INTRODUCTION
This document is a Findings Statement prepared by the State University Construction Fund ("SUCF"), acting as Lead Agency relating to the review of the University at Buffalo (UB) School of Medicine and Biomedical Sciences project, pursuant to the New York State Environmental Quality Review Act, Article 8 of the Environmental Conservation Law and the regulations promulgated thereto at 6 NYCRR Part 617 (collectively referred to as "SEQR"). This Findings Statement draws upon the matters set forth in the SEQR record, including the Environmental Impact Statement ("EIS"), consisting of the Draft Environmental Impact Statement ("DEIS") and the Final Environmental Impact Statement ("FEIS"), as well as the public comments on the DEIS received during the public comment period. The purpose of the EIS was to identify and evaluate the potential significant adverse environmental impacts of the proposed construction of the UB School of Medicine and Biomedical Sciences and associated parking facility (the "Project") and, where applicable, to identify reasonable alternatives or mitigation measures that would reduce the effect of those impacts to the maximum extent practicable.

This document represents the conclusion of the environmental review of the proposed Project by the Lead Agency. In accordance with SEQR, this Findings Statement must:

1. Consider the relevant environmental impacts, facts and conclusions disclosed in the EIS;
2. Weigh and balance relevant environmental Impacts with social, economic and other considerations;
3. Provide a rationale for the Lead Agency’s decision;
4. Certify that the requirements of SEQR have been met;
5. Certify whether, consistent with social, economic and other essential considerations, from among the reasonable alternatives available, the action is one that avoids or minimizes adverse environmental impacts to the maximum extent practicable, and whether any such adverse environmental impacts will be avoided or minimized to the maximum extent practicable by incorporating as conditions to any approval those mitigation measures that were identified, in the EIS, as practicable.

DESCRIPTION OF THE PROPOSED ACTION
The SUCF and UB propose to construct a building to serve as the primary location for the UB School of Medicine and Biomedical Sciences (the SMBS) on an approximately 2.0-acre site at the southeast corner of Main and High Streets in Downtown Buffalo (the SMBS site). Additionally, UB and other partner institutions propose to construct an associated parking structure on an approximately 0.6-acre site adjacent to the existing Ellicott-Goodrich Garage (EGG) on the block bounded by Main, East North, Ellicott, and Goodrich Streets (the Parking Ramp site). The SMBS site and Parking Ramp site are collectively referred to as the Project site.

As described in the DEIS, the SMBS facility (as originally envisioned) was proposed to be up to eight stories tall (and include two subterranean levels), up to approximately 610,000 gross square feet, and up to approximately 195 feet tall at the highest point. These maximum dimensions were used throughout the DEIS to provide for a conservative (i.e., "worst case") assessment of potential environmental impacts. As described in the FEIS, to reduce financial
costs (and to avoid or minimize potential visual effects on adjacent areas) the SMBS has been redesigned to be somewhat smaller than the proposed building as is described in the DEIS (see FEIS Section 2.1). The current concept for the proposed SMBS has been modified in the following ways (see FEIS Figure 1):

- Reduced from approximately 610,000 gross square feet to 589,000 gross square feet.
- Elimination of one proposed subterranean level (reduced from two to one subterranean level).
- Reduced maximum height from approximately 195 feet to approximately 150 feet.

The proposed facility will support a wide variety of medical education and research programs including, but not limited to: lab space, conference rooms, faculty/staff offices, a small café, large and small classrooms, exam and surgical rooms, and research support and storage. Access to the facility will be provided at street level via the lobby/atrium on Level 1. The southern end of Level 1 will contain the NFTA Metro Rail Station with access to the below grade rail platform. The building design preserves the Allen Street Extension through the building as an open pedestrian walkway from across Main Street.

Some of the existing surface parking located on the block where the SMBS site is located will be eliminated as part of the site development. However, vehicular access to the proposed Project will remain along Main, High and Washington Streets. The site is also accessible from NFTA Rail, NFTA Bus, campus transit systems, and is designed to maximize pedestrian and bicycle accessibility, including the provision of indoor bicycle storage on Level 1, and the integration with the Allen Street Extension.

Construction of the proposed Parking Ramp is anticipated to involve expanding the existing EGG parking structure (890 existing spaces), which currently occupies the eastern half of the block bounded by Main, East North, Ellicott, and Goodrich Streets. The project sponsor is proposing to build a new parking structure on the existing surface parking lots located west of the EGG parking structure. Concepts that are being considered for the Parking Ramp include connecting the new ramp to the existing ramp to allow for internal circulation of vehicles or a stand-alone structure without internal connection to the EGG facility. It is anticipated that the proposed Project ramp will add up to 480 parking spaces on up to six levels, which will result in up to 1,370 total parking spaces in the combined structure (or structures). In addition, the proposed expansion may involve adding two new levels on top of the existing EGG structure, which would add another approximately 440 spaces and bring the total height of the EGG ramp to six stories to match the height of the proposed Project ramp (resulting in a total of up to 1,800 spaces). This vertical portion of the expansion plan is contingent upon both financial and structural feasibility, which has yet to be determined.

PROJECT PURPOSE, NEED, AND BENEFIT
As proposed in the EIS, UB's Comprehensive Physical Plan ("Building UB") identifies the needs of the institution as it moves forward over the coming decades. UB faces the challenge of facilities that are too small or outdated to fulfill its goals of growing its student population, building new connections both within the institution and to the outside world, attracting more world-class faculty, and strengthening its role as an economic driver for the Western New York Region. One of the primary and most crucial activities recommended in the Comprehensive Physical Plan is the relocation of the SMBS from UB's South Campus to the Downtown Campus. This action is intended to:

- Provide a new anchor UB educational presence and gateway on the Downtown Campus,
Physically integrate the School of Medicine with other Buffalo Niagara Medical Campus (BNMC) institutions, and
Provide room on South Campus for other aspects of the Physical Plan to be executed.

