$$
\begin{gathered}
\text { MTH142 - FALL } 2014 \\
\text { QUIZ - } 1
\end{gathered}
$$

Last Name:

First Name:

Problem: Let $f(x)=x^{2}$ and $g(x)=x+2$ be two functions.
(a) (4 pts) Illustrate the area bounded by the graphs of the functions f and g.
(b) (6 pts) Compute the area between the graphs of f and g.

Solution:

(b) Note that the graphs of f and g intersect at points with x-coordinates satisfying the equation

$$
x^{2}=x+2 .
$$

In other words, $x^{2}-x-2=0$. Using the quadratic formula, we find that the intersection points have x-coordinates $x=-1$ and $x=2$. To find the area between the curves we compute the integral

$$
\int_{-1}^{2}\left|x^{2}-(x+2)\right| d x .
$$

Note that $x^{2}-(x+2)=x^{2}-x-2 \leq 0$ on $[-1,2]$ since the leading coefficient of $x^{2}-x-2$ is $1>0$. Therefore, the above integral becomes

$$
\int_{-1}^{2}\left(x+2-x^{2}\right) d x .
$$

Evaluating this integral we find the area:

$$
\begin{aligned}
\int_{-1}^{2}\left(x+2-x^{2}\right) d x & =\left.\left[\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right]\right|_{-1} ^{2} \\
& =\left[\frac{4}{2}+4-\frac{8}{3}\right]-\left[\frac{1}{2}-2+\frac{1}{3}\right] \\
& =\frac{9}{2}
\end{aligned}
$$

