribute to the embedded contact homology differential and other
endomorphisms defining additional algebraic structure. The fourth bullet brings the
corresponding Heegaard Floer version of T into the story. These four constraints
lead to the characterization of the differential and other endomorphisms given in the
upcoming Theorem 2.3. Theorem 2.2 serves to set the stage for Theorem 2.3.

Theorem 2.2 makes the formal statement that the relevant endomorphisms can be
defined by the rules laid out by Hutchings in [5].

Theorem 2.2 The almost complex structure on R � Y can be chosen to satisfy
the conditions in (2-5) to the following end. The differential, the U –map and theV�
.H1.Y IZ/=tor/ action on Z. yZech;M / can be defined according to the rules laid out

by Hutchings. The latter are represented by endomorphisms that have the form depicted
in (2-4). The differential and the action by generators of H1.Y IZ/=tor reduce the
relative grading by 1 and anticommute. The U –map reduces the relative grading by 2

and commutes with the other endomorphisms. All of these endomorphisms commute
with the action of H2.H0IZ/.

Theorem 2.2 is proved in [11, Theorem A.1].

The next theorem views the product Zech;M �Z as a principal H2.H0IZ/–bundle over
Zech;M as follows. The generator given by the cross-sectional sphere in H2.H0IZ/

acts on the Z factor so as to send any given integer k to k � 1. This theorem also
uses Theorem 2.1 to write Zech;M as ZHF�

Q
p2ƒ.Z�O/ and having done that it then

moves the Z factor in Zech;M �Z to write the latter as .ZHF �Z/�
Q

p2ƒ.Z� O/.

The last bit of notation concerns conventions. Suppose that E and E0 are graded chain
complexes and that � and �0 are respective graded endomorphisms. Then E˝E0

inherits a differential that is written as �C�0. These are defined by their actions
on the decomposable elements as follows. Suppose that e 2 E and e0 2 E0. Then
.�C�0/.e˝ e0/D�e˝ e0C .�1/degree.�0/ degree.e/e˝�0e0.
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Theorem 2.3 There exists a principal Z–bundle isomorphism between yZech;M and
.ZHF �Z/�

Q
p2ƒ.Z� O/ with the properties detailed momentarily. Use this isomor-

phism to identify the Z–module Z. yZech;M / with Z.ZHF �Z/˝Z
�Q

p2ƒ.Z� O/
�
.

This Z–module isomorphism identifies the ech1 differential as

@ech D @HFC
X
p2ƒ

@p;

where the endomorphism @HF denotes the differential on Z.ZHF �Z/, and each @p
acts on the corresponding Z.Z� O/ factor as the square-zero endomorphism @� given
by the rule

� @�.m; 0/D 0 for each m 2 Z,

� @�.m; 1/D .m; 0/C .mC 1; 0/ for each m 2 Z,

� @�.m;�1/D .m; 0/C .m� 1; 0/ for each m 2 Z,

� @�.m; f1;�1g/D .m;�1/� .m; 1/C .mC1;�1/� .m�1; 1/ for each m 2Z.

Meanwhile, this Z–module isomorphism identifies the U –map on Z. yZech;M / with the
endomorphism UHF˝ I of Z.ZHF �Z/˝Z

�Q
p2ƒ.Z� O/

�
. The isomorphism also

identifies the endomorphisms that define the action of H1.M IZ/=tor on Z. yZech;M /

with the endomorphisms that only involve the factor Z.ZHF � Z/, and they act on
this factor so as to define the action of H1.M IZ/=tor on the Heegaard Floer chain
complex.

This theorem is proved in [12, Theorem 1.1].

As noted in Section 2.1, the differential @HF on Z.ZHF�Z/ preserves the submodules
Z.ZHF � fi 2 Z j i � kg/ defined for each k 2 Z. Therefore, Theorem 2.2 implies
that the differential @ech on Z. yZech;M / preserves the filtration of Z.Zech �Z/ by the
submodules Z.Zech � fi 2 Z j i � kg/ defined for each k 2 Z. The incarnation in
Z.ZHF �Z/ of the submodule Z.Zech � fi 2 Z j i � 0g/ is denoted in what follows
by Z. yZ0

ech;M /.