Along with helping to further the goals of UB, the SMBS also benefits the city as a whole. The City of Buffalo's Comprehensive Plan\(^2\) enumerates specific tactics for achieving its vision for the future of the city. Several of these tactics are directly involved in the Project:

- Delivering quality public services,
- Maintaining public infrastructure,
- Transforming the city's economy,
- Rebuilding neighborhoods, and
- Protecting and restoring the urban fabric

By siting the SMBS at the proposed site and integrating the NFTA Station, it works to repair the neighborhood and urban fabric along Main Street and add significant investment into both public services and critical transportation infrastructure (including the expansion of an existing city-owned parking structure onto an underutilized adjacent site). Additionally, it helps to transform the city's economy by adding to the synergy of a world-class medical research campus. In this way, the Project seeks to fulfill needs and provide both economic and social benefits to UB, the City of Buffalo, and the entire Western New York Region.

SUMMARY OF THE SEQR PROCESS

Assessment of environmental impacts for programs (like UB's Comprehensive Physical Plan) with multiple phases and flexible plans may be reviewed in accordance with SEQR Part 617.10 as a GEIS. A Draft Generic Environmental Impact Statement (DGEIS) was prepared as an analytical assessment of all the program elements described in UB's Comprehensive Physical Plan and the potential resources that could be impacted by the proposed projects. Due to the large-scale, comprehensive, long-range plans for the physical development of three campuses in both Amherst and the City of Buffalo, the DGEIS was designed to identify the range of impacts that could occur (including analysis of the UB Downtown Campus and therefore the proposed Project site). In addition to the DGEIS, a Final Generic Environmental Impact Statement (FGEIS) was prepared. The State University of New York at Buffalo, as Lead Agency, prepared the DGEIS and FGEIS (collectively, the GEIS\(^9\)) for the UB Comprehensive Physical Plan to assess the potential economic, social, and environmental effects of undertaking the proposed plan. The relocation and construction of the SMBS is included as one of many potential actions that are considered in the GEIS.

Subsequent to the GEIS, a SEQR analysis specific to the SMBS was conducted. To that end, on August 9 2012, the SUCF circulated to potentially interested/involved SEQR agencies a full Environmental Assessment Form (EAF) and statement indicating that the SUCF intended to serve as Lead Agency for SEQR review of the proposed SMBS. Following the 30-day lead agency determination period, no agency objected to the SUCF assuming the role of Lead Agency. The SUCF, as Lead Agency, subsequently issued a Positive Declaration (which necessitated the preparation of a DEIS), and initiated the Public Scoping Process.

\(^2\) The City of Buffalo's Comprehensive Plan is available on-line at: http://www.ci.buffalo.ny.us/files/1-2-1/Mayor/COB_Comprehensive_Plan/sitemap.html.

\(^9\) The GEIS for the UB Comprehensive Physical Plan is available on-line at: https://www.buffalo.edu/content/www/ub2020/building_ub/planning_at_ub/state_environmental_quality_review.html.
The primary goals of scoping (which is currently an optional step in the SEQR process) are to focus an EIS on potentially significant impacts and to eliminate consideration of those impacts that are irrelevant or non-significant. A draft scoping document for the proposed SMBS was released for public and agency review and comment on October 12, 2012. The comment period provided an opportunity for agencies and the public to review and comment on the identification of significant environmental conditions and resources that may be affected by the proposed action, and the extent and quality of information necessary to address those issues during the SEQR process. A public scoping meeting was held on October 22, 2012. In addition, two focused discussions took place specifically regarding the scope of the Traffic Assessment Report for the project.

A final scoping document was issued on December 20, 2012, which identified the significant environmental conditions and resources that may be affected by the proposed SMBS, and defined the extent and quality of information necessary to address those issues. It reflected the Lead Agency’s analysis of potential impacts indicated in Parts 2 and 3 of EAF, and incorporated additional relevant issues raised during the public scoping process.

Pursuant to New York State Environmental Conservation Law Article 8, SEQR; and Part 617 of Chapter 6 of the New York Code of Rules and Regulations (NYCRR), and the adoption of a positive declaration by the Lead Agency, a DEIS for the proposed SMBS was prepared by an independent consultant. The DEIS for the Project was accepted as complete by the Lead Agency on June 4, 2013 and released for public review and comment. Copies of the DEIS were subsequently delivered to involved/interested agencies and posted to the SUCF’s website (http://www.sucf.suny.edu/project/environ.cfm). The recipients of the DEIS (in either digital [CD] or printed format) are listed in Section 2.5.1 of the DEIS. Hard copies of the DEIS were made publicly available in Abbott Hall on the UB South campus and at Central Library in Downtown Buffalo.

Opportunities for detailed agency and public review were provided during the DEIS public comment period (June 4, 2013 through July 8, 2013). Written comments were accepted via both email and regular mail. In addition, the Lead Agency held a public hearing on the DEIS at the UB Downtown Gateway Building on June 25, 2013. A transcript memorializing the public hearing is included as FEIS Appendix B.

Following closure of the public comment period, an FEIS was prepared on behalf of the Lead Agency. An index of all the comments received during the public hearing and the written comment period for the DEIS is provided in the FEIS as Table 1. Copies of the written comment letters are included in FEIS Appendix A. The FEIS includes responses to address all substantive comments received on the DEIS during the public comment period. The Lead Agency issued the FEIS for the Project on August 12, 2013. Copies of the FEIS were subsequently delivered to involved/interested agencies and posted to the SUCF’s website (http://www.sucf.suny.edu/project/environ.cfm). Hard copies of the FEIS were made publicly available in Abbott Hall on the UB South campus and at Central Library in Downtown Buffalo.

