Bernoulli

- Two possible outcomes: success, denoted by s, and failure, denoted by f.
- Sample space contains two points, s and f.
- The random variable $X(s)=1$ and $X(f)=0$ is a Bernoulli random variable.

Parameters

$p=$ prob. of success
$q=1-p=$ prob. of failure

$$
\begin{gathered}
\text { Probability Mass Function } \\
P(X=x)= \begin{cases}1-p \equiv q & \text { if } x=0 \\
p & \text { if } x=1 \\
0 & \text { otherwise }\end{cases} \\
\hline
\end{gathered}
$$

Binomial

- Independent Bernoulli trials repeated n times.
- Sample space is set of different sequences of length n.
- Number of successes is a random variable X, called a binomial with parameters n and p.

Parameters

$p=$ prob. of success
$n=$ number of trials

Probability Mass Function
$P(X=x)= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x} & \text { if } x=0,1, \ldots, n \\ 0 & \text { elsewhere }\end{cases}$

Expectation Variance $n p \quad n p(1-p)$

Discrete Uniform

- Sample space is set $\{1,2, \ldots, N\}$.
- The integer chosen is a random variable X.
Parameters
Probability Mass Function
Expectation
Variance
$N=$ number of choices $\quad P(X=x)= \begin{cases}\frac{1}{N} & \text { if } x=1, \ldots, N \\ 0 & \text { elsewhere }\end{cases}$
$\frac{N+1}{2} \quad \frac{(N+1)(N-1)}{12}$

Geometric

- Independent Bernoulli trials are repeated until the first success occurs.
- Sample space is $S=\{s, f s, f f s, f f f s, \ldots, f f \cdots f s, \ldots\}$.
- Number of experiments until the first success is a discrete random variable X, called geometric.

Parameters

$p=$ prob. of success $P(X=x)= \begin{cases}(1-p)^{x-1} p & x=1,2,3, \ldots, \\ 0 & \text { elsewhere }\end{cases}$

Expectation Variance
$\frac{1}{p} \quad \frac{1-p}{p^{2}}$

- A box contains D defective and $N-D$ nondefective items.
- Items are drawn at random without replacement, not exceeding D or $N-D$.
- Number of defective items drawn is a discrete random variable X, called hypergeometric.

Parameters
$D=$ defective
$N=$ total

Expectation
$P(X=x)=\left\{\begin{array}{ll}\frac{\binom{D}{x}\binom{N-D}{n-x}}{\binom{N}{n}} & 0 \leq x \leq n \\ 0 & \text { elsewhere }\end{array} \quad \frac{n D}{N}\right.$

Negative Binomial

- Sequence of independent Bernoulli trials, each with probability of success $p, 0<p<1$.
- Number of experiments until r th success is a discrete random variable X, called negative binomial.

Parameters

$p=$ prob. of success
$r=$ number of trials

Probability Mass Function

$P(X=x)=\binom{x-1}{r-1} p^{r}(1-p)^{x-r}, x=r, r+1, \ldots$,

Expectation Variance

$\frac{r}{p} \quad \frac{r(1-p)}{p^{2}}$

Poisson

- Models number of times some event occurs in a given time interval.
- Poisson approximates the Binomial when n is large and p is small.
Parameters
Probability Mass Function
$\lambda=n p \quad P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!}, x=0,1,2,3, \ldots$

Expectation Variance

λ
λ

