Framework for systematically evaluating the resilience and sustainability of highway bridges

Incorporating sudden loss of capacity and slow deterioration simultaneously

Hanmin Wang (hanminwa@buffalo.edu)

Ravi Ranade, PhD, PE (ranade@buffalo.edu) & Pinar Okumus, PhD (pinaroku@buffalo.edu)

Institute of Bridge Engineering https://www.buffalo.edu/ibe.html

Motivation

Slow deterioration processes such as rebar corrosion degrade the long-term performance of highway bridge components and increase their vulnerability to extreme events such as earthquakes, hurricanes, and vehicular impacts

Objective

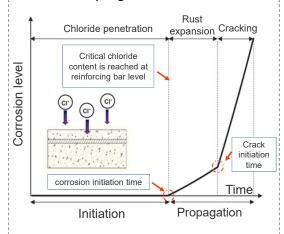
Investigate the combined effects of corrosion and seismic hazard on bridge components and develop a framework to simultaneously assess resilience and sustainability corroded bridge components exposed to seismic hazard

Research significance

Collapse caused by corrosion

Genoa bridge collapse (Italy, 2018)

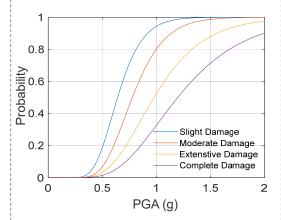
Collapse caused due to earthquake



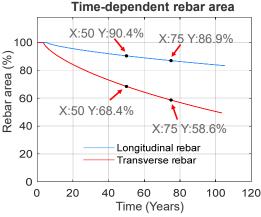
Highway bridge collapse (Sylmar, California, 1994)

https://goo.gl/BsUfkD https://goo.gl/Hhphbp

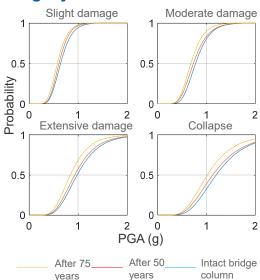
Framework development


Corrosion progress

- · Chloride ion ingression is the major reason for corrosion in highway bridges
- Loss of rebar area happens during the corrosion propagation phase


Seismic fragility curve

Seismic fragility curve provides the probability of exceeding a given damage state as a function of an engineering demand parameter that represents the ground motion (e.g. Peak Ground Acceleration [PGA]).



Evaluation framework = Corrosion progress + Seismic fragility curve

Corrosion of reinforcement

Conclusion: Corrosion effect on fragility

- · As corrosion of reinforcement increases over time, it makes the bridge column more vulnerable to seismic damage
- increase probability exceedance due to corrosion is larger for higher damage states
- · The effect of longitudinal reinforcement corrosion on the fragility of the bridge column is more significant than the effect of transverse reinforcement corrosion

References

- Alipour, A., et al, 2013. Capacity loss evaluation of RC bridges located in extrer chloride-laden environments. Structure and Infrastructure Eng., 9(1), pp.8-27.
- Vu, K.A.T., Stewart, M.G., 2000. Structural reliability of concrete bridges including improved chloride-induced corrosion models. Structural Safety, 22(4), pp.313-333.
- Ramanathan, K. N. 2012. Next generation seismic fragility curves for California bridges incorporating the evolution in seismic design philosophy. Doctoral dissertation, Georgia Institute of Technology.