4 The first was a conference call held on November 9, 2012 with representatives from New York State Department of Transportation (NYSDOT), SUCF, UB, Buffalo Niagara Medical Campus, Greater Buffalo Niagara Regional Transportation Council, Niagara Frontier Transportation Authority, Fisher Associates, and edr Companies. The second was a meeting held at the NYSDOT Offices on December 4, 2012 with representatives from NYSDOT, City of Buffalo, SUCF, UB, and Fisher Associates.
FACTS AND CONCLUSIONS RELIED ON TO SUPPORT THE FINDINGS

The Findings set forth in this Findings Statement consider the relevant environmental impacts, facts and conclusions disclosed in the EIS; weigh and balance relevant environmental impacts with social, economic, and other considerations; and provide a rationale for the Lead Agency’s decisions regarding the Project. The Findings contained here are based on the full record of the proceedings, submissions and comments that were presented to the Lead Agency and included as part of its administrative record. The facts and conclusions are summarized by topic below. Each section presents a summary of potential significant adverse environmental impacts, any necessary mitigation measures and conclusions regarding the Project’s potential impacts on the resources covered in the topic area.

Geology, Soils, and Topography.

The Project site is located entirely on previously disturbed/developed urban land. The 2.0-acre SMBS site includes 1.7 acres of pavement and impervious surface and 0.3 acre of lawn/planted areas. The 0.6-acre Parking Ramp site is entirely paved. The primary impact to the physical features of the Project site will be the disturbance of Urban Land soils during construction. It is assumed that the entire 2-acre SMBS site and 0.6 acre Parking Ramp site will experience some level of disturbance during construction. Excavation will be completed to an approximate depth of 30 feet below grade for the basement floor. Deeper excavation may be needed in certain areas to accommodate foundation components. It is anticipated that all excavated soils will be either stored and reclaimed, or disposed of according to all New York State Department of Environmental Conservation (NYSDEC) regulations and as required by the project’s Stormwater Pollution Prevention Plan (SWPPP; a preliminary SWPPP was included as DEIS Appendix C), which will be finalized as part of the State Pollutant Discharge Elimination System (SPDES) General Permit for the Project. As indicated in the Preliminary SWPPP, temporary measures to be implemented during construction include a stabilized construction entrance, silt fencing, storm drain inlet protection, and vegetative stabilization. Following construction, approximately 0.1 acre will be restored to lawn/landscaping while the remaining 2.5 acres will consist of pavements and the building footprint.

The Project has been sited in an area which has been disturbed/developed for decades and as such adverse impacts to geology and topography are not anticipated. Erosion and sedimentation impacts to soils during construction will be minimized through the implementation of approved erosion and sediment control measures. Therefore, construction activity at the Project Site should have minimal impacts to geology, soils, and topography and the Lead Agency finds that this potential impact has been mitigated to the maximum extent practicable.

Water Resources

No surface waters exist on either the SMBS or Parking Ramp site and neither site is located in a designated floodplain or floodway. Therefore, no impacts to surface water resources are anticipated.

The depth to groundwater varies across the SMBS site from approximately 22 to 51 feet below grade. Groundwater variability across the site is caused by the presence of a perched groundwater condition in some areas. For this reason, groundwater may be encountered in some areas during excavation and basement flooding in the SMBS building may be a concern. However, given that the Project site is in a densely developed urban area and groundwater is not utilized as a drinking water supply, any contact with groundwater during construction will not have an adverse environmental impact on water resources. In order to address structural impacts from the perched groundwater condition, it is anticipated that the basement walls and floor of the SMBS be fully waterproofed. It is
anticipated that groundwater and/or surface water that accumulates in excavations can generally be controlled using conventional sump and pump methods.

Much of the stormwater on the SMBS site currently drains to combined sewers. However, a small portion drains to a separated storm sewer. It is anticipated that runoff at the Parking Ramp site is also directed to combined and/or separated municipal sewers. All construction activities will be conducted in accordance with the SWPPP. Stormwater pollution prevention measures such as inlet protection, silt fencing, dust control, and a stabilized construction entrance will be utilized where applicable under the conditions of the SPDES Permit. During operation, all stormwater runoff will be directed to the municipal combined or storm sewer system according to NYSDEC and Buffalo Sewer Authority requirements. All sanitary sewage will be directed to the municipal sewer system.

The Lead Agency finds that because of the lack of existing surface waters and the implementation of sediment and erosion control practices, impacts to water resources have been avoided, minimized, or mitigated to the maximum extent practicable. Direct impacts to surface waters and floodplains have been avoided due to the Project’s location away from these resources. Potential impacts to groundwater have been minimized by design decisions (e.g., waterproofing basement floors and walls) and use of dewatering practices during construction. The primary mechanism for mitigating impacts to water resources (including stormwater) will be implementation of the SWPPP. Therefore, the Project is not expected to result in an adverse impact on water resources due to the implementation of the measures summarized above.

Climate, Air Quality, and Odor

During the site preparation and construction phases of the SMBS and the Parking Ramp, minor, temporary adverse impacts to air quality may result from the operation of construction equipment and vehicles. Measures to insure air quality during construction are expected to include (at minimum):

- The site will be fenced with chain link and fabric.
- Soil/sediment/erosion controls will be implemented, including regularly scheduled inspections by a qualified monitor.
- The construction site will include a vehicle wash-down station.
- All stock piles will be covered or seeded.
- A dust control program will be implemented as necessary to control fugitive dust during construction. Control measures will include the application of mulch, water, stone, or approved chemical agent on public roads, access roads, exposed soils, or stockpiled soils when dry and windy conditions exist. High-traffic areas will be covered with gravel and exposed soils and roadways will be wetted as needed during extended dry periods to minimize dust generation. Typically only plain water will be used for dust suppression; chemical dust suppressants will be used only in situations where plain-water dust suppression is not effective.

Regarding negative impacts on regional air quality from increased traffic generated by the operation of the Project, it is estimated that the completed Project will be responsible for generating 1,113 new trips during the weekday morning peak and 968 new trips during the weekday evening peak (DEIS Appendix H). While specific estimates for the emissions caused by operation of the new SMBS and parking ramp were not calculated, they will be a small fraction on the amounts estimated above for implementation of the entire Comprehensive Physical Plan as this project only represents a small fraction of the total new building square footage construction planned on the Downtown Campus. Regarding negative impacts on regional air quality from increased traffic generated by the
implementation of the Comprehensive Physical Plan, the DGEIS concludes, "The mitigating effects of a decrease in average emission rates per vehicle, improvements in vehicle emission controls, increased use of hybrid/electric vehicles and TDM [Transportation Demand Management] measures will mitigate, and in fact, reduce traffic-related emissions below current traffic related emission levels. A reduction in traffic-related emissions would contribute to an improvement in regional air quality. Therefore, a negative impact to regional air quality from implementation of the master plan is unlikely". Therefore, no significant impacts to climate and air quality are expected as a result of the Project.