Remark Use Theorem 2.2 to write yZech;M as Zech;M �Z. Having done so, Theorem
2.3 asserts that the U –map endomorphism acts on a given generator .‚; i/ to yield
.‚; i �1/. This is not a trivial statement as the embedded contact homology version of
the U –map is defined using pseudoholomorphic submanifolds. By way of comparison,
the Heegaard Floer U –map is defined so as to send any given generator .y¤; i/2ZHF�Z

to .y¤; i � 1/.
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The endomorphism @� preserves a filtration of Z.Z� O/ that is defined as follows.
Define a function j � jO on O by the rule j0jOD 0, j�1jOD 1Dj1jO and jf1;�1gjOD 2.
For each nonnegative integer L, let VL denote the submodule of Z.Z� O/ that is
generated by elements of the form .m;�/ with jmjC2j�jO <L. The nested collection
fVLgLD0;1;::: of submodules gives a filtration

(2-6) V0 � V1 � � � � � VL � � � � � Z.Z� O/

with the property that @�W VL! VL . The homology of @� on Z.Z� O/ is that of the
direct limit of the endomorphism that is defined by the restriction of @� to the nested
set of submodules in (2-6). That is to say, any given z 2 Z.Z� O/ is an element of
some VL , and z 2 VL and z0 2 VL0 which are both in the kernel of @� represent the
same class in the homology of the chain complex .Z.Z� O/; @�/ when there exists
L00 �maxfL;L0g and an element z00 2 VL00 such that z D z0C @�z

00.

With these last remarks in mind, reintroduce from (2-3) the filtration fZech;M
LgLD1;2;:::

of Zech;M . Given L2 f1; 2; : : : g, use yZech;M
L� yZech;M to denote the corresponding

principal bundle over Zech;M
L . The module Z. yZech;M

L/ has the filtration

(2-7) Z. yZech;M
1/� Z. yZech;M

2/� � � � � Z. yZech;M
L/� � � � � Z. yZech;M /:

It follows from Theorem 2.2 that this filtration is preserved by @ech , the U –map and
the action of

V�
.H1.M IZ/=tor/.

The next theorem describes the homology of the chain complexes

.Z. yZech;M /; @ech/; .tZ. yZ0
ech;M /; @ech/ and .Z. yZech;M /=tZ. yZ0

ech;M /; @ech/:

These respective homology groups are denoted by ech1 , ech� and echC . Each of the
latter has an appropriate relative grading, a corresponding U –map that reduces the
degree by 2 and an action of

V�
.H1.M IZ/=tor/ whose generators reduce the degree

by 1. In what follows, we use yV to denote the graded abelian group Z˚Z with the
first factor at grading 0 and the second at grading 1. The next theorem also refers to
a U –map and an action of

V�
.H1.M IZ/=tor/ on the tensor product of HF1.M; s/,

HF�.M; s/ and HFC.M; s/ with yV ˝G . These are defined via the U –map and theV�
.H1.M IZ/=tor/ action on HF1.M; s/, HF�.M; s/ and HFC.M; s/ by simply

ignoring the yV ˝G factor.

Theorem 2.4 The Z–module isomorphism depicted in Theorem 2.3 induces isomor-
phisms indicated by the vertical arrows in the commutative diagram
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// ech� //

'

��

ech1 //

'

��

echC

'
��

//

// HF�.M; s/˝ yV ˝G // HF1.M; s/˝ yV ˝G // HFC.M; s/˝ yV ˝G //

where both the top and the bottom rows are long exact sequences. All homomor-
phisms preserve the relative gradings, and intertwine the respective U –maps and theV��

H1.M IZ/=tor˚H1

�
#g S1 �S2IZ

��
actions. Furthermore , the middle vertical

arrow intertwines the action of H2.H0IZ/.

Proof The top row is the long exact sequence for the chain complex inclusion
Z. yZ0

ech;M / � Z. yZech;M / with the differential given by @ech . The bottom row is
the long exact sequence for the short exact sequence defined by the chain complex
Z.ZHF�Z/˝ yV ˝G and its subcomplex Z.ZHF�fi 2Z j i �kg/˝ yV ˝G . The following
lemma is needed to discuss the vertical arrows. The proof of this lemma amounts to a
straightforward exercise left to the reader.

Lemma 2.5 The homology of the chain complex .Z.Z � O/; @�/ is isomorphic to
Z˚Z. The elements .0; 0/ and .0; 1/� .1;�1/ are closed and generate the homology.

