
> restart;
VLE data for chloroform(1)/1,4-dioxane(2) at 50 degC (S,vN&A Table 11.3)

Utility routines
> with(linalg): with(plots):with(stats):
Warning, new definition for norm
Warning, new definition for trace

Trapezoid-rule integration of a data set
x and y are lists describing the data; i0 and i1 indicate the lower and upper points through
which the integration is performed
> trapezoid := (i0,i1,x,y) ->

sum(0.5*(y['i'+1]+y['i'])*(x['i'+1]-x['i']),'i'=i0..i1-1);

 := trapezoid → (), , ,i0 i1 x y ∑
 = ' 'i i0

 − i1 1

().5 () + y + ' 'i 1 y' 'i () − x + ' 'i 1 x' 'i

Routine to plot a set of data
x and y are lists describing the data; i0 and i1 indicate the lower and upper points through
which the plot is made
> plotdata := (i0,i1,x,y) -> plot([[x['i'],y['i']]

$'i'=i0..i1],color=black,style=point,symbol=circle):

Very crude minimization routine
Finds rough minimum of a function of two variables. Examines value of function over an
equally-spaced grid of values of the two variables. "fn" is the function, which should take
two arguments; "nPts" is the number of grid points for each variable; "x1Range" and
"x2Range" are lists (of the form [x1min,x1max]) which specify the upper and lower bounds
of the grid for each variable. You can refine the search by running the routine several times,
each one with a narrower range of values for the two variables.

> crudeMinimize := proc(fn,nPts,x1Range,x2Range)
 local x1,x2,m1,m2,x1step,x2step,obj,bestobj,x1best,x2best;
 x1step := (x1Range[2]-x1Range[1])/nPts;
 x2step := (x2Range[2]-x2Range[1])/nPts;
 bestobj := 1e32;
 for m1 from 0 to nPts do
 x1 := x1Range[1] + m1*x1step;
 for m2 from 0 to nPts do
 x2 := x2Range[1] + m2*x2step;
 obj := fn(x1,x2);
 if(obj < bestobj) then
 bestobj := obj;
 x1best := x1;
 x2best := x2;
 fi;
 od;
 od;
 evalf([x1best,x2best,bestobj]);
end:

Gibbs-Excess models
All models are written to take three arguments: the mole fraction of component 1, and two

Page 1

modeling parameters (for example, A12 and A21 for the 2-parameter Margules equation). Some
models require fewer parameters (or none); for these the extra arguments just fill a space and are
not used. The routines are written this way so that they can be used interchangably in the dew-
and bubble-point programs below. (Improved versions are being developed that permit treatment
of multicomponent mixtures, and which do not require passing of dummy parameters).

Ideal solution
> gEIdeal := (x,dummy1,dummy2) -> 0.0:

gamma1Ideal := (x,dummy1,dummy2) -> 1.0:
gamma2Ideal := (x,dummy1,dummy2) -> 1.0:

1-constant Margules
> gEMargules1 := (x,A,dummy) -> A*x*(1-x):

gamma1Margules1 := (x,A,dummy) -> exp(A*(1-x)^2):
gamma2Margules1 := (x,A,dummy) -> exp(A*x^2):

2-constant Margules
> gEMargules2 := (x,A12,A21) -> (A21*x + A12*(1-x))*x*(1-x):

gamma1Margules2 := (x,A12,A21) -> exp((1-x)^2 * (A12 +
2*(A21-A12)*x)):
gamma2Margules2 := (x,A12,A21) -> exp(x^2 * (A21 +
2*(A12-A21)*(1-x))):

van Laar
> gEvanLaar := (x,A12p,A21p) -> A12p*A21p/(A12p*x +

A21p*(1-x))*x*(1-x):
> gamma1vanLaar := (x,A12p,A21p) -> exp(A12p/(1 +

A12p*x/A21p/(1-x))^2):
gamma2vanLaar := (x,A12p,A21p) -> exp(A21p/(1 +
A21p*(1-x)/A12p/x)^2):

Wilson
> gEWilson := (x,L12,L21) -> -x*ln(x + (1-x)*L12) -

(1-x)*ln((1-x) + x*L21):
gamma1Wilson := (x,L12,L21) -> exp(-ln(x + (1-x)*L12) +
(1-x)*(L12/(x + (1-x)*L12) - L21/((1-x) + x*L21))):
gamma2Wilson := (x,L12,L21) -> exp(-ln((1-x) + x*L21) -
x*(L12/(x + (1-x)*L12) - L21/((1-x) + x*L21))):

