Eric Pitman Summer Workshop in Computational Science

2. Data Structures: Vectors and Data Frames
Data Objects in R

These objects, composed of multiple atomic data elements, are the bread and butter of R:

- Vectors
- Data Frames
Vector Data Object

A vector is a list of elements having the same type.
Construct a Vector Data Object

Use the `c()` function:

```r
> a <- c(5,6,7,8)  # vector with 4 numeric values
> d <- c("red", "orange", "green")  # character vector
```
Accessing Vector Data

Access by index or range:

> d[1] # retrieves “red”
> a[3] # retrieves 7
> d[1:2] # retrieves “red”, “orange”

Element numbering starts at 1 in R
Information about a Vector

> y <- c(3,5,7,9) # vector with 4 numeric values

> length(y) # how many elements?

> class(y) # class of a vector object is the class of its elements
> str(y)
structure of the vector: number of
elements, type, and contents

```
num [1:4] 3 5 7 9
```
Some Operations on Vectors

- `sum()` # Sum of all element values
- `length()` # Number of elements
- `unique()` # Generate vector of distinct values
- `diff()` # Generate vector of first differences
- `sort()` # Sort elements, omitting NAs
- `order()` # Sort indices, with NAs last
- `rev()` # Reverse the element order
- `summary()` # Information about object contents
Repercussions of NA

Any arithmetic operation on a structure containing an NA generates NA!

```r
# NA means “no value known”
> y = c(1, NA, 3, 2, NA)
> sum(y)
[1] NA
```

We must *remove NAs* to make calculations. How?
Finding NAs in a Data Structure

> y = c(1, NA, 3, 2, NA)

> summary(y)

```
   Min. 1st Qu. Median  Mean 3rd Qu. Max. NA's
   1.0   1.5   2.0   2.0   2.5   3.0    2
```
Handling Missing Data

Remove NAs prior to calculation:

```
> y = c(1, NA, 3, 2, NA)  # [1, ?, 3, 2, ?]
sum(y, na.rm=TRUE)       # removes NAs, then sums
[1] 6
```
Data Frames

- A data frame is a structure consisting of columns of *various modes* (numeric, character, etc).
- Its rows and columns can be named.
- Data frames are handy containers for experimental data.
Data frames are handy containers for data that describe experimental subjects.

Student population data:

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68</td>
<td>120</td>
<td>16</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>160</td>
<td>17</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>118</td>
<td>16</td>
</tr>
</tbody>
</table>
Constructing a Data Frame

1. Construct the vectors that hold column data:

   ```r
   height   = c(68, 75, 60)       # inches
   age      = c(16, 17, 16)       # years
   handed   = c("L", "R", "R")  # dominant hand: R=right, L=left
   ```

2. Construct the data frame by associating the columns:

   ```r
   data = data.frame(Height=height,
                      Age=age,
                      Hand=handed)
   ```
Data Frame

Organized in rows and columns:

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68</td>
<td>120</td>
<td>16</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>160</td>
<td>17</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>118</td>
<td>16</td>
</tr>
</tbody>
</table>

Columns (formed from vectors)
Accessing by Index

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 68</td>
<td>120</td>
<td>16</td>
<td>L</td>
</tr>
<tr>
<td>B 75</td>
<td>160</td>
<td>17</td>
<td>R</td>
</tr>
<tr>
<td>C 60</td>
<td>118</td>
<td>16</td>
<td>R</td>
</tr>
</tbody>
</table>

First index is row, second index is column:

> data[1,1] # retrieves subject A's Height
Accessing by Index

<table>
<thead>
<tr>
<th></th>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68</td>
<td>120</td>
<td>16</td>
<td>L</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>160</td>
<td>17</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>118</td>
<td>16</td>
<td>R</td>
</tr>
</tbody>
</table>

> data[1,] # retrieves all subject A data

Height Weight Age Hand

A 68 120 16 L

Comma is a placeholder in the [row, column] notation
Accessing by Index

<table>
<thead>
<tr>
<th></th>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68</td>
<td>120</td>
<td>16</td>
<td>L</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>160</td>
<td>17</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>118</td>
<td>16</td>
<td>R</td>
</tr>
</tbody>
</table>

```r
> data[,1]  # retrieves all Height data
[1] 68 75 60
```

Comma is a placeholder in the [row, column] notation.
Accessing by Index

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68</td>
<td>120</td>
<td>16</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>160</td>
<td>17</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>118</td>
<td>16</td>
</tr>
</tbody>
</table>

> data[1,] # retrieves all subject A data

```
Height  Weight  Age  Hand
A       68       120   16   L
```

> data[,1] # retrieves all Height data

```
[1] 68 75 60
```

Comma is a placeholder in the [row, column] notation.
Try it:
Accessing by Index

> source("data-frame-simple-example.R")
> data[2,3] # retrieves subject B's Age
> data[2,] # retrieves all subject B data
> data[,3] # retrieves all Age data
Accessing by Name