Regarding potential impacts to air quality resulting from the operation of the Project, the SMBS building will utilize mechanicals and HVAC equipment that is energy efficient in pursuit of a LEED Gold Certification. Therefore, impacts to climate and air quality are expected to be minimal. The SMBS will include a small café and associated food preparation areas. However, the Project is not expected to produce offensive odors due the relatively small size of the café, and standard measures such as ventilation using kitchen hoods and exhaust ducts used to dissipate cooking odors.

The Lead Agency finds that because of the selection of specific design criteria and the implementation of best management practices during construction, air quality impacts during construction have been avoided or minimized to the maximum extent practicable.

Biological Resources

No significant impacts to vegetation, wildlife, or rare species will occur as a result of construction or operation of the SMBS. Based on review of federal and state databases, construction of the Project will have no impacts on rare species or significant natural communities/habitats on or in the immediate vicinity of the Project site. The Project site contains no natural ecological communities, and the ecological communities found on-site are considered disturbed and therefore provide very limited habitat for wildlife species. The few wildlife species that currently utilize the Project site may be temporarily displaced during construction, but pavement/impervious surfaces and lawns/landscaping are common ecological communities within the area and similar habitats for any displaced wildlife are readily available nearby. The existing communities on site will ultimately to be replaced with similar ecological communities once the proposed Project is completed. No impacts associated with habitat fragmentation, interference with migrating, wintering, foraging, or breeding wildlife, or introduction of invasive species are anticipated.

The Lead Agency finds that the Project site's location away from natural ecological communities avoids potential impacts to biological resources.

Documented Environmental Conditions

To document recognized environmental conditions (RECs), or lack thereof, Phase I Environmental Site Assessments (ESAs) were conducted at 960 Washington Street, 911 Main Street, 929 Main Street, 951-961 and 963 Main Street, and 1031 Main Street (DEIS Appendix E). The Phase I ESA investigations were performed with respect to petroleum products and the range of contaminants within the scope of Comprehensive Environmental Response, Compensation and Liability Act (42 U.S.C. §9601). Phase II ESAs were conducted at 960 Washington Street, 911 Main Street, and 929 Main Street (DEIS Appendix E). The purpose of the Phase II ESAs was to determine the potential for encountering contaminated soils or groundwater within the subject sites, to characterize subsurface conditions, and to determine the potential for environmental liability at the subject properties due to historic use. Phase II ESAs included such activities as soil borings, installation of monitoring wells and analytical laboratory testing. The results of the Phase I and II ESAs for each property are summarized in Section 3.5 of the DEIS.
Soil contamination is present throughout the proposed SMBS site. Construction and excavation activity will disturb these contaminated soils and require mitigation efforts. Any hazardous materials identified prior to construction, or discovered during construction on the subject properties that comprise the SMBS site will be fully removed per NYSDEC and New York State Department of Health (NYSDOH) guidelines, and applicable federal guidelines. All disposals will be at 6NYCRR 360 permitted facilities. In addition, a soil management plan (SMP) will be put in place during excavations or other intrusive work occurring within the Project site. No potentially contaminated soils are known to be located on the site of the proposed Parking Ramp and therefore would not be disturbed by construction.

Regarding the potential generation of hazardous waste materials during the operation of the Project, solid, medical and hazardous waste streams in varying quantities will be generated during long-term operation activities. These impacts are considered neutral as the waste will be properly handled and disposed of under NYSDEC and Environmental Protection Agency (EPA) regulations.

The Lead Agency finds that with the implementation of best management practices during site demolition and construction and adherence with applicable regulations regarding solid-waste disposal, that potential impacts related to documented environmental conditions have been mitigated to the maximum extent practicable. In addition, the proposed Project could have a positive impact with respect to delineation, characterization and remediation of known contaminated soils that may be encountered during construction at the SMBS site. Construction of the proposed Project will result in a significant overall decrease in the volume of hazardous or contaminated materials from soil and structural materials as a direct result of hazardous material abatement.

Aesthetic/Visual Resources

Potential visual impacts associated with the operation of the Project include potential visibility of the Project from visually sensitive locations and the perceived scale of the building from vantage points with the adjacent neighborhoods. Potential visibility of the SMBS will be limited mostly to nearby areas (i.e., within a few blocks) due to the screening effects of vegetation and buildings. Screening provided by existing buildings (which range between two and ten stories) is significant within the 0.5-mile-radius visual study area surrounding the Project. Views toward the Project were entirely or mostly screened from many portions of the five neighborhoods (Allentown; Cold Springs, Fruit Belt, Downtown Campus, and Theatre District) within the study area. In addition, though vegetation is sparse in the Downtown Campus and Theatre District, street or yard trees provide effective screening in many locations throughout the Allentown, Cold Springs and Fruit Belt neighborhoods. Visibility of the Parking Ramp will be limited mostly to areas nearby due to the screening effects of vegetation and buildings. Furthermore, most views of the Parking Ramp will be from areas that already have views of the existing adjacent City of Buffalo-owned parking ramp.

The proposed SMBS site is located on the S and BNMC, which is currently populated by large, multi-story, modern, institutional medical buildings. Construction of the SMBS is not anticipated to cause significant adverse impacts to visual resources, since most views of the Project already include views of similarly scaled modern, institutional buildings. Additionally, the proposed glass and terra cotta panel façade materials will make the Project's exterior appearance generally consistent with the nearby medical buildings on the BNMC. Likewise, the proposed Parking Ramp is adjacent to an existing parking-structure on a small 0.6-acre lot currently used for surface parking. Therefore, significant visual impact associated with the Parking Structure is not anticipated.
The Lead Agency finds that due to the selection of specific siting and design criteria, potential significant impacts to visual and aesthetic resources have been avoided or minimized to the maximum extent practicable and no mitigation is necessary or proposed.