What with Lemma 2.5, the assertions about the vertical arrows follow directly from
Theorem 2.3 and an application of the Künneth theorem.

3 Seiberg–Witten Floer homology of Y and ech of Y

This section first describes the relevant versions of the Seiberg–Witten equations on Y

and the corresponding chain complex that computes the associated Seiberg–Witten
Floer homology. The last part of the section describes the relationship between the
corresponding Seiberg–Witten Floer chain complex and the ech1 chain complex.

3.1 The Seiberg–Witten equations on Y

A detailed discussion of the Seiberg–Witten equations and the corresponding Seiberg–
Witten Floer homology groups is given in [10]. What follows is a brief summary of the
story for the case at hand. The story here is much like what is told in [20; 21; 22; 23; 24]
and [16].

Geometry & Topology, Volume 24 (2020)



HFD HM , I 2845

The definition of the Seiberg–Witten equations on any given oriented 3–manifold
requires first the choice of a Riemannian metric. The metric we use to define the
Seiberg–Witten equations on Y is determined using the almost complex structure
from (2-5) by the following three rules. First, the vector v has norm 1. Second, it is
orthogonal to the 2–plane bundle in T Y that defines the Ci eigenspace in TCY for
the action of the chosen almost complex structure on TC.R�Y /. Third, the chosen
almost complex structure acts as a skew-symmetric endomorphism of this eigenspace.
The equations also require the choice of a SpinC structure on Y .

The chosen SpinC structure has an associated rank 2 complex bundle with Hermitian
metric denoted by S . The corresponding Seiberg–Witten equations are equations
for a pair .A; §/ where A is a Hermitian connection on the complex line bundle
det.S/ WD

V2S and § is a smooth section of S . The equations are written in terms
of the curvature of A and the Dirac operator on sections of S that is defined by the
Levi-Civita connection on T Y and the connection A on det.S/. To set the notation,
introduce FA to denote the curvature 2–form of the connection A and DA§ to denote
the action of the Dirac operator on § . Use � to denote the Hodge star operator for
the chosen Riemannian metric. The equations also refer to a section of iT �Y that is
defined using § . This 1–form is written as �§|£§ . The definition of §|£§ is the
same as that used in [20], for example. Under certain circumstances, the equations
also require a perturbation term. The latter is described momentarily. The final input
is the choice of a parameter r � 1. Then, the relevant version of the Seiberg–Witten
equations read

(3-1)
�FA D 2r.§|£§� i �w/CT.A;§/;

DA§DG.A;§/;

where T and G constitute the perturbation term. What is denoted by T.A;§/ is a
section of iT �Y that can be written as �d t.A;§/ , where in most cases t.A;§/ has
nonlocal dependence on the pair .A; §/. Meanwhile, G.A;§/ is a section of S that
also depends in a nonlocal fashion on .A; §/. These are added to ensure that the set
of solutions to (3-1) and also the solutions to the upcoming (3-3) are well behaved.
In any case, these terms have very small norm. The analogous perturbation term is
discussed at length in [20] in the case when a is a contact form. But for notational
changes, the discussion there applies here. This said, the subsequent discussion is
worded as if these terms are zero with it understood that everything said applies if they
are needed. By way of a parenthetical remark, the term �2ri �w on the right-hand
side of the top equation in (3-1) is an example of what Kronheimer and Mrowka call a
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nonexact perturbation. The Seiberg–Witten equations with nonexact perturbations and
their associated Floer homology groups are discussed in Chapters 29–32 of [10] (see
Definition 30.1.1).

If .A; §/ is a solution of the equations in (3-1), then so is .A� 2u�1du;u§/ where
u is any smooth map from Y into S1 with S1 regarded as the unit circle in C . Two
solutions that are related in such a way are said to be gauge equivalent. A solution
.A; §/ of the equations in (3-1) is said to be reducible if § is identically zero, otherwise
it is called irreducible.

Of particular interest here with regard to our Main Theorem are the versions of (3-1) for
the SpinC structure that is used to define ech1 . With this SpinC structure understood,
the term �2ri �w in (3-1) constitutes what is said to be a monotone perturbation.
Note that all solutions of the equations in (3-1) for the SpinC structure of interest are
irreducible. This is because the first Chern class of S is represented by the 2–form

i
2�

FA and therefore by 1
�

rw if there were a reducible solution of the equations in (3-1).
The latter 2–form with r >� has integral greater than 2 over any given cross-sectional
sphere of H0 and hence the top constraint in (2-2) would be violated.

