Hypothesis

A **hypothesis** is a statement about a population parameter.

Null/Alternate Hypotheses

The two complementary hypotheses in a hypothesis testing problem are called the **null hypothesis** and the **alternative hypothesis**. They are denoted by H_0 and H_1 .

Hypothesis Test

A hypothesis test is a rule that specifies for which sample values H_0 is rejected (the rejection region R or critical region), and for which sample values H_0 is accepted as true (the acceptance region).

 \downarrow

Power Function

The **power function** of a hypothesis test is the function of θ : $\beta(\theta) = P_{\theta}(\mathbf{X} \in R)$. A test with power function $\beta(\theta)$ is **unbiased** if $\beta(\theta') \ge \beta(\theta'')$ for every $\theta' \in \Theta_0^c$ and $\theta'' \in \Theta_0$.

 \downarrow

Size α /Level α Tests

For $0 \leq \alpha \leq 1$, a test with power function $\beta(\theta)$ is a size α test if: $\sup_{\theta \in \Theta_0} \beta(\theta) = \alpha$. For $0 \leq \alpha \leq 1$, a test with power function $\beta(\theta)$ is a level α test if: $\sup_{\theta \in \Theta_0} \beta(\theta) \leq \alpha$.

Likelihood Ratio Test Statistic

To test $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \in \Theta_0^c$: $\lambda(\mathbf{x}) = \frac{\sup_{\substack{\Theta_0 \\ \Theta}} L(\theta|\mathbf{x})}{\sup_{\Theta} L(\theta|\mathbf{x})} = \frac{L(\hat{\theta}_0|\mathbf{x})}{L(\hat{\theta}|\mathbf{x})} = \frac{\sup_{\substack{\Theta_0 \\ \Theta}} L^*(\theta|T(\mathbf{x}))}{\sup_{\Theta} L^*(\theta|T(\mathbf{x}))}$ where $T(\mathbf{X})$ is a sufficient statistic for θ .

Likelihod Ratio Test

 \rightarrow

A **likelihood ratio test** (LRT) is any test that has a rejection region of the form:

 $\{\mathbf{x}:\lambda(\mathbf{x})\leq c\}$

where c is any number satisfying $0 \le c \le 1$.

UMP Class ${\mathcal C}$ Test

A test in class C, with power function $\beta(\theta)$, is a **uniformly most powerful (UMP) class** C **test** if $\beta(\theta) \ge \beta'(\theta)$ for every $\theta \in \Theta_0^c$ and every $\beta'(\theta)$ that is a power function of a test in class C.

\downarrow

Neyman-Pearson Lemma

If a test of $H_0: \theta = \theta_0$ vs $H_1: \theta = \theta_1$ satisfies (i) $\mathbf{x} \in R$ if $f(\mathbf{x}|\theta_1) > kf(\mathbf{x}|\theta_0)$, and $\mathbf{x} \in R^c$ if $f(\mathbf{x}|\theta_1) < kf(\mathbf{x}|\theta_0)$ for some $k \ge 0$, and (ii) $\alpha = P_{\theta_0}(\mathbf{X} \in R)$: **a.** Any test satisfying (i, ii) is UMP level α . **b.** If k > 0 for any test satisfying (i, ii), all UMP level α satisfy (ii), and (i) except perhaps on $A: P_{\theta_0}(\mathbf{X} \in A) = P_{\theta_1}(\mathbf{X} \in A) = 0$.

Neyman-Pearson and Sufficiency

A test based on $T(\mathbf{X}) \sim g(t|\theta_i)$, sufficient for θ , rejection region S, is UMP level α if: $t \in S$ if $g(t|\theta_1) > kg(t|\theta_0)$, and $t \in S^c$ if $g(t|\theta_1) < kg(t|\theta_0)$ for some k > 0, where $\alpha = P_{\theta_0}(T \in S)$

Error Types

 \rightarrow

 \rightarrow

Type I Error $\theta \in \Theta_0$ but H_0 is incorrectly rejected.

Type II Error $\theta \in \Theta_0^c$ but H_0 is incorrectly accepted.

Monotone Likelihood Ratio

A family $\{g(t|\theta) : \theta \in \Theta\}$ has a **monotone likelihood ratio** (MLR) if, for every $\theta_2 > \theta_1, g(t|\theta_2)/g(t|\theta_1)$ is a monotone function of t on $\{t : g(t|\theta_1) > 0 \text{ or } g(t|\theta_2) > 0\}$. Note that c/0 is defined as ∞ if 0 < c.

Karlin-Rubin Theorem

To test $H_0: \theta \leq \theta_0$ vs. $H_1: \theta > \theta_0$. If: - T is a sufficient statistic for θ ; - $\{g(t|\theta): \theta \in \Theta\}$ of T has an MLR Then for any t_0 , the test that rejects H_0 if and only if $T > t_0$ is a UMP level α test, where $\alpha = P_{\theta_0}(T > t_0)$.

p-Value

A **p-value** $p(\mathbf{X})$ is a test statistic satisfying $0 \le p(\mathbf{x}) \le 1$ for every point \mathbf{x} . Small values of $p(\mathbf{X})$ give evidence that H_1 is true. A p-value is **valid** if, for every $\theta \in \Theta_0$ and every $0 \le \alpha \le 1$, $P_{\theta}(p(\mathbf{X}) \le \alpha) \le \alpha$

\downarrow

Constructing a Valid p-Value

Let $W(\mathbf{X})$ be a test statistic such that large values of W give evidence that H_1 is true. For each sample point \mathbf{x} , define

$$p(\mathbf{x}) = \sup_{\theta \in \Theta_0} P_{\theta}(W(\mathbf{X}) \ge W(\mathbf{x}))$$

Then $p(\mathbf{X})$ is a valid p-value.