Historic, Cultural, and Archeological Resources
The Project site is a previously disturbed site that has little to no likelihood of containing Native American archeological resources or significant historic-period archeological resources. Therefore, construction of the proposed Project is not expected to impact any archeological resources.

Subsequent to construction, the presence of the Project could result in a change in a given historic property’s visual setting, which is considered a potential effect. There is one National Historic Landmark (NHL) and 56 historic resources listed on the National Register of Historic Places (NRHP) located within 0.5 mile of the SMBS site. The NRHP-listed Allentown Historic District is the largest and most significant historic resource with views of the SMBS site. The areas of Allentown where the most open views of the Project will be available will be along Main Street and one or two blocks to the west along street corridors oriented east-west, such as Allen Street. However, views from many of these areas will be screened by existing structures and vegetation. From most locations within the historic district screening provided by existing buildings as well as vegetation will substantially screen the Project and only a very small portion of the roof and/or upper portions of the proposed SMBS could be visible. From these locations, if visible, the Project would not result in a significant effect on the integrity of the setting from the neighborhood. Other NRHP-listed and eligible properties located to the north, south and east of the proposed SMBS all have partially-screened views to the Project, including several existing medical buildings adjacent to the Project site. Visibility of the Project from historic resources within the 0.5 mile study area is consistent with existing views of tall buildings that are part of the BNMC.

The Lead Agency finds that because the Project site is previously disturbed with little or no likelihood of containing archeological sites, and because no historic resources will be adversely affected, the Project has avoided impacts to historic, cultural, and archeological resources.

Open Space and Recreation
The Project will not result in any permanent loss of public open space or recreation: No existing recreational facilities are present on-site. There are two structures within the SMBS Site, including the First Niagara Bank Branch (963 Main Street) in the northwestern portion of the site and the Allen/Medical Campus NFTA Metro Rail Station (929 Main Street) in the southwestern portion of the site. Neither of these structures provide courtyards or formally defined open spaces for the public to congregate. The remaining area (featuring paved surfaces, and some trees and lawn space) is not designated as public open space. The parking structure site is currently occupied by a surface parking lot. Although no open space will be lost, the SMBS grounds will include some very small planted and landscaped areas that will provide green space within the Project site. In addition, the Project will incorporate the existing pedestrian route through the NFTA Metro Rail Station between Allen and Washington Streets.

The Lead Agency finds that due to the selection of specific siting and design criteria, the Project has avoided adverse impacts to open space and recreation.
Traffic and Transportation
Construction of the Project will have a minor, short-term impact on traffic around the BNMC. Construction and associated delivery traffic will consist of large vehicles, some of which may be over-sized and require traffic controls to facilitate their entry and exit into the Project site. Local traffic may experience minor delays due to slow-moving vehicles and/or increased traffic volume during construction activities. These potential impacts will be temporary and are not anticipated to be significant.

Construction of the Project will also have temporary impacts on the operation of the Allen/Medical Campus NFTA station, and on bus stops surrounding the Project site. It is anticipated that the station will remain open throughout construction, although pedestrian access may be rerouted as necessary to accommodate construction of the new facility. The location of bus stops serving the BNMC may be shifted according to construction access needs and the safety of NFTA ridership, although these relocations are expected to be temporary and do not constitute a substantial adverse impact. Temporary construction impacts to NFTA service at the Allen/Medical Center station will be mitigated by signage, lighting, and protected pedestrian pathways. Operational impacts related to increased ridership may be mitigated through improvements to the station as part of the SMBS project. The incorporation of the NFTA station within the Project site will provide direct access into and out of the underground platform.

During Project construction, pedestrian and bicyclists' access to the construction site will be restricted for safety reasons. Restrictions may include, but are not limited to, sidewalk closures along Main, High, Washington, Goodrich, and East North Streets. Temporary construction impacts to pedestrian amenities will be mitigated through the provision of temporary crossing locations where sidewalk access is restricted. Signage will be provided to alert both pedestrians and drivers of temporary crossing locations.

It is estimated that the completed Project will be responsible for generating 1,113 new trips during the morning peak and 968 new trips during the evening peak. These new trips are expected to affect levels of service at intersections located throughout the BNMC and adjacent areas, which includes the area generally bounded by Tupper Street (on the south), Best Street (on the north), Main Street (on the west), and Michigan Avenue (on the east). To achieve acceptable traffic conditions, the Traffic Assessment included in the EIS recommends signal timing improvements at a number of specific locations, and improved coordination between signals along three favored arterials. In addition to these measures, the Traffic Assessment recommends street striping changes to the southbound approach of the intersection at Tupper and Ellicott Streets, effectively switching the existing turn-only and turn-option lanes. Finally, the Traffic Assessment recommends the monitoring of the intersection of Goodell and Elm Streets. If implemented, these measures are expected to mitigate impacts such that traffic conditions will be within acceptable thresholds appropriate to their urban environment.

The use of Metro Rail will be one of the factors mitigating parking requirements and traffic congestion, as it is estimated that approximately 12% of SMBS faculty, staff, and students will utilize public transit instead of personal vehicles (or in combination with them, in the case of NFTA's park and ride system). However, the proposed development of the SMBS will increase demand for parking in the vicinity of the BNMC. The increased demand for parking spaces can be accommodated through construction of the Project Parking Ramp, located adjacent to the existing EGG parking ramp between Goodrich, Ellicott, and East North Streets. The expansion of the EGG ramp is expected to add between 480 and 920 new structured parking spaces to the BNMC. This includes 480 new spaces to be included in a western expansion of ramp decks, between the existing structure and the Research Institute on Addictions (RIA). This western expansion will entail the construction of a six-story parking ramp on properties owned
by UB that are currently used as surface parking. Although the design of the western expansion is not yet complete, two conceptual layouts are currently under consideration, as follows:

- A stand-alone structure, independent of the existing EGG ramp; or
- A connected structure, accessible through a series of bridges at each deck of the EGG ramp.