3.2 The Seiberg–Witten Floer chain complex on Y

Let GMƒ
denote the subgroup of C1.Y IS1/ that is defined as follows. An element

of GMƒ
represents a class in H 1.Y IZ/ whose Poincaré dual in H2.Y IZ/ belongs to

the group H2.M IZ/˚
�L

p2ƒH2.HpIZ/
�

regarded as a subgroup of the latter via
the Mayer–Vietoris sequence. With r � 1 fixed, introduce yZSW;Y;r to denote the union
over the relevant SpinC structures of the corresponding set of equivalence classes of
solutions to the equations in (3-1) with the equivalence relation given by

(3-2) .A; §/� .A� 2u�1du;u§/

with u 2 GMƒ
. Let ZSW;Y;r denote the union over the relevant SpinC structures of the

corresponding sets of equivalence classes of solutions to the equations in (3-1) with
the equivalence relation defined by (3-2) with u 2 C1.Y IS1/. The set yZSW;Y;r is a
principal H2.H0IZ/–bundle over ZSW;Y;r . Meanwhile, ZSW;Y;r is a finite set for a
suitably generic choice of a perturbation term to use in (3-1).

The Seiberg–Witten Floer chain complex of interest here is the free Z–module generated
by the set yZSW;Y;r . This module is denoted by Z. yZSW;Y;r /. The corresponding homol-
ogy is a version of twisted Seiberg–Witten Floer homology as described in Section 3.7
of [10]. What follows directly lists two properties of the module Z. yZSW;Y;r /.
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Property 1 The module Z. yZSW;Y;r / has a relative grading by the same cyclic group
that grades the embedded contact homology chain complex and the Heegaard Floer
chain complex.

Property 2 The action of H2.H0IZ/ on yZSW;Y;r gives Z. yZSW;Y;r / the structure of
a ZŒt ; t�1�–module, where t represents the class defined by the cross-sectional spheres
in H0 .

The theorem that follows summarizes the salient properties of Z. yZSW;Y;r /.

Theorem 3.1 The definition given in [10] for the Seiberg–Witten Floer homology
differential supplies a square-zero endomorphism, a differential @SW on Z. yZSW;Y;r /.
The definitions in [10] also supply an endomorphism that defines the U –map for
Z. yZSW;Y;r / as well as endomorphisms that define the action of

V�
.H1.Y IZ/=tor/.

These endomorphisms have the following properties:

� The differential decreases the relative grading by 1, the U –map decreases the
relative grading by 2 and the actions by generators of H1.Y IZ/=tor decrease
the grading by 1. The generators of the U –map and the action of H1.Y IZ/=tor
define an action of ZŒU �˝

V�
.H1.Y IZ/=tor/ on the homology of the chain

complex.
� The differential , the U –map and the actions by generators of H1.Y IZ/=tor

commute with the action of H2.H0IZ/.
� There exists a constant ›� 1 and a section Z� yZSW;Y;r whose significance is

described next. If r �›, then the Z–module generated by yZ0
SW;Y;r WD

S
k�0 t kZ

is a @SW –invariant submodule of Z. yZSW;Y;r / which is also preserved by the
U –map and the endomorphisms that define the

V�
.H1.Y IZ/=tor/ action.

This theorem is proved in [13, Propositions 1.1–1.3]. It is assumed implicitly in
what follows that the constant r in (3-1) is large enough to invoke all three bullets of
Theorem 3.1.

By way of summary of what is said in [10], the endomorphisms of Z. yZSW;Y;r / that
represent the differential, the U –map and the action of

V�
.H1.M IZ/=tor/ are defined

using certain kinds of solutions to the Seiberg–Witten equations on R�Y . The latter
are equations for an R–dependent pair of a connection on det.S/ and a section of S .
Let .A; §/ denote such an R–dependent pair. The equations written below use s to
denote the Euclidean coordinate on the R factor of R�Y :

(3-3) @

@s
AC�FA D 2r.§|£§� i �w/;

@

@s
§CDA§D 0:
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To say something about the kinds of solutions that are relevant, let .A�; §�/ denote a
solution to the equations in (3-1). The differential acts on the generator defined by the
equivalence class of .A�; §�/ in yZSW;Y;r so as to result in a finite linear combination
of generators with integer coefficients. Let .AC; §C/ denote a second solution to the
equations in (3-1). The latter can represent a generator in this sum only if there exists
a solution to the equations in (3-3) with the following properties:

(3-4) � The map s! .A; §/js converges as s tends to �1 to .A�; §�/.