The following routine is under development. It will be applicable to multicomponent (not
just binary) mixtures.
gammaWilson := proc(n,T,x,C)
 local V, aR, L, i, j;
 V := C[1];
 aR := C[2];
print(V);
print(aR);
 L :=
[seq(seq([V[j]/V[i]*exp(-aR[i,j]/T)],j=1..n),i=1..n)];
#print(L);
[evalf(seq(1 - ln(sum(x['j']*L[i,'j'],'j'=1..n)) -
sum(x[i]*L['k',i]/sum(x['j']*L['k','j'],'j'=1..n),'k'=1..n),i
=1..n))];
print(x);
 [evalf(seq(1 - ln(sum(x['j']*L['i','j'],'j'=1..n))
,'i'=1..n))];

Page 2

end:

Dew- and bubble-point calculation routines

Antoine equation and its inverse
> pSat := (T,A,B,C) -> evalf(exp(A - B/(T+C))):

TSat := (P,A,B,C) -> evalf(B/(A - ln(P)) - C):
Antoine constants for some substances (for T in degC)
> ABCacetonitrile := [14.2724,2945.47,224.0]:

ABCnitromethane := [14.2043,2972.64,209.0]:
ABC2propanol := [16.6780,3640.20,273.15-53.54]:
ABCwater := [16.2887,3816.44,273.15-46.13]:

Bubble pressure routine
Returns the bubble pressure and vapor mole fraction for a binary mixture. Assumes ideal
gases and unit Poynting correction. Follows algorithm described by Fig. 12.12 of SvN&A.
This routine takes the following parameters:
 T = temperature in degrees Celsius
 x = liquid mole fraction of species 1 (of a two-component mixture)
 ABC1, ABC2 = lists of Antoine-equation constants (of the form [A, B, C]) for components
1 and 2, respectively
 gamma1Model, gamma2Model = name of functions that return the respective activity
coefficients for species 1 and 2. These routines should take three arguments, as described in
the "Gibbs-excess models" above
 gammaCoeffs = list of two coefficients that are passed to the functions "gamma1Model"
and "gamma2Model"
> BubblePressure :=

proc(T,x,ABC1,ABC2,gamma1Model,gamma2Model,gammaCoeffs)
 local p1Sat, p2Sat, gamma1, gamma2, P, y;
 p1Sat := pSat(T,ABC1[1],ABC1[2],ABC1[3]);
 p2Sat := pSat(T,ABC2[1],ABC2[2],ABC2[3]);
 gamma1 := gamma1Model(x,gammaCoeffs[1],gammaCoeffs[2]);
 gamma2 := gamma2Model(x,gammaCoeffs[1],gammaCoeffs[2]);
 P := x*gamma1*p1Sat + (1-x)*gamma2*p2Sat;
 y := x*gamma1*p1Sat/P;
 [P,y];
end:

Reproduce result from Example 12.1, page 444. Uses ideal-solution model for liquid.
> BubblePressure(75,0.2,ABCacetonitrile,ABCnitromethane,gamma1Ide

al,gamma2Ideal,[dummy1,dummy2]);
[],50.22753556 .3313196896

Dew temperature routines
2-component

Returns the dew temperature and liquid mole fraction for a binary mixture. Assumes
ideal gases and unit Poynting correction. Follows algorithm described by Fig 12.15 of
SvN&A.
This routine takes the following parameters:
 P = pressure in units consistent with Antoine-equation vapor pressure (kPa for the
examples used here)
 y = vapor mole fraction of species 1 (of a two-component mixture)
 ABC1, ABC2 = lists of Antoine-equation constants (of the form [A, B, C]) for
components 1 and 2, respectively
 gamma1Model, gamma2Model = name of functions that return the respective activity

Page 3

coefficients for species 1 and 2. These routines should take three arguments, as described
in the "Gibbs-excess models" above
 gammaCoeffs = list of two coefficients that are passed to the functions
"gamma1Model" and "gamma2Model"