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 68</td>
<td>120</td>
<td>16</td>
<td>L</td>
</tr>
<tr>
<td>B 75</td>
<td>160</td>
<td>17</td>
<td>R</td>
</tr>
<tr>
<td>C 60</td>
<td>118</td>
<td>16</td>
<td>R</td>
</tr>
</tbody>
</table>

First is row, second is column:

```r
> data[“A”,”Height”]  # retrieves subject A's Height
# Notice the quotes!
```
Accessing by Name

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68</td>
<td>16</td>
<td>L</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>17</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>16</td>
<td>R</td>
</tr>
</tbody>
</table>

```r
> data["A", ]  # retrieves all subject A data.
# Notice the comma!
```
Accessing by Name

<table>
<thead>
<tr>
<th></th>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68</td>
<td>120</td>
<td>16</td>
<td>L</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>160</td>
<td>17</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>118</td>
<td>16</td>
<td>R</td>
</tr>
</tbody>
</table>

To fetch Height column:

> data[, "Height"] # Notice the comma
Accessing by Name

<table>
<thead>
<tr>
<th></th>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68</td>
<td>120</td>
<td>16</td>
<td>L</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>160</td>
<td>17</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>118</td>
<td>16</td>
<td>R</td>
</tr>
</tbody>
</table>

Another way to fetch Height column:

```r
> data$Height
```
Try it:
Accessing by Name

> source("data-frame-simple-example.R")
> data["B","Age"] # retrieves B's Age
> data["B",] # retrieves all B data
> data$Age # retrieves all Age data
Conditional Access

<table>
<thead>
<tr>
<th></th>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68</td>
<td>120</td>
<td>16</td>
<td>L</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>160</td>
<td>17</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>118</td>
<td>16</td>
<td>R</td>
</tr>
</tbody>
</table>

Subjects who are taller than 65 inches:

> data[data$Height > 65,] # subset of the data frame
 # (notice the comma!)
Conditional Access

<table>
<thead>
<tr>
<th></th>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68</td>
<td>120</td>
<td>16</td>
<td>L</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>160</td>
<td>17</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>118</td>
<td>16</td>
<td>R</td>
</tr>
</tbody>
</table>

Heights over 65 inches:

```r
> data$Height[data$Height > 65]  # subset of a column
# of the data frame
```
Conditional Access

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68</td>
<td>16</td>
<td>L</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>17</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>16</td>
<td>R</td>
</tr>
</tbody>
</table>

Heights equal to 75 inches:

```r
> data$Height[data$Height == 75]  # subset of a column
# of the data frame
```
Try it:
Conditional Access

> source("data-frame-simple-example.R")

subset of the data frame having age<17 years:
> data[data$Age < 17,]

subset of a column of data frame, age<17 years:
> data$Age[data$Age < 17]
Conditional Access 2

<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68</td>
<td>16</td>
<td>L</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>17</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>16</td>
<td>R</td>
</tr>
</tbody>
</table>

Heights over 65 inches:

```r
> data[which(data$Height > 65), "Height"]
> subset(data, Height>65, select="Height")
```

handy if you have NAs in the dataframe.
Conditional Access 2: which()

<table>
<thead>
<tr>
<th></th>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>68</td>
<td>120</td>
<td>16</td>
<td>L</td>
</tr>
<tr>
<td>B</td>
<td>75</td>
<td>160</td>
<td>17</td>
<td>R</td>
</tr>
<tr>
<td>C</td>
<td>60</td>
<td>118</td>
<td>16</td>
<td>R</td>
</tr>
</tbody>
</table>

\[\texttt{\textbf{which}}(\text{data}\$\text{Height} > 65) \]

\[1 \ 2 \]

\# which() returns the indices for which the conditional is true!
Conditional Access 2: subset()

A
<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>120</td>
<td>16</td>
<td>L</td>
</tr>
</tbody>
</table>

B
<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>160</td>
<td>17</td>
<td>R</td>
</tr>
</tbody>
</table>

C
<table>
<thead>
<tr>
<th>Height</th>
<th>Weight</th>
<th>Age</th>
<th>Hand</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>118</td>
<td>16</td>
<td>R</td>
</tr>
</tbody>
</table>

> `subset(data, Height>65, select="Height")`

subset() arguments are:
dataset to subset,
subsetting condition to apply,
columns to return
Data Frame Information

str(data) # structure
dim(data) # dimensions
is.data.frame(data) # returns a logical value

View(data) # open View window of data
head(data) # beginning of the data frame
tail(data) # end of the data frame

names(data) # names of the columns
rownames(data) # names of the rows
colnames(data) # names of the columns

> class(data)
[1] "data.frame"
Let's create our own dataset and put it in an R data frame:

- FirstInitial
- LastInitial
- School
- Height
- HtUnit
- Age
- Handed
- Gender
Now we can write some R to select subsets of our data. Examples:

- How many students younger than 17?
- List heights of students at Williamsville North
- Genders of left-handers?
Interlude

Complete vector/data frame exercises.

Open in the RStudio source editor:

<workshop>/exercises/exercises-vectors-matrices-dataframes.R