� The map s! .A; §/js converges as s tends to 1 to .AC�2u�1du;u§C/

with u 2 GMƒ
.

Theorem 3.1 asserts that the two modules Z. yZSW;Y;r / and Z. yZ0
SW;Y;r / together with

the differential @SW define a pair of a chain complex and a subcomplex. Use H1� .Y /r

to denote the homology of the chain complex .Z. yZSW;Y;r /; @SW/, H�� .Y /r to denote
the homology of .Z.t yZ0

SW;Y;r /; @SW/, and HC� .Y /r to denote the homology of the
quotient complex, namely, of the complex .Z. yZSW;Y;r /=Z.t yZ0

SW;Y;r /; @SW/. The next
theorem says something about the r –dependence of these three homology groups.

Theorem 3.2 Let › denote the constant from the third bullet of Theorem 3.1. Fix
r; r 0 � ›. There exists a canonical isomorphism between the respective pairs of homol-
ogy groups

.H1� .Y /r ;H
1
� .Y /r 0/; .H�� .Y /r ;H

�
� .Y /r 0/ and .HC� .Y /r ;H

C
� .Y /r 0/:

These isomorphisms are induced by an H2.H0IZ/–equivariant homomorphism from
Z. yZSW;Y;r / to Z. yZSW;Y;r 0/ that maps Z. yZ0

SW;Y;r / to Z. yZ0
SW;Y;r 0/, preserves their rel-

ative gradings, and intertwines the endomorphisms that are used to define the respective
differentials, U –maps and

V�
.H1.Y IZ/=tor/ actions.

This theorem is also proved in [13, Proposition 1.4].

Use Theorem 3.2 to identify any two r � 1 versions of the groups H1� .Y /r , H�� .Y /r

and HC� .Y /r and so define the r –independent groups H1� .Y /, H�� .Y / and HC� .Y /.

3.3 Seiberg–Witten Floer homology on Y and embedded contact
homology on Y

Theorem 3.3 relates the chain complexes .Z. yZSW;Y;r /; @SW/ and .Z. yZech;M /; @ech/.
What follows directly sets up the notation.
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Theorem 2.3 describes a certain principal H2.H0IZ/–bundle isomorphism from
yZech;M to Zech;M �Z. Section 2.3 introduces Z. yZ0

ech;M / � Z. yZech;M / to denote
the inverse image of Z.Zech;M � fi 2 Z j i � 0g/ via the induced isomorphism of
Z–modules. Section 2.3 also refers to the sets fZech;M

LgLD1;2;::: from (2-3) and the
associated filtration of Z. yZech;M / given by (2-7).

Theorem 3.3 Let H1� .Y /, H�� .Y / and HC� .Y / denote finitely generated subgroups
of the respective groups H1� .Y /, H�� .Y / and HC� .Y /. Given these groups, there
exists LH � 1, and given L � LH , there exist rH;L � � and L0 � L with the
following significance. Take r � rH;L so as to define yZSW;Y;r . There exists an
H2.H0IZ/–equivariant , injective map ŷ r W yZech;M

L0 ! yZSW;Y;r that defines a Z–
module monomorphism

Lr
W Z. yZech;M

L0/! Z. yZSW;Y;r /

such that :

� Lr reverses the sign of relative gradings.

� Lr induces monomorphisms from tZ. yZech;M
L0 \ yZ0

ech;M / into tZ. yZ0
SW;Y;r /

and from Z. yZech;M
L0/=tZ. yZech;M

L0 \ yZ0
ech;M / into Z. yZSW;Y;r /=t. yZ0

SW;Y;r /.

� Lr intertwines @ech with @SW , and it also intertwines the endomorphisms that
define the respective ZŒU �˝

V�
.H1.Y IZ/=tor/ actions on the @ech homology

and the @SW homology.

