MTH142 - FALL 2014
 Quiz - 2

Last Name:

First Name:

Problem: A heavy rope, 50 ft long, weighing 40 lbs hangs over the edge of a building 100 ft high.
(a) (5 pts) Approximate the work required to pull the rope to the top of the building by a Riemann sum.
(b) (5 pts) Express the work as an integral and evaluate it.

Solution:

(a) Start by subdividing the length of the rope, which is the longest distance any point on the rope can travel, into n equal subintervals:

$$
0=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=50
$$

where $\Delta x=\frac{50}{n}$ and $x_{i}=i \frac{50}{n}$. For each $i=1, \ldots, n$, choose x_{i}^{*} in $\left[x_{i-1}, x_{i}\right]$. Since the weight density of the rope is $\frac{40}{50}=0.8 \mathrm{lbs} / \mathrm{ft}$, the weight of the i th portion of the rope with length Δx is $0.8 \Delta x$ lbs. Approximating the distance traveled (against gravitational force) by the i th portion of the rope via x_{i}^{*}, we find that the work done in pulling the i ith portion to the top is approximated by

$$
W_{i} \simeq(0.8 \Delta x) \cdot x_{i}^{*} .
$$

Hence an approximation to the total work done is given by

$$
W \simeq \sum_{i=1}^{n} 0.8 x_{i}^{*} \Delta x
$$

(b) To find the actual work done, take limit as $n \rightarrow \infty$ to get a definite integral out of the Riemann sum found in part (a), and evaluate the integral:

$$
\begin{aligned}
\int_{0}^{50} 0.8 x d x & =\left.0.8 \frac{x^{2}}{2}\right|_{0} ^{50} \\
& =0.4\left[50^{2}-0\right] \\
& =1000 \mathrm{ft} \cdot \mathrm{lb}
\end{aligned}
$$

