
> restart;
VLE data for chloroform(1)/1,4-dioxane(2) at 50 degC (S,vN&A Table 11.3)

Utility routines
> with(linalg): with(plots):with(stats):
Warning, new definition for norm
Warning, new definition for trace

Trapezoid-rule integration of a data set
x and y are lists describing the data; i0 and i1 indicate the lower and upper points through 
which the integration is performed
> trapezoid := (i0,i1,x,y) -> 

sum(0.5*(y['i'+1]+y['i'])*(x['i'+1]-x['i']),'i'=i0..i1-1);

 := trapezoid  → ( ), , ,i0 i1 x y ∑
 = ' 'i i0

 − i1 1

( ).5 ( ) + y  + ' 'i 1 y' 'i ( ) − x  + ' 'i 1 x' 'i

Routine to plot a set of data
x and y are lists describing the data; i0 and i1 indicate the lower and upper points through 
which the plot is made
> plotdata := (i0,i1,x,y) -> plot([[x['i'],y['i']] 

$'i'=i0..i1],color=black,style=point,symbol=circle):

Very crude minimization routine
Finds rough minimum of a function of two variables.  Examines value of function over an 
equally-spaced grid of values of the two variables.  "fn" is the function, which should take 
two arguments; "nPts" is the number of grid points for each variable; "x1Range" and 
"x2Range" are lists (of the form [x1min,x1max]) which specify the upper and lower bounds 
of the grid for each variable.  You can refine the search by running the routine several times, 
each one with a narrower range of values for the two variables. 

> crudeMinimize := proc(fn,nPts,x1Range,x2Range) 
   local x1,x2,m1,m2,x1step,x2step,obj,bestobj,x1best,x2best; 
   x1step := (x1Range[2]-x1Range[1])/nPts; 
   x2step := (x2Range[2]-x2Range[1])/nPts; 
   bestobj := 1e32; 
   for m1 from 0 to nPts do 
     x1 := x1Range[1] + m1*x1step; 
     for m2 from 0 to nPts do 
       x2 := x2Range[1] + m2*x2step; 
       obj := fn(x1,x2); 
       if(obj < bestobj) then 
          bestobj := obj; 
          x1best := x1; 
          x2best := x2; 
        fi; 
      od; 
   od; 
   evalf([x1best,x2best,bestobj]); 
end:

Gibbs-Excess models
All models are written to take three arguments:  the mole fraction of component 1, and two 
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modeling parameters (for example, A12 and A21 for the 2-parameter Margules equation).  Some 
models require fewer parameters (or none); for these the extra arguments just fill a space and are 
not used.  The routines are written this way so that they can be used interchangably in the dew- 
and bubble-point programs below.  (Improved versions are being developed that permit treatment 
of multicomponent mixtures, and which do not require passing of dummy parameters).

Ideal solution
> gEIdeal := (x,dummy1,dummy2) -> 0.0: 

gamma1Ideal := (x,dummy1,dummy2) -> 1.0: 
gamma2Ideal := (x,dummy1,dummy2) -> 1.0:

1-constant Margules
> gEMargules1 := (x,A,dummy) -> A*x*(1-x): 

gamma1Margules1 := (x,A,dummy) -> exp(A*(1-x)^2): 
gamma2Margules1 := (x,A,dummy) -> exp(A*x^2):

2-constant Margules
> gEMargules2 := (x,A12,A21) -> (A21*x + A12*(1-x))*x*(1-x): 

gamma1Margules2 := (x,A12,A21) -> exp((1-x)^2 * (A12 + 
2*(A21-A12)*x)): 
gamma2Margules2 := (x,A12,A21) -> exp(x^2 * (A21 + 
2*(A12-A21)*(1-x))):

van Laar
> gEvanLaar := (x,A12p,A21p) -> A12p*A21p/(A12p*x + 

A21p*(1-x))*x*(1-x):
> gamma1vanLaar := (x,A12p,A21p) -> exp(A12p/(1 + 

A12p*x/A21p/(1-x))^2): 
gamma2vanLaar := (x,A12p,A21p) -> exp(A21p/(1 + 
A21p*(1-x)/A12p/x)^2):

Wilson
> gEWilson := (x,L12,L21) -> -x*ln(x + (1-x)*L12) - 

(1-x)*ln((1-x) + x*L21): 
gamma1Wilson := (x,L12,L21) -> exp(-ln(x + (1-x)*L12) + 
(1-x)*(L12/(x + (1-x)*L12) - L21/((1-x) + x*L21))): 
gamma2Wilson := (x,L12,L21) -> exp(-ln((1-x) + x*L21) - 
x*(L12/(x + (1-x)*L12) - L21/((1-x) + x*L21))): 
 
