Bernoulli

- Two possible outcomes: success, denoted by s, and failure, denoted by f.
- Sample space contains two points, s and f.
- The random variable X(s) = 1 and X(f) = 0 is a **Bernoulli random variable**.

Parameters	Probabilit	y Mass Fu	nction	Expectation	Variance
p = prob. of success q = 1 - p = prob. of failure	$P(X=x) = \langle$	$\begin{cases} 1-p \equiv q \\ p \\ 0 \end{cases}$	if $x = 0$ if $x = 1$ otherwise	p	p(1-p)

Binomial

- Independent Bernoulli trials repeated n times.
- Sample space is set of different sequences of length n.
- Number of successes is a random variable X, called a **binomial with parameters** n and p.

Parameters	Pr	obability Mass Fu	inction	Expectation	Variance
p = prob. of success n = number of trials	P(X - r) -	$\binom{n}{x}p^x(1-p)^{n-x}$	if $x = 0, 1, \ldots, n$	np	np(1-p)
n = number of trials	I(X - x) - Y	0	elsewhere	mp	np(1-p)

Discrete Uniform

- Sample space is set $\{1, 2, \ldots, N\}$.
- The integer chosen is a random variable X.

Parameters		/ Mass Function		Variance
$N = number \ of \ choices$	$P(X=x) = \begin{cases} \\ \end{cases}$	$ \begin{cases} \frac{1}{N} & \text{if } x = 1, \dots, N \\ 0 & \text{elsewhere} \end{cases} $	$\frac{N+1}{2}$	$\frac{(N+1)(N-1)}{12}$

Geometric

- Independent Bernoulli trials are repeated until the first success occurs.
- Sample space is $S = \{s, fs, ffs, fffs, \dots, ff \cdots fs, \dots\}.$
- Number of experiments until the first success is a discrete random variable X, called **geometric**.

Parameters	Probability Mass		Expectation	Variance
$p = prob. \ of \ success$	$P(X = x) = \begin{cases} (1-p)^{x-1} \\ 0 \end{cases}$	$p x = 1, 2, 3, \dots,$ elsewhere	$\frac{1}{p}$	$\frac{1-p}{p^2}$

Hypergeometric

- A box contains D defective and N D nondefective items.
- Items are drawn at random without replacement, not exceeding D or N D.
- Number of defective items drawn is a discrete random variable X, called hypergeometric.

Parameters	Probability Mass Fun	ction Expecta	ation Variance	
D = defective N = total	$P(X = x) = \begin{cases} \frac{\binom{D}{x}\binom{N-D}{n-x}}{\binom{N}{n}} \\ 0 \end{cases}$	$0 \le x \le n$ $\frac{nD}{N}$ elsewhere	$\frac{nD(N-D)}{N^2} \left(1 - \frac{nD(N-D)}{N}\right) = \frac{nD(N-D)}{N} \left(1 - \frac{nD(N-D)}{N}\right)$	$\frac{n-1}{N-1}\bigg)$

Negative Binomial

- Sequence of independent Bernoulli trials, each with probability of success p, 0 .
- Number of experiments until *r*th success is a discrete random variable *X*, called **negative binomial**.

Parameters	Probability Mass Function	Expectation	Variance
$p = prob. \ of \ success$	$P(X = x) = \binom{x-1}{r-1} p^r (1-p)^{x-r}, x = r, r+1, \dots,$	\underline{r}	r(1-p)
r = number of trials	$I(II - x) - (r-1)P(I - p), x - I, I + 1, \dots,$	p	p^2

Poisson

- Models number of times some event occurs in a given time interval.
- Poisson approximates the Binomial when n is large and p is small.

Pa	arameters	Probability Mass Function	Expectation	Variance
λ	= np	$P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, 2, 3, \dots$	λ	λ