An additional 440 new spaces could be produced through the vertical expansion of the existing ramp. The potential vertical expansion of the existing EGG ramp is currently being examined for both structural and financial feasibility. Whether or not the vertical expansion is constructed, the expanded facility or facilities will accommodate parking demand for the SMBS and other BNMC partners.

Beyond the provision of parking spaces, the adoption and/or increased use of Transportation Demand Management (TDM) measures will relieve pressures related to parking demand. Moderate TDM measures include the following:

- the provision of bike centers and bike storage;
- improvements to NFTA bus service;
- ride share boards on campus and the internet;
- preferential parking for carpools;
- telecommuting;
- implementation of a car share program; and
- implementation of a “guaranteed ride home” program.

Aggressive TDM measures include the following:

- monetary incentives for faculty and staff;
- the unbundling of parking fees from the student transportation fee;
- tiered parking fees based on proximity to the SMBS;
- implementation of a free bike program;
- subsidies for NFTA passes; and
- improved bus rapid transit service.

Some of these recommended measures are currently in place on the UB campus or the BNMC, including a car share program, “guaranteed ride home” program, and tiered parking fees; in addition, UB considers the use of South Campus parking spaces and the light rail/transit shuttle connection to be part of its overall TDM program. All of these measures listed above are consistent with those described within the UB Comprehensive Physical Plan DGEIS, which generally advocates TDM as a cost-effective and context-sensitive method of facilitating campus accessibility in an urban setting.

The Lead Agency finds that implementation of traffic safety measures will minimize traffic impacts during construction to the maximum extent practicable. The incorporation of the Allen/Medical Campus NFTA station into the SMBS will minimize parking demand and traffic congestion, as it is estimated that approximately 12% of SMBS faculty, staff, and students will utilize public transit instead of personal vehicles (or in combination with them, in the case of NFTA’s park and ride system). The implementation of recommended intersection improvement measures will mitigate
Project-related impacts on levels of service within the surrounding BNMC area. In addition, construction of the Parking Ramp will mitigate the increase in demand for parking spaces in the BNMC area that will result from operation of the Project. The Project will also encourage the adoption and/or increased use of TDM measures to discourage use of personal vehicles and resulting potential increased traffic and demand for parking. With the inclusion of all these measures to minimize and/or mitigate increased traffic and increased demand for parking that will result from the operation of the Project, potential impacts related to traffic and parking have been mitigated to the maximum extent practicable.

Noise

Given the existing conditions in the areas surrounding the Project site, where a moderately quiet background level is either continuously or frequently interrupted by noise events as loud as 55 to 65 dBA, it is unlikely that any noises produced during construction of the proposed Project would be perceived as a serious annoyance. Noise from construction equipment is typically intermittent in nature (e.g., pile drivers, periodic refilling of air compressors, etc.), and various sources may only be associated with short-term phases of the construction period (e.g., initial foundation work). At a distance of 50 feet from a typical construction site, noise from the various types of equipment will, at times, range from 85 to 90 dBA. Since the Project site is surrounded by major city streets, it is likely that the traffic will provide a buffer to construction noise. Construction noise will likely be audible at nearby residences and businesses in the Allentown neighborhood, but primarily during lulls in traffic. In general, noise associated with construction machinery is unlikely to significantly exceed noise associated with existing vehicular traffic in the vicinity of the site. To mitigate potential noise impacts associated with Project construction, construction activities will be restricted to the period between 7:00 a.m. and 6:00 p.m.

Potential sources of noise associated with the operation of the Project include noise associated with mechanical equipment, such as the building’s HVAC system. Additional ambient and intermittent noise could be produced by pedestrians traveling to, from, and through the building, as well as students congregating in the outside areas adjacent to the Project, although this noise is not likely to impact residents in nearby areas.

In designing building ventilation systems and selecting mechanical equipment, the following noise control considerations will generally be included:

- Equipment will be selected that features no tonal or excessive low frequency noise emissions;
- Intakes, exhausts, and rooftop systems will be located away from noise-sensitive receptors, where practical;
- Intake silencers, acoustic plenums, and acoustical louvers will be installed as necessary to reduce noise levels; and
 - Vibration isolation mountings will be incorporated into mechanical systems.

Vehicular noises associated with the proposed Parking Ramp (i.e., the expanded EGG parking ramp) may increase accordingly, although these noises are also not likely to impact neighborhood residents. Noise levels associated with increased traffic are expected to be minimal. Overall, operation of the Project is not expected to generate any significant noise that could potentially impact the adjacent community.

The Lead Agency finds that because of the implementation of the measures described above, potential noise impacts from the construction and operation of the Project have been avoided or minimized to the maximum extent practicable.
Public Health and Safety
Construction of the proposed Project will not have a significant adverse impact on public health. While under construction, the Project site may pose typical safety concerns for construction personnel, as well as minor adverse impacts for passing pedestrians as temporary routes are established and adjusted as necessary. Construction personnel will comply with all applicable OSHA regulations and contractor safety programs to minimize safety risks during construction of the Project. Public safety impacts during construction will be mitigated with appropriate fencing, lighting, and maintenance, and pedestrian paths will be aligned so as to minimize pedestrian exposure to safety risks. In addition, contractor access will be restricted to designated site entrances and exits, so as to minimize safety risks to passing vehicular and pedestrian traffic.

Operation of the proposed Project is expected to have a positive impact on the health of the campus community. Proximity to other health institutions may contribute to long-term growth of faculty, staff and student population, thereby contributing to the promotion of health and health education. Additionally, the anticipated growth in cooperation between the educational, research, and treatment facilities on the BNMC, including the relocation of the SMBS, is expected to result in an improvement in health outcomes for patients. It is currently anticipated that security systems for the SMBS will monitor movement, control access, and provide emergency communication to employees, visitors and students through the use of IP based Closed Circuit TV (IP-CCTV), access control, door monitoring, appropriate safe lighting techniques, motion detection, intrusion detection and communication systems. The building design will also accommodate security measures for personal property (e.g. secure bicycle storage), passive surveillance, and measures to protect facility users in cases of emergency. Collaboration among the agencies and institutions providing public safety services will continue to address the security needs of UB’s Downtown Campus.