The following routine is under development.  It will be applicable to multicomponent (not 
just binary) mixtures. 
gammaWilson := proc(n,T,x,C)  
   local V, aR, L, i, j; 
   V := C[1]; 
   aR := C[2]; 
print(V); 
print(aR); 
   L := 
[seq(seq([V[j]/V[i]*exp(-aR[i,j]/T)],j=1..n),i=1..n)]; 
#print(L); 
#   [evalf(seq( 1 - ln(sum(x['j']*L[i,'j'],'j'=1..n)) - 
sum(x[i]*L['k',i]/sum(x['j']*L['k','j'],'j'=1..n),'k'=1..n),i
=1..n))]; 
print(x); 
   [evalf(seq( 1 - ln(sum(x['j']*L['i','j'],'j'=1..n)) 
,'i'=1..n))]; 
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end:

Dew- and bubble-point calculation routines

Antoine equation and its inverse
> pSat := (T,A,B,C) -> evalf(exp(A - B/(T+C))): 

TSat := (P,A,B,C) -> evalf(B/(A - ln(P)) - C):
Antoine constants for some substances (for T in degC)
> ABCacetonitrile := [14.2724,2945.47,224.0]: 

ABCnitromethane := [14.2043,2972.64,209.0]: 
ABC2propanol := [16.6780,3640.20,273.15-53.54]: 
ABCwater := [16.2887,3816.44,273.15-46.13]:

Bubble pressure routine
Returns the bubble pressure and vapor mole fraction for a binary mixture.  Assumes ideal 
gases and unit Poynting correction.  Follows algorithm described by Fig. 12.12 of SvN&A.
This routine takes the following parameters: 
   T = temperature in degrees Celsius
   x = liquid mole fraction of species 1 (of a two-component mixture)
   ABC1, ABC2 = lists of Antoine-equation constants (of the form [A, B, C]) for components 
1 and 2, respectively
   gamma1Model, gamma2Model = name of functions that return the respective activity 
coefficients for species 1 and 2.  These routines should take three arguments, as described in 
the "Gibbs-excess models" above
   gammaCoeffs = list of two coefficients that are passed to the functions "gamma1Model" 
and "gamma2Model"
> BubblePressure := 

proc(T,x,ABC1,ABC2,gamma1Model,gamma2Model,gammaCoeffs)  
  local p1Sat, p2Sat, gamma1, gamma2, P, y; 
  p1Sat := pSat(T,ABC1[1],ABC1[2],ABC1[3]); 
  p2Sat := pSat(T,ABC2[1],ABC2[2],ABC2[3]); 
  gamma1 := gamma1Model(x,gammaCoeffs[1],gammaCoeffs[2]); 
  gamma2 := gamma2Model(x,gammaCoeffs[1],gammaCoeffs[2]); 
  P := x*gamma1*p1Sat + (1-x)*gamma2*p2Sat; 
  y := x*gamma1*p1Sat/P; 
  [P,y]; 
end:

Reproduce result from Example 12.1, page 444.  Uses ideal-solution model for liquid.
> BubblePressure(75,0.2,ABCacetonitrile,ABCnitromethane,gamma1Ide

al,gamma2Ideal,[dummy1,dummy2]);
[ ],50.22753556 .3313196896

Dew temperature routines
2-component

Returns the dew temperature and liquid mole fraction for a binary mixture.  Assumes 
ideal gases and unit Poynting correction.  Follows algorithm described by Fig 12.15 of 
SvN&A.
This routine takes the following parameters: 
   P = pressure in units consistent with Antoine-equation vapor pressure (kPa for the 
examples used here)
   y = vapor mole fraction of species 1 (of a two-component mixture)
   ABC1, ABC2 = lists of Antoine-equation constants (of the form [A, B, C]) for 
components 1 and 2, respectively
   gamma1Model, gamma2Model = name of functions that return the respective activity 
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coefficients for species 1 and 2.  These routines should take three arguments, as described 
in the "Gibbs-excess models" above
   gammaCoeffs = list of two coefficients that are passed to the functions 
"gamma1Model" and "gamma2Model"