� Let Qech
L denote any of the modules Z. yZech;M

L/, tZ. yZech;M
L\ yZ0

ech;M / or
Z. yZech;M

L/=tZ. yZech;M
L\ yZ0

ech;M / and let Qech
L0 denote the L0 version. Let

QSW denote, then, Z. yZSW;Y;r /, tZ. yZ0
SW;Y;r / or Z. yZSW;Y;r /=tZ. yZ0

SW;Y;r /,
respectively. If � 2Qech

L is such that Lr .�/D @SWz for some z 2QSW , then
� D @ech�

0 for some Qech
L0 .

� The subgroups H1� .Y /, H�� .Y / and HC� .Y / are represented by elements in
the respective Lr images of the modules Z. yZech;M

L/, tZ. yZech;M
L\ yZ0

ech;M /

or Z. yZech;M
L/=tZ. yZech;M

L\ yZ0
ech;M /.

Moreover , if r; r 0 � rH;L , then the homomorphism from Theorem 3.2 can be chosen
to intertwine Lr and Lr 0 .

This theorem is proved in [13, Theorem 1.5].
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Remark The arguments for the proof of Theorem 3.3 are relatively straightforward
modifications of the arguments from [16] and [20; 21; 22; 23; 24]. The most technical
and subtle parts of those arguments are in [20; 21; 22; 23], and what is done there is
likewise required to prove Theorem 3.3. Even so, Theorem 3.3 needs only the simplest
cases from [20; 21; 22; 23] because all of the integral curves of v that appear in Zech;M

do so with integer partner 1.

Theorem 3.3 leads directly to the following result:

Theorem 3.4 There exist homomorphisms indicated by the arrows in the commutative
diagram

// ech� //

'

��

ech1 //

'

��

echC

'

��

//

// H�� .Y /
// H1� .Y /

// HC� .Y / //

such that the vertical arrows are isomorphisms and both rows are long exact sequences.
All homomorphisms preserve the relative gradings, and intertwine the respective U –
maps and the

V��
H1.M IZ/=tor˚H1

�
#g S1 � S2IZ

��
actions. Furthermore, the

middle vertical arrow intertwines the action of H2.H0IZ/.

Proof The horizontal arrows are induced from the respective short exact sequences for
the relevant chain complexes. The vertical arrows are induced by the maps fLr gr�1

from Theorem 3.3.

To elaborate, consider the middle vertical arrow. What follows first is its definition.
Keep in mind for this purpose that any given class in ech1 is represented by a closed
cycle in some L� 1 version of yZech;M

L . This understood, suppose that L� 1 and
that z 2 Z. yZech;M

L/ is annihilated by @ech , and so it represents a class in ech1 . Let
Œz� denote this class. Fix r � 1 so that ŷ r on yZech;M

L0 is defined for L0 �L. The
third bullet of Theorem 3.3 guarantees that Lr z is annihilated by @SW and hence
defines a class in H1� .Y /, and it implies that Lr .z/ and Lr .zC @echw/ define the
same class in H1� .Y /, and the final assertion of Theorem 3.3 guarantees that this class
is independent of r . The homomorphism that is denoted by the middle vertical arrow
sends Œz� 2 ech1 to the class represented by Lr z in H1� .Y /.

To see that the middle vertical arrow is injective, let z be as described above and suppose
that Lr z D @SWz. If r � 1 is sufficiently large — and so L0 is sufficiently large —
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then z can be taken to be equal to Lrw with w 2 yZech;M
L0 . This is a consequence of

the fourth bullet of Theorem 3.3. But then z D @echw and hence Œz�D 0.

To see that the middle vertical arrow is surjective, suppose that Œz� 2H1� .Y / is a given
class. If r � 1 is sufficiently large — and so L0 is sufficiently large — then the fifth
bullet of Theorem 3.3 finds z 2 yZech;M

L0 such that Lr z represents the class Œz�. The
second and the third bullets of Theorem 3.3 require that @echz D 0 and hence z defines
a class in ech1 . As a result, Œz� is in the image of the homomorphism indicated by the
middle vertical arrow.

The arguments just given, after only notational changes, together with the second and
the fifth bullets of Theorem 3.3 suffice to prove the assertions for the leftmost and the
rightmost vertical arrows.

