Converges Almost Surely: $X_{n} \xrightarrow{\text { a.s. }} X$
A sequence of random variables X_{1}, X_{2}, \ldots, converges almost surely to a random variable X if, for every $\epsilon>0$,

$$
P\left(\lim _{n \rightarrow \infty}\left|X_{n}-X\right|<\epsilon\right)=1
$$

Strong Law of Large Numbers

For every $\epsilon>0$

$$
P\left(\lim _{n \rightarrow \infty}\left|\bar{X}_{n}-\mu\right|<\epsilon\right)=1
$$

i.e. \bar{X}_{n} converges almost surely to μ

Converges in Probability: $X_{n} \xrightarrow{P} X$

A sequence of random variables X_{1}, X_{2}, \ldots, \Rightarrow converges in probability to a random variable X if, for every $\epsilon>0$,

$$
\lim _{n \rightarrow \infty} P\left(\left|X_{n}-X\right| \geq \epsilon\right)=0
$$

$$
\downarrow
$$

Convergence of $h\left(X_{i}\right)$ to $h(X)$

Suppose that X_{1}, X_{2}, \ldots converges in probability to a random variable X and that h is a continuous function. Then

$$
h\left(X_{1}\right), h\left(X_{2}\right), \ldots \xrightarrow{P} h(X)
$$

Converges in Distribution: $X_{n} \xrightarrow{D} X$
A sequence of random variables X_{1}, X_{2}, \ldots, converges in distribution to a random variable X if

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{X}(x)
$$

at all points x where $F_{X}(x)$ is continuous.

$$
\downarrow
$$

Slutsky's Theorem

If $X_{n} \rightarrow X$ in distribution and $Y_{n} \rightarrow a$, a constant, in probability, then

- $Y_{n} X_{n} \xrightarrow{D} a X$
- $X_{n}+Y_{n} \xrightarrow{D} X+a$

Central Limit Theorem, $\operatorname{Var}\left[X_{i}\right]>0$

$G_{n}(x)$ is cdf of $\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma$. For any x, $-\infty<x<\infty$

$$
\lim _{n \rightarrow \infty} G_{n}(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y
$$

$$
\uparrow
$$

- X_{1}, X_{2}, \ldots iid random variables
- $\mathrm{E}\left[X_{i}\right]=\mu$
- $\operatorname{Var}\left[X_{i}\right]=\sigma^{2}<\infty$
- $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$