> DewTemperature := 
proc(P,y,ABC1,ABC2,gamma1Model,gamma2Model,gammaCoeffs) 
  local T1Sat, T2Sat, p1Sat, p2Sat, gamma1, gamma2, x1, 
x2,  gammaOld, xsum, T, TOld, xi, epsilon, dgamma, dT; 
  xi := 1.0e-4; epsilon := 1.0e-4;  xi and epsilon are the 
convergence tolerances for the iteration loops 
  dT := 1e32;  dT is the temperature change from one iteration to the next.  
When it is less than epsilon, convergence is reached.  Initialize it here to a large value. 
  gamma1 := 1;  gamma2 := 1;  Activity coefficients of two species 
  T1Sat := TSat(P,ABC1[1],ABC1[2],ABC1[3]);  Compute saturation 
temperatures at P, according to algorithm 
  T2Sat := TSat(P,ABC2[1],ABC2[2],ABC2[3]); 
  T := y*T1Sat + (1-y)*T2Sat;   Initial guess of dew temperature 
  p1Sat := pSat(T,ABC1[1],ABC1[2],ABC1[3]);  Compute saturation 
pressures at guessed dew T, according to algorithm 
  p2Sat := pSat(T,ABC2[1],ABC2[2],ABC2[3]); 
  p1Sat := P*(y/gamma1 + (1-y)/gamma2*p1Sat/p2Sat);  Choose 
component 1 as "species j" of algorithm 
  T := TSat(p1Sat,ABC1[1],ABC1[2],ABC1[3]); 
  p2Sat := pSat(T,ABC2[1],ABC2[2],ABC2[3]); 
  x1 := y*P/gamma1/p1Sat;      initial guess of liquid mole fraction 
  x2 := (1-y)*P/gamma2/p2Sat; 
  gamma1 := 
evalf(gamma1Model(x1,gammaCoeffs[1],gammaCoeffs[2])); 
  gamma2 := 
evalf(gamma2Model(x1,gammaCoeffs[1],gammaCoeffs[2])); 
  p1Sat := P*(y/gamma1 + (1-y)/gamma2*p1Sat/p2Sat); 
  T := TSat(p1Sat,ABC1[1],ABC1[2],ABC1[3]); 
  while dT > epsilon do   loop until temperature change is less than 
epsilon 
     TOld := T; 
     dgamma := [1e32,1e32];     dgamma is a list showing the change in 
gamma1 and gamma2 on successive iterations of the inner  loop   
     p1Sat := pSat(T,ABC1[1],ABC1[2],ABC1[3]); 
     p2Sat := pSat(T,ABC2[1],ABC2[2],ABC2[3]);   
     while max(op(dgamma)) > xi do loop until the largest element of 
dgamma is less than xi.  (the op function takes the list and returns a sequence, i.e., it 
takes away the square brackets, so the proper format for the max function is presented) 
 
        gammaOld := [gamma1,gamma2]; 
        x1 := y*P/gamma1/p1Sat; 
        x2 := (1-y)*P/gamma2/p2Sat; 
        xsum := x1 + x2; 
        x1 := x1/xsum; x2 := x2/xsum; 
        gamma1 := 
evalf(gamma1Model(x1,gammaCoeffs[1],gammaCoeffs[2])); 
        gamma2 := 
evalf(gamma2Model(x1,gammaCoeffs[1],gammaCoeffs[2])); 
        dgamma := map(abs,[gamma1,gamma2] - gammaOld);  
this takes the absolute value of each gamma change and makes a list of them 
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#        print(dgamma);  remove hash mark at beginning of line to observe 
convergence of gamma 
     od; 
     p1Sat := P*(y/gamma1 + (1-y)/gamma2*p1Sat/p2Sat); 
     T := TSat(p1Sat,ABC1[1],ABC1[2],ABC1[3]); 
     dT := abs(T - TOld);   we want absolute value of temperature change, 
so that a large negative dT is not interpreted as converged 
#     print(dT);   remove hash mark at beginning of line to observe 
convergence of temperature 
  od; 
  [T,x1]; 
end: 

Multicomponent (under development)
Again reproduce result from Example 12.1.
> DewTemperature(50.23,.3313,ABCacetonitrile,ABCnitromethane,gamm

a1Ideal,gamma2Ideal,[dummy1,dummy2]);
[ ],75.0016825 .1999868410

> DewTemperature(20,.5,ABCacetonitrile,ABCnitromethane,gamma1Marg
ules1,gamma2Margules1,[-1.0,dummy2]);

[ ],54.1499219 .3727474432
Dew temperature using Maple's solve routine!
> DewTemperature2 := 

(P,y,ABC1,ABC2,gamma1Model,gamma2Model,gammaCoeffs) ->  
  
fsolve({x*gamma1Model(x,gammaCoeffs[1],gammaCoeffs[2])*pSat(T,A
BC1[1],ABC1[2],ABC1[3])=y*P, 
          
(1-x)*gamma2Model(x,gammaCoeffs[1],gammaCoeffs[2])*pSat(T,ABC2[
1],ABC2[2],ABC2[3])=(1-y)*P},{T,x},{x=0..1,T=1..1000}):

> DewTemperature2(20,.5,ABCacetonitrile,ABCnitromethane,gamma1Mar
gules1,gamma2Margules1,[-1.0,dummy2]);

{ }, = T 54.14992374  = x .3727449080
Routine to test results by comparing liquid and vapor fugacities.
> DewTemperatureTest := 

(x,T,P,y,ABC1,ABC2,gamma1Model,gamma2Model,gammaCoeffs) ->  
  
[x*gamma1Model(x,gammaCoeffs[1],gammaCoeffs[2])*pSat(T,ABC1[1],
ABC1[2],ABC1[3])=y*P, 
          
(1-x)*gamma2Model(x,gammaCoeffs[1],gammaCoeffs[2])*pSat(T,ABC2[
1],ABC2[2],ABC2[3])=(1-y)*P]:

> DewTemperatureTest(.3727,54.15,20,.5,ABCacetonitrile,ABCnitrome
thane,gamma1Margules1,gamma2Margules1,[-1.0,dummy2]);

[ ], = 9.998260897 10.0  = 10.00108349 10.0
> 
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