Beta

- Random variable that varies between two finite limits.
- Median of $(2 n+1)$ numbers from the interval $(0,1)$ is a beta random variable with parameters $(n+1, n+1)$.

Parameters Probability Density Function

$\alpha>0$
$\beta>0$

$$
f(x)= \begin{cases}\frac{1}{B(\alpha, \beta)} x^{\alpha-1}(1-x)^{\beta-1} & 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Expectation Variance

Cauchy

- Let Z_{1} and Z_{2} be two standard normal distributions.
- The ratio Z_{1} / Z_{2} has a Cauchy distribution.
- Special case of Student's t distribution when degrees of freedom $=1$.

Parameters	Probability Density Function	Expectation
$-\infty<\theta<\infty$	$f(x)=\frac{1}{\pi \sigma} \frac{1}{1+\left(\frac{x-\theta}{\sigma}\right)^{2}}$	Does not exist
$\sigma>0$		Does not exist

Chi Squared

- The square of a standard normal random variable has a chi squared distribution with $p=1$.
- Special case of the Gamma distribution with $\alpha=p / 2, p$ an integer, and $\beta=2$.

Parameters	Probability Density Function	Expectation	Variance
$p=1,2, \ldots$	$f(x)=\left\{\begin{array}{llll}\frac{1}{\Gamma(p / 2) 2^{p / 2}} x^{(p / 2)-1} e^{-x / 2} & x \geq 0 \\ 0 & x<0 & p & 2 p\end{array}\right.$		

Double Exponential

- Symmetric distribution centered on the parameter μ.
- Has the form of two exponential distributions joined "back-to-back".

Parameters Probability Density Function

$$
\begin{array}{ll}
\mu & f(x)=\frac{1}{2 \sigma} e^{-|x-\mu| / \sigma}
\end{array}
$$

Expectation Variance
$\mu \quad 2 \sigma^{2}$

Exponential

- $\{N(t): t \geq 0\}$ is a Poisson process. $N(t)$ is number of events at or prior to time t.
- X_{1} is time of first event, X_{2} is elapsed time between first and second event etc.
- Interarrival time is a random variable X.
- Special case of Gamma distribution with $\alpha=1$.

Parameters Probability Density Function
 $\lambda>0$
 $$
f(t)= \begin{cases}\lambda e^{-\lambda t} & t \geq 0 \\ 0 & t<0\end{cases}
$$
 Expectation Variance $\frac{1}{\lambda} \quad \frac{1}{\lambda^{2}}$

F

- Sampling distribution derived from the normal.
- X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{m} are random samples from $\mathrm{n}\left(\mu_{X}, \sigma_{X}^{2}\right)$ and $\mathrm{n}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$ distributions.
- S_{X}^{2} and S_{Y}^{2} are the sample variances.
- $\left(S_{X}^{2} / \sigma_{X}^{2}\right) /\left(S_{Y}^{2} / \sigma_{Y}^{2}\right)$ has an F-distribution with $\nu_{1}=n-1$ and $\nu_{2}=m-1$ degrees of freedom.

Parameters Probability Density Function

Expectation Variance

$\begin{aligned} & \nu_{1}=1,2, \ldots \\ & \nu_{2}=1,2, \ldots\end{aligned} \quad f(x)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\nu_{1} / 2} \frac{x^{\left(\nu_{1}-2\right) / 2}}{\left(1+\left(\frac{\nu_{1}}{\nu_{2}}\right) x\right)^{\left(\nu_{1}+\nu_{2}\right) / 2}} \frac{\nu_{2}}{\nu_{2}-2}, \nu_{2}>2 \quad 2\left(\frac{\nu_{2}}{\nu_{2}-2}\right)^{2} \frac{\nu_{1}+\nu_{2}-2}{\nu_{1}\left(\nu_{2}-4\right)}, \nu_{2}>4$

Gamma

- $\{N(t): t \geq 0\}$ is a Poisson process. $N(t)$ is number of events at or prior to time t.
- X_{1} is time of first event, X_{2} is elapsed time between first and second event etc.
- Time of nth event is random variable X with parameters (n, λ).