The Lead Agency finds that because of the implementation of the safety measures described above, the Project will minimize impacts to public health or safety to the maximum extent practicable.

Land Use and Community Character
Preconstruction and construction activities are expected to have temporary impacts on community character in the area immediately surrounding the project site. These activities include, but are not limited to:

- The installation of Project site/construction logistics, including fencing/wind screening, signage, alternate transportation routing and associated equipment;
- The installation of soil erosion and sedimentation controls;
- Demolition of existing uses, including the bank branch, subway station, and surface parking areas;
- Utility demolition, relocation, and installation, including stormwater collection systems, water supply and wastewater collection lines, electric, data, telecommunications, and gas;
- Site excavation;
- Loading and unloading of materials and equipment; and
- Building construction.

Construction activities may result in minor, temporary impacts from dust, noise, vibration, and minor inconveniences to the adjacent neighborhood and pedestrians in the immediate vicinity of the Project site. As described above, the Project includes mitigation, minimization, and/or avoidance measures to ensure that any such effects will not rise to the level of significant adverse impacts. In addition, some minor temporary impacts to traffic may result from the
movement of vehicles, equipment, and materials associated with construction of the Project. Any such impacts will be of relative short duration and are not expected to have a significant adverse effect existing land use or community character.

The proposed Project will remove the First Niagara Bank Branch, NFTA Allen/Medical Campus Station, and surface parking lots and replace them with a large institutional building and a Parking Ramp. The function of the metro rail station will be integrated into the School of Medicine and Biomedical Sciences facility. Additionally, the function of the surface parking lots will be replicated with additional spaces at the Parking Ramp site. As such, the Project will cause an increase in density of development at both the SMBS and Parking Ramp sites. However, as described in the DEIS, this increase in density is largely consistent with the goals of existing land use plans and, therefore, can be considered an improvement. In addition, the lack of ground-floor commercial elements in the SMBS was intentional to encourage students, staff, and visitors to patronize retail and dining establishments in the surrounding neighborhoods. This anticipated increase in business will be a positive effect and is consistent with the general intent of regional planning documents to encourage the growth of retail and dining opportunities in the adjacent areas.

The Lead Agency finds that due to the selection of specific siting and design criteria (including consistency with regional planning documents) and measures described above, impacts to the character of the community have been minimized to the maximum extent practicable.

Community Facilities and Services

The construction of the proposed Project includes the demolition of the existing NFTA Allen/Medical Campus Metro Rail entrance structure. However, the NFTA Police substation facility will be left intact. Accordingly, construction of the proposed Project is not expected to have a substantial adverse impact on community facilities or services. The Buffalo Fire Department will have adequate resources to respond to incidents during construction of the Project, as necessary.

Operation of the SMBS on the BNMC will shift demand for most community facilities and services, and may increase demand for others. The relocation of the facility to the Downtown Campus will not have an adverse impact on emergency response time. Due to potential increased ridership accessing the Metro Rail at the Allen/Medical Campus NFTA station, the NFTA Police Department may experience increased demand for their services. The SMBS will incorporate a fully addressable fire alarm system with a fire alarm test and control unit, initiating devices, emergency voice evacuation; firefighter’s communication system, egress door locks, smoke control systems and standby generators to supply power to all life safety devices in the event of emergencies. With regard to other community facilities and services such as schools, cultural and religious facilities, the operation of the proposed Project is not anticipated to generate new demand or any adverse impacts.

The Lead Agency finds that because existing community facilities and services are adequate to meet the demands of the Project, impacts to these types of resources have been avoided.

Summary of Impacts, Mitigation, and Balancing

The Lead Agency, having balanced relevant considerations, acknowledges that although adverse environmental impacts will occur, they will be minimized through the use of various general and site-specific avoidance and mitigation measures, as described above. The Project will result in short-term or temporary adverse environmental impacts associated with construction activities. These impacts will be minimized and/or mitigated to the maximum
extent practicable by adherence to existing local and state regulations and best management practices during construction. Potential impacts related to increased traffic and increased demand for parking have been minimized by integrating the SMBS with the NFTA Allen/Medical Campus Station, the proposed construction of the Parking Ramp as part of the Project, and will be further mitigated through the adoption of specific traffic measures described in the EIS. Permanent impacts on visual resources and community character have been minimized and mitigated to the maximum extent practicable by the selection of specific siting and design criteria, including siting the Project within the existing BNMC campus. With the implementation of these mitigation measures, the EIS demonstrates that the adverse effects that cannot otherwise be avoided have been adequately balanced. In addition, the Project supports many of the goals enumerated in recently adopted public planning documents for both UB and the City of Buffalo. By siting the SMBS at the proposed site and integrating the NFTA Station, the Project will contribute to the economic revitalization of the neighborhood and restore urban fabric along Main Street, while also adding significant investment into both public services and critical transportation infrastructure (including the expansion of an existing city-owned parking structure onto an adjacent surface parking site).

ALTERNATIVES TO THE PROPOSED ACTION

SEQR (6 NYCRR Part 617) requires that an EIS evaluate all reasonable project alternatives. In determining the scope of alternatives to be considered, the emphasis is on what is "reasonable". As described in §617.9 (b)(5)(v), an EIS must contain a description and evaluation of the range of reasonable alternatives to the action that are feasible, considering the objectives and capabilities of the Project Sponsor. The purpose of the proposed SMBS is to enable UB to achieve its goals to grow its student population, attract more world-class faculty, and strengthen its role as an economic driver for Western New York while working in tandem with the BNMC and the City of Buffalo. Therefore, the preferred alternative is to construct a facility that achieves these goals. UB anticipates that the proposed SMBS will provide a new anchor presence for the University on its Downtown Campus, grow the School's reach through more physical integration with the BNMC, and provide room on South Campus for the fulfillment of other objectives of UB's Comprehensive Physical Plan. Paragraph 617.9(b)(5)(v) of the SEQR regulations suggests that, in addition to the "no action" alternative, it may be appropriate in an EIS to consider alternative sites, technologies, scale or magnitude of action, project designs, timing or phasing of action, uses and types of actions. What constitutes a "reasonable" alternative will depend on the nature of the proposed action, the nature and range of potential adverse impacts, the sponsor of the action, and the general nature or class of the possible alternative. SEQR does not require, and it is therefore not necessary, to explore every possible alternative density or size.

