Example 4.3, page 128 of Smith, van Ness \& Abbott

Preliminaries

> restart;
Convert initial temperature (500 F) to Kelvin, assign to Q the heat transferred per mol
$>\mathrm{TO}:=(500-32) / 1.8+273.15$;
Q : = 37218;

$$
\begin{gathered}
T 0:=533.1500000 \\
Q:=37218
\end{gathered}
$$

$>\mathrm{R}:=8.314 ; \mathrm{J} / \mathrm{K}-\mathrm{mol}$

$$
R:=8.314
$$

Ideal-gas solution

Ideal-gas heat capacity of ammonia as a function of temperature, from Table C. 1
$>C p _i g:=T \rightarrow R^{*}\left(3.578+3.02 e-3 * T-0.186 e 5 / T^{\wedge} 2\right)$;

$$
c p _i g:=T \rightarrow R\left(3.578+.00302 T-\frac{18600 .}{T^{2}}\right)
$$

Function for ideal-gas enthalpy change for change in temperature from T0 to T. Note that the T0 here is distinguished from the T0 set above, because it appears here as an argument to the function.

$$
\begin{array}{r}
>\text { delH_ig }:=(T 0, T) \rightarrow \text { int }\left(c p _i g(t), t=T 0 \ldots T\right) ; \\
\\
\text { delH_ig }:=(T 0, T) \rightarrow \int_{T 0}^{T} c p _i g(t) d t
\end{array}
$$

If we call the function with T0, T0 is now interpreted as the T0 defined above.
> delH_ig(TO,T);

$$
.00008314000000 \frac{357800 . T^{2}+151 . T^{3}+.186000000010^{10}}{T}-19718.42660
$$

Which is the physically meaningful root?
> solve (delH_ig (TO,T) =Q, T) ;
-3622.461198, 2.719888262, 1250.204886

2nd-virial description of the vapor

Now let's try it with a non-ideal vapor. Use 2 nd virial coefficient given from correlation on page 89.
$>\mathrm{BO}:=\operatorname{Tr} \rightarrow 0.083-0.422 / \operatorname{Tr}^{\wedge} 1.6$; B1 : $=\operatorname{Tr}->0.139-0.172 / \operatorname{Tr}^{\wedge} 4.2$;
$B 0:=\operatorname{Tr} \rightarrow .083-\frac{.422}{T r^{1.6}}$
$B 1:=\operatorname{Tr} \rightarrow .139-\frac{.172}{T T^{4.2}}$
Critical properties, acentric factor of ammonia (from Table B.1)
$>$ omega $:=0.253$;
Tc := 405.7;
PC := 112.8;

$$
\begin{aligned}
\omega & :=.253 \\
T c & :=405.7 \\
P c & :=112.8
\end{aligned}
$$

Here's the second virial coefficient, with its temperature dependence
$>B:=T \rightarrow R * T C / P C *(B 0(T / T C)+$ omega*B1(T/TC));

$$
B:=T \rightarrow \frac{R T c\left(\mathrm{~B} 0\left(\frac{T}{T c}\right)+\omega \mathrm{B} 1\left(\frac{T}{T c}\right)\right)}{P c}
$$

Here we define the derivative $\mathrm{dH} / \mathrm{dP}$ as a function of T. Note the need to use the "subs" construction. If you don't do it this way (i.e., if you just use T directly in the formula), you run into trouble when you try to evaluate the function for any value of T (more details in the following subsection)
> dHdP := T -> subs (t=T,B(t) - t*diff(B(t),t));

$$
d H d P:=T \rightarrow \operatorname{subs}\left(t=T, \mathrm{~B}(t)-t\left(\frac{\partial}{\partial t} \mathrm{~B}(t)\right)\right)
$$

Here's some more detail on why the 'subs" function is needed above

Enthalpy change as a function of T0, T and P
> delH := (TO,T,P) -> delH_ig(TO,T) + (dHdP(T) - dHdP (TO)) * P; delH := $(T 0, T, P) \rightarrow \operatorname{delH} _i g(T 0, T)+(\operatorname{dHdP}(T)-\operatorname{dHdP}(T 0)) P$
Here's what the funcition looks like for our T 0 and $\mathrm{P}=1$ bar
> delH(TO,T,1);

$$
\begin{aligned}
& .00008314000000 \frac{357800 . T^{2}+151 . T^{3}+.186000000010^{10}}{T}-19695.08706-\frac{187995.0401}{T^{1.6}} \\
& -\frac{.117169864710^{12}}{T^{4.2}}-T\left(\frac{300792.0642}{T^{2.6}}+\frac{.492113431710^{12}}{T^{5.2}}\right)
\end{aligned}
$$

Solve gives more solutions than we want. Which one is physically relevant?
> solve (delH (TO,T,1) =Q, T) ;
$35.07719292-32.46944714 I, 35.07719292+32.46944714 I$,

$$
-28.88056676-36.81301385 I,-28.88056676+36.81301385 I, 1249.912299
$$

In this case it is expedient to work with fsolve, which attempts to return only a real (as opposed to complex) solution.
> fsolve (delH (TO,T, 1) =Q, T);
fsolve $\left(.00008314000000 \frac{357800 \cdot T^{2}+151 . T^{3}+.186000000010^{10}}{T}-19695.08706\right.$

$$
\left.-\frac{187995.0401}{T^{1.6}}-\frac{.117169864710^{12}}{T^{4.2}}-T\left(\frac{300792.0642}{T^{2.6}}+\frac{.492113431710^{12}}{T^{5.2}}\right)=37218, T\right)
$$

But as you see, sometimes fsolve needs some help. You can direct it to a solution by specifying a range for it to work within
> fsolve (delH (T0,T,1) =Q,T,500..2000);
1249.912299

Let's examine the heat requirement as a function of pressure. Note that the 2 nd-virial description probably breaks down beyond about 10 bar. Here's a loop that does the scan of pressure in a tidy fashion. The pressure scans $1,10,100$, and 1000 bar.
> for i from 0 to 3 do
print(10^i,fsolve(delH(T0,T,10^i) $=$ Q,T,500..2000)) od;

$$
\begin{gathered}
1,1249.912299 \\
10,1247.280510 \\
100,1221.120383 \\
1000,985.8500114
\end{gathered}
$$

Remember the ideal-gas result was 1250.2 K . As you can see, there's really not much need to assume anything other than ideal-gas behavior for most cases of interest (i.e., less than 10 bar or
so).