4 Seiberg–Witten Floer homology of Y and Seiberg–Witten
Floer homology of M

This section starts by summarizing what is needed about the Seiberg–Witten Floer
chain complex on M, and goes on to relate the corresponding three versions of the
Seiberg–Witten Floer homology groups to the groups H1� .Y /, H�� .Y / and HC� .Y /.

To start, fix a smooth Riemannian metric on M and use the SpinC structure s so as to
define the Seiberg–Witten equations on M. Use SM to denote the associated rank 2

Hermitian vector bundle. The relevant versions of the Seiberg–Witten equations involve
a pair .A; §/ where A is a connection on det.SM / and § is a smooth section of SM .
The version needed on M requires the choice of a closed 2–form that represents the
first Chern class of det.SM /. Let cSM

denote such a form. The equations read

(4-1)
�FA D 2.§|£§� i� � cSM

/CT.A;§/;

DA§DG.A;§/:

As in the case of (3-1), the perturbation terms are only needed to ensure that the solution
set of these equations and the corresponding R�M version of (3-3) are well behaved.
As was done in Section 3, the subsequent discussion is phrased as if they are absent.

The equations lead to what Kronheimer and Mrowka call balanced Floer homol-
ogy groups in [10, Definition 30.1.1]. These are discussed in Chapters 29 and 30
of [10]. There are three versions of balanced Seiberg–Witten Floer homology groups
with coefficient ring Z. These are the groups HM�.M; s; cb/, bHM�.M; s; cb/ and
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zHM�.M; s; cb/ that appear in our Main Theorem. They reduce to the standard versions
of Seiberg–Witten Floer homology when the first Chern class of det.SM / is torsion,
otherwise they are different. For example, HM�.M; sM / is zero when the associated
first Chern class is nontorsion while HM�.M; sM ; cb/ is not zero in general. Each of
these groups has a relative grading, a U –map that decreases the relative grading by 2,
and a commuting action of

V�
.H1.M IZ/=tor/. These three groups fit into a long exact

sequence whose homomorphisms intertwine the U –maps and the
V�
.H1.M IZ/=tor/

actions.

The manifold Y is obtained from M by connect summing the latter with GC1 copies
of S1�S2 . One of these copies accounts for the handle H0 and the others account for
the various p2ƒ versions of Hp . This said, the three balanced versions of the Seiberg–
Witten Floer homology on M are related to the corresponding three versions that
appear in Theorem 3.4 using Seiberg–Witten Floer homology connect sum theorems. A
G–fold iteration of one such theorem deals with the p 2ƒ labeled copies of S1 �S2 .
A second sort of connect sum theorem deals with the H0 labeled copy. The connect
sum theorems lead directly to:

Theorem 4.1 There exist homomorphisms indicated by the arrows in the commutative
diagram

//H�� .Y /
//

'

��

H1� .Y /
//

'

��

HC� .Y /

'

��

//

//bHM�.M; s; cb/˝ yV
˝G //HM�.M; s; cb/˝ yV

˝G //zHM�.M; s; cb/˝ yV
˝G //

such that the vertical arrows are isomorphisms and both rows are long exact sequences.
All homomorphisms preserve the relative gradings, and intertwine the respective U –
maps and the

V��
H1.M IZ/=tor˚H1

�
#g S1 �S2IZ

��
actions.

This theorem is proved in [14, Theorem 1.4].

The Main Theorem from the introduction is an immediate consequence of Theorems 2.4,
3.4 and 4.1.

Remark The use of two different connect sum theorems owes allegiance to the
distinction in (2-2). The connect sum theorem that deals with the p 2ƒ labeled copies
of S1 �S2 is the simpler of the two. This theorem accounts for the G factors of yV
that appear in the bottom row of the diagram in Theorem 4.1. Suffice it to say for now
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that any given factor of yV reflects the following geometric fact. The space of gauge
equivalence classes of flat U.1/ connections on S1 �S2 is a manifold, S1 , whose
cohomology is isomorphic to yV . The second sort of connect sum theorem is a very
much more subtle affair. Its proof in a slightly different context is outlined in [15]. As
explained in [15], the theorem owes allegiance in part to various results by J D S Jones
regarding S1 –equivariant homology (see [8]). As noted at the end of the introduction,
the existence of this second sort of connect sum theorem was predicted by Mrowka and
Ozsváth, and Bloom, Mrowka and Ozsváth have a proof of a closely related version
(personal communication).
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