The alternatives analysis included consideration of 11 sites for the SMBS within the Downtown Campus area that were identified in the UB Comprehensive Physical Plan DGEIS. Based on the goals of UB's Comprehensive Physical Plan and the Project, four general criteria were developed to evaluate each of the 11 site alternatives: access to transit, neighborhood context, connection to other BNMC facilities, and access to parking. The SEQR alternatives analysis determined that the proposed SMBS site is the preferred alternative mainly due to its proximity to transit, its potential for connection to other BNMC anchor institutions, and its consistency with both the Comprehensive Physical Plan and City Comprehensive Plan. The location of the site relative to the Allen/Medical Campus NFTA Metro Station facilitates access to the Project by public transportation at a level unmatched by any of the other available alternatives. Students, faculty, staff, and visitors will have direct access to the NFTA Metro within the SMBS. This also has the added benefit of acting as a substantial investment into critical infrastructure that will benefit the surrounding neighborhoods and city as a whole. The reconstruction of the station entrance replaces an aging structure and will promote usage of the entire rail line and all of the benefits associated with increased transit usage and access.
Additionally, the SMBS site's location at the intersections of Main and High, and Main and Allen will allow for the Project to serve as a gateway to the new Downtown Campus, helping to showcase and visually identify UB's presence downtown. This allows for physical connection to the adjoining Allentown neighborhood, rebuilding the urban fabric by developing underutilized corner lots at two major intersections and providing demand for dining and retail establishments in the neighborhood from the influx of new students, employees and visitors associated with the Project. While the preferred alternative site is not the alternative that is closest to the greatest amount of existing parking options, this is consistent with the goal of encouraging walkability and reducing single occupancy vehicle commuting. Finally, the preferred alternative site is directly adjacent to the future sites of both the Children's Hospital and Conventus Medical Office Building. This will allow for physical connection to these facilities. The alternatives analysis concluded that with the implementation of the various measures to avoid, minimize, and/or mitigate environmental impacts (including traffic and parking impacts) proposed in the EIS, the proposed Project site is the site (from among the available site alternatives considered in the UB Comprehensive Physical Plan DGEIS) that will result in the least potential for significant environmental impacts.

During the site development process three alternative project designs were developed and described for the purpose of evaluating program requirements. The programming needs of the Project necessitate a large building with a footprint covering much of the site. For this reason, the design alternatives identified consist of minor variations in size and location on the lot. The three project designs that were considered in the alternatives analysis can be generally defined as follows:

- **Alternative #1 (Approximately 12-story building):** this alternative proposes the smallest building footprint, but the tallest building height. The Allen Street Extension and NFTA Station are left unaltered.
- **Alternative #2 (Approximately 9-story building):** this alternative proposes a larger building footprint and shorter height. The NFTA Station is integrated into the building, but the Allen Street Extension could possibly be open to vehicular traffic and no longer passes through the building.
- **Alternative #3 (Approximately 7-story building):** this alternative also proposes a larger building footprint and shorter height (in comparison to Alternative #1). Both the Allen Street Extension (pedestrian-only) and NFTA Station are integrated into the building. The extension extends through the building and is covered.

Alternative #3 was chosen as the preferred alternative. Alternative #1, while being the simplest to construct, would be taller which could increase visual impact. Additionally, the reconstruction of the NFTA Station would not be included as a benefit of the Project. Although Alternative #2 would not be as tall as Alternative #1, this design leaves a void in the building wall of Main Street, which would allow unobstructed views from Allentown into the BNMC. This, along with the possible allowance of vehicular traffic on the Allen Street Extension could cause more negative visual and traffic impacts on the neighborhood. In addition to meeting the objectives and goals of the Project Sponsor, the design and footprint of the SMBS, as currently proposed, minimizes the height of the building, encourages and reinforces the existing circulation system/pathways between the BNMC and Allentown, and covers virtually the entire lot with a tall, modern structure to reinforce a consistent building wall along Main Street and terminate views along Allen Street looking east. The preferred design alternative also best complies with principles outlined in the UB Design Guidelines including enhancing pedestrian circulation, connection campus cores to campus edges, and the use of sheltered connections. With the implementation of the various measures to avoid, minimize, and/or mitigate environmental impacts proposed in the EIS, the preferred site plan is the alternative that will result in the least potential for significant environmental impacts.
CERTIFICATION OF FINDINGS
The State University Construction Fund, as Lead Agency for the environmental review of this action, pursuant to 6 NYCRR Part 617.11(d), having reviewed and accepted the Project DEIS and FEIS, and having considered the preceding written facts and conclusions, hereby certifies that:

1. The requirements of 6 NYCRR Part 617 have been met;
2. Consistent with social, economic, and other essential considerations, from among the reasonable range of alternatives available, the proposed action is one that minimizes or avoids adverse environmental effects to the maximum extent practicable, including the effects disclosed in the EIS; and
3. Consistent with social, economic, and other essential considerations, to the maximum extent practicable, adverse environmental effects revealed in the environmental impact review process will be minimized or avoided by incorporating as conditions to any funding or approval of the Project those mitigation measures that were identified as practicable.

[Signature]
Signature of Responsible Official

[Directo of Design]
Director of Design

[Name of Responsible Official]
Name of Responsible Official

08/27/2013
Date

[State University Construction Fund]
Name of Agency