> DewTemperature :=
proc(P,y,ABC1,ABC2,gamma1Model,gamma2Model,gammaCoeffs)
 local T1Sat, T2Sat, p1Sat, p2Sat, gamma1, gamma2, x1,
x2, gammaOld, xsum, T, TOld, xi, epsilon, dgamma, dT;
 xi := 1.0e-4; epsilon := 1.0e-4; xi and epsilon are the
convergence tolerances for the iteration loops
 dT := 1e32; dT is the temperature change from one iteration to the next.
When it is less than epsilon, convergence is reached. Initialize it here to a large value.
 gamma1 := 1; gamma2 := 1; Activity coefficients of two species
 T1Sat := TSat(P,ABC1[1],ABC1[2],ABC1[3]); Compute saturation
temperatures at P, according to algorithm
 T2Sat := TSat(P,ABC2[1],ABC2[2],ABC2[3]);
 T := y*T1Sat + (1-y)*T2Sat; Initial guess of dew temperature
 p1Sat := pSat(T,ABC1[1],ABC1[2],ABC1[3]); Compute saturation
pressures at guessed dew T, according to algorithm
 p2Sat := pSat(T,ABC2[1],ABC2[2],ABC2[3]);
 p1Sat := P*(y/gamma1 + (1-y)/gamma2*p1Sat/p2Sat); Choose
component 1 as "species j" of algorithm
 T := TSat(p1Sat,ABC1[1],ABC1[2],ABC1[3]);
 p2Sat := pSat(T,ABC2[1],ABC2[2],ABC2[3]);
 x1 := y*P/gamma1/p1Sat; initial guess of liquid mole fraction
 x2 := (1-y)*P/gamma2/p2Sat;
 gamma1 :=
evalf(gamma1Model(x1,gammaCoeffs[1],gammaCoeffs[2]));
 gamma2 :=
evalf(gamma2Model(x1,gammaCoeffs[1],gammaCoeffs[2]));
 p1Sat := P*(y/gamma1 + (1-y)/gamma2*p1Sat/p2Sat);
 T := TSat(p1Sat,ABC1[1],ABC1[2],ABC1[3]);
 while dT > epsilon do loop until temperature change is less than
epsilon
 TOld := T;
 dgamma := [1e32,1e32]; dgamma is a list showing the change in
gamma1 and gamma2 on successive iterations of the inner loop
 p1Sat := pSat(T,ABC1[1],ABC1[2],ABC1[3]);
 p2Sat := pSat(T,ABC2[1],ABC2[2],ABC2[3]);
 while max(op(dgamma)) > xi do loop until the largest element of
dgamma is less than xi. (the op function takes the list and returns a sequence, i.e., it
takes away the square brackets, so the proper format for the max function is presented)

 gammaOld := [gamma1,gamma2];
 x1 := y*P/gamma1/p1Sat;
 x2 := (1-y)*P/gamma2/p2Sat;
 xsum := x1 + x2;
 x1 := x1/xsum; x2 := x2/xsum;
 gamma1 :=
evalf(gamma1Model(x1,gammaCoeffs[1],gammaCoeffs[2]));
 gamma2 :=
evalf(gamma2Model(x1,gammaCoeffs[1],gammaCoeffs[2]));
 dgamma := map(abs,[gamma1,gamma2] - gammaOld);
this takes the absolute value of each gamma change and makes a list of them

Page 4

print(dgamma); remove hash mark at beginning of line to observe
convergence of gamma
 od;
 p1Sat := P*(y/gamma1 + (1-y)/gamma2*p1Sat/p2Sat);
 T := TSat(p1Sat,ABC1[1],ABC1[2],ABC1[3]);
 dT := abs(T - TOld); we want absolute value of temperature change,
so that a large negative dT is not interpreted as converged
print(dT); remove hash mark at beginning of line to observe
convergence of temperature
 od;
 [T,x1];
end:

Multicomponent (under development)
Again reproduce result from Example 12.1.
> DewTemperature(50.23,.3313,ABCacetonitrile,ABCnitromethane,gamm

a1Ideal,gamma2Ideal,[dummy1,dummy2]);
[],75.0016825 .1999868410

> DewTemperature(20,.5,ABCacetonitrile,ABCnitromethane,gamma1Marg
ules1,gamma2Margules1,[-1.0,dummy2]);

[],54.1499219 .3727474432
Dew temperature using Maple's solve routine!
> DewTemperature2 :=

(P,y,ABC1,ABC2,gamma1Model,gamma2Model,gammaCoeffs) ->

fsolve({x*gamma1Model(x,gammaCoeffs[1],gammaCoeffs[2])*pSat(T,A
BC1[1],ABC1[2],ABC1[3])=y*P,

(1-x)*gamma2Model(x,gammaCoeffs[1],gammaCoeffs[2])*pSat(T,ABC2[
1],ABC2[2],ABC2[3])=(1-y)*P},{T,x},{x=0..1,T=1..1000}):

> DewTemperature2(20,.5,ABCacetonitrile,ABCnitromethane,gamma1Mar
gules1,gamma2Margules1,[-1.0,dummy2]);

{ }, = T 54.14992374 = x .3727449080
Routine to test results by comparing liquid and vapor fugacities.
> DewTemperatureTest :=

(x,T,P,y,ABC1,ABC2,gamma1Model,gamma2Model,gammaCoeffs) ->

[x*gamma1Model(x,gammaCoeffs[1],gammaCoeffs[2])*pSat(T,ABC1[1],
ABC1[2],ABC1[3])=y*P,

(1-x)*gamma2Model(x,gammaCoeffs[1],gammaCoeffs[2])*pSat(T,ABC2[
1],ABC2[2],ABC2[3])=(1-y)*P]:

> DewTemperatureTest(.3727,54.15,20,.5,ABCacetonitrile,ABCnitrome
thane,gamma1Margules1,gamma2Margules1,[-1.0,dummy2]);

[], = 9.998260897 10.0 = 10.00108349 10.0
>

Page 5

