Point Estimator

A point estimator is any function $W(\mathbf{X}) = W(X_1, \dots, X_n)$ of a sample \mathbf{X} ; that is, any statistic is a point estimator.

\downarrow

Mean Squared Error (MSE)

The *mean squared error* of an estimator W of a parameter θ is the function of θ

$$\mathsf{MSE} = \mathsf{E}_{\theta} (W - \theta)^2 = \mathsf{Var}_{\theta} W + (\mathsf{Bias}_{\theta} W)^2$$

 \downarrow

Cramér-Rao Inequality

If
$$\frac{d}{d\theta} \mathsf{E}_{\theta} W(\mathbf{X}) = \int_{\mathcal{X}} \frac{\partial}{\partial \theta} [W(\mathbf{X}) f(\mathbf{x}|\theta)] d\mathbf{x}$$

and $\mathsf{Var}_{\theta} W(\mathbf{X}) < \infty$ then
 $\mathsf{Var}_{\theta}(W(\mathbf{X})) \ge \frac{\left(\frac{d}{d\theta} \mathsf{E}_{\theta} W(\mathbf{X})\right)^2}{\mathsf{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \log f(\mathbf{X}|\theta)\right)^2\right)}$

Cramér-Rao Inequality, iid Case

If
$$X_1, \dots, X_n$$
 are fid with pdf $f(x|\theta)$, then
 $\operatorname{Var}_{\theta}(W(\mathbf{X})) \ge \frac{\left(\frac{d}{d\theta}\mathsf{E}_{\theta}W(\mathbf{X})\right)^2}{n\mathsf{E}_{\theta}\left(\left(\frac{\partial}{\partial\theta}\log f(X|\theta)\right)^2\right)}$

Attains Cramér-Rao Lower Bound

If $W(\mathbf{X})$ is any unbiased estimator of $\tau(\theta)$, then $W(\mathbf{X})$ attains the CRLB if and only if

$$a(\theta)[W(\mathbf{x}) - \tau(\theta)] = \frac{\partial}{\partial \theta} \log L(\theta | \mathbf{x})$$

or some function $a(\theta)$.

Bias of a Point Estimator

 \rightarrow

The bias of a point estimator W of a parameter θ is $\text{Bias}_{\theta}W = \mathsf{E}_{\theta}W - \theta$. An estimator whose bias is identically zero is called *unbiased* and satisfies $\mathsf{E}_{\theta}W = \theta$ for all θ .

 \downarrow

Best Unbiased Estimator(UMVUE)

A best or uniform minimum variance unbiased estimator W^* of $\tau(\theta)$ satisfies $E_{\theta}W^* = \tau(\theta)$ and $Var_{\theta}W^* \leq Var_{\theta}W$ for any other unbiased estimator W, for all θ .

F

Best Unbiased Estimators are Unique

If W is a best unbiased estimator of $\tau(\theta),$ then W is unique.

\downarrow

Unbiased Estimators of 0

If $\mathsf{E}_{\theta}W = \tau(\theta)$, W is the best unbiased estimator of $\tau(\theta)$ if and only if W is uncorrelated with all unbiased estimators of 0.

Rao-Blackwell Theorem

Let $\mathsf{E}_{\theta}W = \tau(\theta)$ for all θ and T be sufficient for θ . Define $\phi(T) = \mathsf{E}(W|T)$. Then

 $\phi(T) = \tau(\theta) \text{ and } \operatorname{Var}_{\theta} \phi(T) \leq \operatorname{Var}_{\theta} W$

for all θ ; that is, $\phi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$.

Likelihood Function

Given that $\mathbf{X} = \mathbf{x}$ is observed, the *likeli-hood function* is the function of θ defined by

$$L(\theta|\mathbf{x}) = f(\mathbf{x}|\theta)$$

1

Maximum Likelihood Estimator

A maximum likelihood estimator (MLE) of the parameter θ based on a sample X is a parameter value $\hat{\theta}(\mathbf{X})$ at which $L(\theta|\mathbf{x})$ attains its maximum as a function of θ .

Invariance Property of MLEs

If $\hat{\theta}$ is the MLE of θ , then for any function $\tau(\theta)$, the MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Best Estimator of Expected Value

Let T be a complete sufficient statistic for a parameter $\theta,$ and let $\phi(T)$ be any estimator based only on T. Then,

 $\phi(T)$ is the unique best unbiased estimator of its expected value.

.

Lehmann-Scheffé Theorem

 \rightarrow

Unbiased estimators based on complete sufficient statistics are unique.