
Example 4.3, page 128 of Smith, van Ness & Abbott
Preliminaries
> restart;
Convert initial temperature (500 F) to Kelvin, assign to Q the heat transferred per mol
> T0 := (500-32)/1.8 + 273.15; 

Q := 37218;
 := T0 533.1500000

 := Q 37218
> R := 8.314; J/K-mol

 := R 8.314

Ideal-gas solution
Ideal-gas heat capacity of ammonia as a function of temperature, from Table C.1
> cp_ig := T -> R*(3.578 + 3.02e-3 * T - 0.186e5 / T^2);

 := cp_ig  → T R






 +  − 3.578 .00302 T

18600.

T2

Function for ideal-gas enthalpy change for change in temperature from T0 to T.  Note that the T0 
here is distinguished from the T0 set above, because it appears here as an argument to the 
function.
> delH_ig := (T0,T) -> int(cp_ig(t),t=T0..T);

 := delH_ig  → ( ),T0 T d⌠
⌡

T0

T

( )cp_ig t t

If we call the function with T0, T0 is now interpreted as the T0 defined above.
> delH_ig(T0,T);

 − .00008314000000
 +  + 357800. T2 151. T3 .1860000000 1010

T
19718.42660

Which is the physically meaningful root?
> solve(delH_ig(T0,T)=Q,T);

, ,-3622.461198 2.719888262 1250.204886

2nd-virial description of the vapor
Now let's try it with a non-ideal vapor.  Use 2nd virial coefficient given from correlation on page 
89.
> B0 := Tr -> 0.083 - 0.422/Tr^1.6; 

B1 := Tr -> 0.139 - 0.172/Tr^4.2;

 := B0  → Tr  − .083
.422

Tr1.6

 := B1  → Tr  − .139
.172

Tr4.2

Critical properties, acentric factor of ammonia (from Table B.1)
> omega := 0.253; 

Tc := 405.7; 
Pc := 112.8;

 := ω .253
 := Tc 405.7
 := Pc 112.8

Here's the second virial coefficient, with its temperature dependence
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> B := T -> R*Tc/Pc * (B0(T/Tc) + omega*B1(T/Tc));

 := B  → T
R Tc







 + 







B0

T
Tc

ω






B1

T
Tc

Pc
Here we define the derivative dH/dP as a function of T.  Note the need to use the "subs" 
construction.  If you don't do it this way (i.e., if you just use T directly in the formula), you run 
into trouble when you try to evaluate the function for any value of T (more details in the 
following subsection)
> dHdP := T -> subs(t=T,B(t) - t*diff(B(t),t));

 := dHdP  → T






subs , = t T  − ( )B t t







∂

∂
t

( )B t

Here's some more detail on why the "subs" function is needed above
Enthalpy change as a function of T0, T and P
> delH := (T0,T,P) -> delH_ig(T0,T) + (dHdP(T) - dHdP(T0)) * P;

 := delH  → ( ), ,T0 T P  + ( )delH_ig ,T0 T ( ) − ( )dHdP T ( )dHdP T0 P
Here's what the funcition looks like for our T0 and P = 1 bar
> delH(T0,T,1);

.00008314000000
 +  + 357800. T2 151. T3 .1860000000 1010

T
19695.08706

187995.0401

T1.6
 −  − 

.1171698647 1012

T4.2
T









 + 

300792.0642

T2.6

.4921134317 1012

T5.2
 −  − 

Solve gives more solutions than we want.  Which one is physically relevant?
> solve(delH(T0,T,1)=Q,T);

 − 35.07719292 32.46944714 I  + 35.07719292 32.46944714 I, ,
−  − 28.88056676 36.81301385 I −  + 28.88056676 36.81301385 I 1249.912299, ,

In this case it is expedient to work with fsolve, which  attempts to return only a real (as opposed 
to complex) solution.  
> fsolve(delH(T0,T,1)=Q,T);

fsolve .00008314000000
 +  + 357800. T2 151. T3 .1860000000 1010

T
19695.08706 − 






187995.0401

T1.6

.1171698647 1012

T4.2
T









 + 

300792.0642

T2.6

.4921134317 1012

T5.2
 −  −  − 37218 = T,






But as you see, sometimes fsolve needs some help.  You can direct it to a solution by specifying a 
range for it to work within
> fsolve(delH(T0,T,1)=Q,T,500..2000);

1249.912299
Let's examine the heat requirement as a function of pressure.  Note that the 2nd-virial description 
probably breaks down beyond about 10 bar.  Here's a loop that does the scan of pressure in a tidy 
fashion.  The pressure scans 1, 10, 100, and 1000 bar.
> for i from 0 to 3 do 

print(10^i,fsolve(delH(T0,T,10^i)=Q,T,500..2000)) od;
,1 1249.912299
,10 1247.280510
,100 1221.120383
,1000 985.8500114

Remember the ideal-gas result was 1250.2 K.  As you can see, there's really not much need to 
assume anything other than ideal-gas behavior for most cases of interest (i.e., less than 10 bar or 
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so).
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