Parameters	Probability Density Function	Expectation	Variance
n	$f(x)=\left\{\begin{array}{llll}\lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!} & x \geq 0 & \frac{n}{\lambda} & \frac{n}{\lambda^{2}} \\ 0 & \text { elsewhere } & & \end{array}\right.$		

Logistic

- Symmetric, unimodal distribution.
- Cumulative distribution function is the logistic distribution used in logistic regression.
- Heavier tails than the normal distribution.

Parameters Probability Density Function

$\begin{aligned} & \mu= \\ & \beta=\end{aligned} \quad f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\sqrt{\nu \pi}} \frac{1}{\left(1+\frac{x^{2}}{\nu}\right)^{(\nu+1) / 2}}$

Expectation Variance
$\mu \quad \frac{\pi^{2} \beta^{2}}{3}$

Lognormal

- X has a lognormal distribution if its logarithm is normally distributed.

Parameters Probability Density Function

$\begin{aligned} & -\infty<\mu<\infty \\ & \sigma>0\end{aligned} f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \frac{e^{-(\log x-\mu)^{2} /\left(2 \sigma^{2}\right)}}{x}$

Expectation Variance

$e^{\mu+\left(\sigma^{2} / 2\right)} \quad e^{2\left(\mu+\sigma^{2}\right)}-e^{2 \mu+\sigma^{2}}$

Normal/Gaussian

- Approximation to binomial random variable as $n \rightarrow \infty$.

Parameters Probability Density Function

$\begin{aligned} & -\infty<\mu<\infty \\ & \sigma>0\end{aligned} f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[\frac{-(x-\mu)^{2}}{2 \sigma^{2}}\right]$

Pareto

- Power-law distribution
- Shape parameter α controls exponent in power law.
- Scale parameter x_{m} controls lower bound of the distribution.

Parameters Probability Density Function

$\begin{aligned} & \alpha>0 \\ & x_{m}>0\end{aligned} \quad f(x)=\frac{\alpha x_{m}^{\alpha}}{x^{\alpha+1}}, \quad x_{m} \leq x<\infty$

$$
f(x)=\frac{\alpha x_{m}^{\alpha}}{x^{\alpha+1}}, \quad x_{m} \leq x<\infty
$$

$$
\frac{\alpha x_{m}}{\alpha-1}, \alpha>1 \quad \frac{\alpha x_{m}^{2}}{(\alpha-1)^{2}(\alpha-2)}, \alpha>2
$$

Standard Normal

- Special case of normal distribution with $\mu=0, \sigma^{2}=1$.

Parameters Probability Density Function

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

Expectation Variance

0

T

- Sampling distribution derived from the normal.
- X_{1}, \ldots, X_{n} is a random sample from a $\mathrm{n}\left(\mu, \sigma^{2}\right)$ distribution.
- \bar{X} and S are the sample mean and standard deviation.
- $(\bar{X}-\mu) /(S / \sqrt{n})$ has t-distribution with $\nu=n-1$ degrees of freedom.

Parameters Probability Density Function

$\nu=1,2, \ldots \quad f(x)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\sqrt{\nu \pi}} \frac{1}{\left(1+\frac{x^{2}}{\nu}\right)^{(\nu+1) / 2}}$

Uniform

- A point is randomly selected from an interval (a, b).
- Any two subintervals of equal length are equally likely to include the point.
- X, the value of the random point, is a uniform random variable.

Parameters Probability Density Function

$$
f(t)= \begin{cases}\frac{1}{b-a} & \text { if } a<t<b \\ 0 & \text { otherwise }\end{cases}
$$

Variance
$\frac{a+b}{2} \quad \frac{(b-a)^{2}}{12}$

